
A Distributed Shared Memory Facility

for FreeBSD

�

Pedro Souto

yz

and Eugene W. Stark

x

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

Abstract

This paper describes the design and implementa-

tion of a distributed shared memory facility we have

implemented for the FreeBSD operating system (a

descendant of 4.4BSD that runs on the PC architec-

ture). Interesting aspects of the design are: (1) the

consistency protocol uses unreliable datagram com-

munication, but is robust with respect to message

loss, and in the normal case requires only two data-

grams to handle a read fault; (2) the facility provides

a simple programming interface that does not require

any socket or network programming to use; (3) the

facility extends the FreeBSD VM system in a very

non-intrusive way.

1 Introduction

A distributed shared memory (DSM) facility per-

mits processes running at separate hosts on a net-

work to share virtual memory in a transparent fash-

ion, as if the processes were actually running on a

single processor [LH89]. This is accomplished with

the help of the virtual memory (VM) subsystem,

which identi�es page faults on DSM pages and in-

vokes the DSM subsystem to retrieve data over the

network and perform necessary synchronization.

This paper describes the design and implemen-

tation of a distributed shared memory system we

have built for the FreeBSD 2.1 operating system, a

descendant of 4.4BSD that runs on the PC architec-

ture. The following goals were important in shaping

the design of our facility:

� A simple client application interface, which

would be as close as possible to ordinary mem-

ory.

�

Product names used in this publication are used for iden-

ti�cation purposes only and may be trademarks of their re-

spective companies or organizations.

y

Supported by a PRAXIS XXI fellowship, from the Junta

Nacional Cient���ca e Tecnol�ogica of Portugal.

z

E-mail address: souto@cs.sunysb.edu

x

E-mail address: stark@cs.sunysb.edu

� To make the basic DSM read page/write page

operations as e�cient as possible in the normal

case.

� A nice �t with the existing FreeBSD VM sys-

tem, with minimal changes to existing FreeBSD

kernel code, and providing
exibility for exper-

imentation with di�erent consistency protocols.

The programming model presented to client ap-

plications centers around the notion of DSM objects,

which are used in a fashion analogous to the use of

memory-mapped �les. No network or socket pro-

gramming is required of an application in order to

use the DSM facility. At the kernel level, the no-

tion of DSM object �ts together nicely with the

VM objects that already exist in the Mach-derived

FreeBSD VM subsystem, enabling us to add the

DSM facility to FreeBSD in a very non-intrusive

fashion.

To achieve e�ciency and low communication

complexity, we adopted as a basic design decision

that unreliable datagram communication (our im-

plementation uses UDP) should be used whenever

possible. The protocol we designed, which is a write-

invalidate protocol that ensures sequential consis-

tency [Lam79], requires in the normal case only two

datagrams (request and reply) to retrieve a copy of

a page from a remote host, and a total of n+ c+ 1

datagrams (or an n-way multicast plus c + 1 indi-

vidual datagrams) to obtain write permission on a

copy of a page, where n is the number of hosts inter-

ested in the object and c is the number of hosts that

actually hold copies of the page. The protocol is ro-

bust in the face of loss or reordering of datagrams,

though in this case or in the case of contention for

pages, additional messages may be required. Mea-

surements of basic latencies show that our read page

fault are less than 3 ms, which is within 1.5 ms of

the best published results [BB93] we know of.

The implementation of the DSM facility required

only minimal changes to the existing FreeBSD ker-

nel code: only about 100 lines of additions or mod-

i�cations were made to previously existing kernel

�les. The rest of the system is split between about

3000 lines of new kernel code and about 5000 lines

for a user-level DSM server program. The user-

mode server implements essentially all aspects of the

consistency protocol, and interacts with the kernel

through a narrow interface, thus allowing easy ex-

perimentation with various consistency protocols.

The remainder of the paper describes in more de-

tail some of the more interesting aspects of our sys-

tem.

2 Architectural Overview

2.1 Programming Model

Our DSM facility centers around the concept of

a DSM object, which is a virtual address space that

consists of a sequence of shared pages. A process

wishing to access a DSM object must �rst obtain

for that object: (1) a UID, which uniquely iden-

ti�es that object among all other DSM objects in

the world, and (2) the network address of a DSM

server that knows about that object. A UID is

obtained either by requesting the creation of a new

DSM object, or else by receiving the UID of an exist-

ing DSM object through some communication chan-

nel outside the DSM facility. Network addresses are

obtained by similar means. Once a process has the

UID of a DSM object, and a corresponding server

address it requests to attach to the object, using a

system call provided for this purpose. After attach-

ing to the object, the process uses another system

call to map pages from the DSM object into its own

virtual address space. When a process has �nished

accessing a DSM object, it asks to detach from the

object; in response to this request the DSM facility

deletes any existing mappings of that object. The at-

tach/map/detach paradigm for DSM objects is anal-

ogous to the open/map/close paradigm for memory-

mapped �les. It is also quite similar to what is pro-

vided by the System V shm [ATT90] shared memory

facility for interprocess communication.

Once a process has mapped DSM pages into its

virtual address space, normal memory references to

the mapped virtual addresses are used to access data

in the DSM object. As usual, such memory ref-

erences will cause a page fault if either the corre-

sponding page is not resident in physical memory,

or else the page does not have the appropriate ac-

cess permissions set. When a page fault occurs for

a virtual address that has been mapped to a DSM

object, the kernel page fault handler dispatches a re-

quest to the DSM subsystem. The DSM subsystem

handles this request, communicating, if necessary,

with DSM servers elsewhere in the network either

to obtain a copy of the page to be read, or else to

synchronize with the other servers to ensure that a

write operation can be performed on a page without

violating data consistency guarantees. Once the re-

quired communication and synchronization has been

performed, the DSM subsystem responds to the page

fault handler, and the faulting process is allowed to

continue.

An important feature of the above programming

model is that processes using the DSM feature do

not have to contain any code for communication over

the network. The only aspect of network program-

ming that shows through the interface is the net-

work address required initially to attach to a DSM

object, however, this network address can be treated

opaquely, as simply a string of bits that is passed to

the kernel as an argument to the attach request.

2.2 System Structure and Kernel Inter-

faces

The DSM subsystem has a client/server struc-

ture, and contains both kernel and user-level com-

ponents. The overall organization is depicted in Fig-

ure 1. Clients are the user-level application processes

that make use of the DSM facility. Arbitrarily many

clients can run on a single host computer. To sup-

port the DSM operations of the clients, a single DSM

server process runs on each host computer provid-

ing DSM service. The DSM server is also a user-

level process, though it is a privileged process that

makes use of special DSM system calls provided by

the kernel. The kernel portion of the DSM subsys-

tem consists of (1) DSM pager code, which runs on

behalf of a client process as a result of a page fault,

(2) client system calls, which allow clients to attach,

map, and detach DSM objects as described above,

and (3) server system calls, which provide the DSM

server process with the access to the VM system it

needs to carry out its function.

As described above, the kernel page fault han-

dler invokes the DSM pager code in response to a

page fault by a client process involving a virtual ad-

dress that has been mapped to a page in a DSM

object. The DSM pager does not itself perform

any communication or synchronization with remote

DSM servers. Instead, it sends a request datagram

to the local DSM server indicating the type of ser-

vice that is required, and then sleeps awaiting a re-

sponse. The local DSM server receives and handles

this request datagram, possibly communicating with

DSM servers elsewhere in the network as a result.

When the required communication and synchroniza-

tion has been performed, and any requested DSM

User level

DSM PROTOCOL
SERVER

PROCESS

DSM
PAGER

SERVER
PROCESS

DSM
PAGER

Client Interface
System Calls

Server Interface
System Calls

Server Interface
System Calls

CLIENT
PROCESS

Client Interface
System Calls

CLIENT
PROCESS

HOST A HOST B

User level

Kernel level Kernel level

Figure 1: General architecture of the DSM facility.

data is available in local physical memory, the DSM

server uses a special system call to awaken the client

process sleeping in the DSM pager. The special sys-

tem call is used so that the DSM server can wake

up clients directly in the kernel, instead of requiring

every client application to contain code for receiving

and interpreting reply datagrams from the server.

To simplify the structure of the DSM server pro-

gram, no attempt is made by the server to keep track

of the status of client operations in progress and to

ensure they succeed. Thus, it is possible that a re-

quest sent by the local DSM server to a DSM server

on a remote host might fail to elicit a response from

the remote host; this failure in turn would mean that

the local server might never respond to the client

that issued the request. In such a situation, the onus

is on the client to get things moving again: if the lo-

cal DSM server fails to awaken the client process

after a suitable interval, the client times out from

the kernel sleep routine and resubmits the request

to the server.

The client system call interface consists of the

following system calls (Figure 2a): dsmcreate,

dsmattach, dsmdetach, dsmmap and dsmwait.

The dsmcreate call takes as an argument a size

in bytes, and causes a new DSM object of that size

to be created. The UID of the newly created object

is returned. The dsmattach call takes as arguments

the UID of a DSM object and the network address

at which a server who knows about that object can

be contacted, and it arranges for the calling process

to become attached to the speci�ed DSM object.

The return value indicates success or failure. The

dsmdetach call takes the UID of a DSM object as

its single argument, and it causes the calling process

to become detached from the speci�ed object. The

dsmcreate, dsmattach, and dsmdetach system calls

are not actually executed in the context of the client

process. Rather, they cause a request datagram to

be sent to the local DSM server, who performs the

requested service and returns a response to the client

waiting in the kernel.

The client dsmmap call is identical to that of the

previously existing mmap call, used to memory map

�les, except that dsmmap requires the UID of a DSM

object to be supplied instead of a �le descriptor. In

spite of the overlap between dsmmap and mmap, we

chose to keep them separate in the current imple-

mentation to avoid modi�cations to existing code.

The dsmwait call is used by a client process to avoid

expensive busy waiting on DSM data. It takes as

arguments the UID of a DSM object and the o�set

of a particular byte in that object, and it causes the

caller to sleep as long as it can be guaranteed that

the data byte at that o�set has not been changed. As

soon as this guarantee can no longer be made (for ex-

ample, if a remote host obtains write permission on

the page containing the particular byte), the server

awakes the client, which returns to user mode.

The server system call interface consists of the

following system calls (see Figure 2b): dsmservice,

dsmcreate, dsmdelete, dsmrespond, dsminvalid,

dsmwritepage, dsmsendpage, and dsmrecvpage.

The dsmservice call is used by the DSM server pro-

cess on startup to identify itself to the kernel, to pre-

vent any other DSM server processes from starting,

and to enable access to the remaining server calls.

The dsmcreate and dsmdelete calls are used to in-

form the kernel of the creation and deletion of a DSM

object. The dsmrespond call is used by the server

to wake up a client process sleeping in the kernel

while awaiting DSM service. The DSM server uses

int dsmcreate(int size);

int dsmcreate(int size);
int dsmdelete(int objid);
int dsmrespond(int responseid, int result);
int dsmwritepage(int objid, off_t offset);
int dsminvalid(int objid, off_t offset);
int dsmsendpage(int objid, off_t offset, dsm_data_packet_t dpkt,
 struct sockaddr *addr, int len);
int dsmrecvpage(int objid, off_t offset);

b) Server system call interface.

int dsmattach(int objid, struct sockaddr *addr, int len);

caddr_t dsmmap(caddr_t addr, int len, int prot, int flags, int objid, off_t offset);
int dsmwait(int objid, off_t offset);

a) Client system call interface.

int dsmdetach(int objid);

int dsmservice(int socket);

Figure 2: System call interface.

the dsmwritepage call to tell the kernel that it is

safe to write enable a particular page of DSM data.

The dsminvalid call causes the kernel to invalidate

any copies it may have of a particular page of DSM

data, so that subsequent attempts by clients to ac-

cess these pages will fault. Finally, the dsmsendpage

and dsmrecvpage are called by the server to send

and receive a page of DSM data over the network.

System calls are provided for this in order to enable

the transmission and reception of DSM data directly

from or to the appropriate page of physical memory,

so that the user-level server process never touches

the actual DSM data. Without these calls, send-

ing a page of DSM data to a remote host would be a

much more costly operation involving the copying of

data from the kernel to the server process' address

space, then copying the data back into the kernel

for transmission over the network, followed by the

reverse sequence at the destination host.

Note that although the system call interface pro-

vides several logically separate system calls, in fact

the implementation uses only one actual system en-

try, dsmsys(), which dispatches on its �rst argument

to invoke the appropriate function. This scheme

saves system call numbers and is similar to the sys-

tem call interface of System V shared memory.

In the �rst version of our system, the DSM server

executed completely in the kernel, similar to what

occurs in the NFS network �le system. This was

done for e�ciency reasons, and because at the out-

set we did not have a clear picture of what sort

of kernel interface would be required for a user-

level server. Unfortunately, the complexity of the

server data structures and storage management is-

sues were such that it became too di�cult to com-

pletely debug a kernel-mode server. In fact, one of

the most di�cult aspects of the server implementa-

tion was implementing a suitable reference counting

scheme for DSM data structures, so that DSM re-

sources would be reclaimed automatically when no

processes were using them any more. To aid in de-

bugging, we decided to reimplement the server as

a user-level process, which communicates with the

kernel through the narrow, system call interface just

described. This interface is largely independent of

the details of the consistency protocol, a feature we

have found very useful while re�ning and debugging

our particular protocol.

3 Details of the Kernel DSM Subsys-

tem

An important design goal for our DSM facility

was to have it mesh nicely with the structure of the

FreeBSD VM system, and to require minimal modi�-

cations to existing code. We feel we were reasonably

successful at meeting this goal; in the rest of this

section we describe in more detail some of the more

interesting aspects of the design.

The FreeBSD virtual memory system is based on

that of 4.4BSD [MBKQ96], which in turn is derived

from that of Mach (Figure 3). A fundamental con-

cept in the Mach VM system [Tev87] is the concept

of a VM object, which consists essentially of a place-

holder for a sequence of physical pages, together with

an associated pager, which is a set of functions that

can be invoked to retrieve data from a backing store,

VM Object

Mapping

User or Kernel
Address Space

Physical
Page

Pager

Figure 3: Simpli�ed view of the Mach VM architec-

ture.

such as a swap area, a �le, or a hardware device. A

process obtains access to the data in a VM object

by mapping some or all of its pages into its address

space. Typically a process has only a few mappings

of VM objects at a time, but actually there is no

limit on the number of mappings or the number of

VM objects whose pages are mapped.

In the FreeBSD VM system, the allocation of

physical memory pages for a VM object is decou-

pled from the mapping of the object into a process'

address space. Physical pages only need to be allo-

cated in a VM object when an attempt is actually

made by a process to access data at an o�set in a

VM object for which no page has yet been allocated.

Such an attempt produces a page fault, and the page

fault handler not only allocates a physical page for

that data, but also invokes the pager to retrieve the

data from backing store. The stock FreeBSD VM

system supports three di�erent types of pagers: a

swap pager, which manages the swap area, a vnode

pager, which is used to page data to and from disk

�les, and a device pager, which is used to page data

directly to a hardware device. Additional types of

pagers are easily de�ned.

Our DSM facility was designed to take advantage

of the existing FreeBSD VM subsystem. Each DSM

object contains an underlying VM object. Mapping

a DSM object into a process' address space amounts

to simply mapping the underlying VM object. To

support the fetching of data over the network, we

introduced a new type of pager, called a DSM pager.

When a fault occurs on a memory address that is

mapped to a page in a DSM object, the page fault

handler invokes the DSM pager. The DSM pager

determines the status of that page by checking data

structures maintained by the DSM subsystem, and

then requests the local DSM server to perform any

communication or synchronization required to bring

a copy of the data into local physical memory, and

to write enable it, if necessary.

At the rather coarse level of detail of the descrip-

tion so far, the interaction of the DSM facility with

the page fault handler seems quite simple. However

there are some technical issues that make things a

bit more complex than they seem at �rst. First of

all, the stock FreeBSD page fault handler is an ex-

tremely complex routine involving many subtle syn-

chronization issues. In order to avoid a di�cult de-

bugging task, and to make it easier to track future

releases of FreeBSD, we wanted to modify as little

of the page fault handler as possible. Some modi-

�cation to the page fault handler was necessary, be-

cause whereas the DSM pager needed to be informed

as to whether a read fault or write fault was being

handled, the pager interface in FreeBSD did not con-

tain any provision for passing this information to the

pager from the page fault handler.

A second technical issue was that the DSM sub-

system had to be responsive to requests from the

pageout daemon to clean pages of physical memory.

The obvious thing for the DSM pager to do when

asked to clean a page would be to write it to the

swap area. However, I/O to the swap area has to

be asynchronous to avoid blocking the pageout dae-

mon, and since there was already an existing swap

pager that contained the complicated code neces-

sary to perform this asynchronous I/O, we wanted

to make use of it if possible.

A third issue was how the user-level DSM server

could arrange for DSM data stored at the local host

to be transmitted over the network, even if this data

happens to currently reside in the swap area.

To understand how we dealt with the above tech-

nical issues, it is necessary for us to describe one

more feature of the FreeBSD/Mach VM system. In

the FreeBSD VM system, VM objects can be linked

together in so-called \shadow chains," which have a

special signi�cance to the page fault handler. When

a page fault occurs for a page mapped to the �rst

object in a chain, the page fault handler �rst con-

sults the associated pager (if any) for that object,

to try to handle the fault. If the pager for the �rst

object fails to handle the fault, then the page fault

handler tries the second object in the chain, and

so on. Thus, each object in such a chain serves as

a \backing object" for the preceding object, in the

sense that if a page is not found in the preceding

object, an attempt is made to obtain the page from

the next object. In the original literature [Tev87]

describing this scheme, each object in a chain is said

to be a \shadow" of the next object. However, this

terminology has turned out to be very confusing, so

we prefer to use the \backing object" terminology

instead.

A major purpose of the chains of VM objects

in FreeBSD is to support \copy-on-write" for e�-

cient forking. However, for the DSM facility we use

these chains in a di�erent way (Figure 4), which we

now describe. We have already mentioned that each

DSM object has an underlying VM object, which is

the actual target of mapping operations by a pro-

cess. This underlying object has an associated DSM

pager, which encapsulates knowledge of how to ob-

tain pages over the network and how to synchronize

with the DSM subsystem at remote hosts. In addi-

tion, when a DSM object is created, we also create a

second VM object that serves as a backing object for

the �rst, so that underlying a DSM object is always

a chain of two VM objects. The pager associated

with the backing object is not a DSM pager, but

rather a swap pager.

When a page fault occurs for an address mapped

into a DSM object, the normal operation of the page

fault handler is to check the �rst of the two under-

lying VM objects to try to obtain the page. When

the DSM pager associated with the �rst object is in-

voked, it determines: (1) that no copy of the page is

available at the local host, or (2) that a copy of the

page is locally available, but it might be paged out

locally to the swap area. In case (1), the DSM pager

sends a datagram to the local DSM server request-

ing the transfer of a copy of the page to the local

host, and it sleeps awaiting the arrival of the page.

In case (2), the DSM pager returns a failure indica-

tion to the page fault handler, which then moves to

the backing object. The page fault handler either

�nds the requested data already in physical mem-

ory mapped from the backing object, or else invokes

the swap pager associated with the backing object

to bring the data in from the swap area.

The utility of the two-element chain underlying

a DSM object becomes evident when one considers

how to implement the \pageout" operation of the

DSM pager. Rather than having the DSM pager per-

form a complicated algorithm for asynchronous I/O

to the swap area, in response to a \clean" request

from the pageout daemon, the DSM pager simply

copies the data from the �rst object in the chain

to the corresponding position in the second object.

This doesn't immediately free up physical memory,

but if there is a high demand for memory, the page-

out daemon will eventually ask the swap pager asso-

ciated with the second object in the chain to clean

its page, in which case the data will be written to

the swap area using the standard pageout code.

Thus, the two-element chain of VM objects un-

derlying each DSM object permits the DSM system

easy access to the normal swap area, with hardly

any additional code required. This organization also

pays o� when the DSM server wishes to transmit to

a remote host DSM data that has been paged out

locally. As discussed above, transmission of DSM

data is accomplished by the special dsmsendpage

server system call, to minimize the number of copies

of a page's data when sending that page to a remote

server. This system call simply maps the page of

the �rst object in the two-object chain into the ker-

nel address space, and then copies data from that

page to the network subsystem. If the page hap-

pens not to be resident in physical memory, a page

fault will occur, and since the DSM pager does not

have the page, the page fault handler will follow the

object chain and �nd the page in the backing object.

Similarly, the reception of DSM data makes use

of the special dsmrecvpage server system call, to

minimize the number of copies of DSM data during

reception. This system call temporarily maps the

physical page, which was allocated when the page

fault �rst occurred, into the kernel address space

and copies the data from the network subsystem to

that page.

To support the scheme described above, the ker-

nel needs to have a certain amount of information

about the state of the DSM subsystem. In particu-

lar, the kernel keeps a data structure for each DSM

object that points to the associated VM objects, and

keeps track of the location and status (available lo-

cally/available remotely, resident/nonresident, write

enabled/write protected) of each page in the object.

It also keeps a list of pending DSM requests from

clients, so that the proper client process can be iden-

ti�ed and awakened when the DSM server responds

to such a request. The kernel does not need to know

anything about the particulars of the DSM protocol

or about remote sites participating in the DSM pro-

tocol; this is entirely the responsibility of the user-

level DSM server process.

4 DSM Protocol

This section describes the DSM protocol executed

by our user-level DSM server processes. Essentially,

there are two related protocols: (1) a membership

protocol, which keeps track of hosts that are cur-

rently interested in accessing a DSM object, and (2)

the consistency protocol, which is executed by hosts

wishing to read or write pages in DSM objects. The

consistency protocol is executed frequently: every

Page

Network

Shadow Chain

Mapping

User or Kernel
Address Space

Backing
VM Object

Local
Swap

Swap Pager

DSM Pager

VM Object

Physical

Figure 4: Use of object shadow chains by the DSM facility.

time a host requires an up-to-date copy of a DSM

page or needs to obtain write permission on a page.

The membership protocol is executed less frequently,

but it must be reliable in the sense that the correct-

ness of the consistency protocol depends on the accu-

racy of the information maintained by the member-

ship protocol. For e�ciency, the frequently executed

consistency protocol uses unreliable datagrams in all

situations but one. On the other hand, the less-

frequently executed membership protocol uses re-

liable datagrams for all communications, where by

reliable we mean that a timeout/retransmit scheme

is used to guarantee delivery, and ordering of data-

grams between each pair of hosts is maintained using

a sequence numbering scheme.

To explain the protocol, we �rst need to introduce

some preliminary concepts and terminology. When a

DSM object is �rst created, the only host that knows

about that object is the host at which the object is

created. This host is called the object manager, and

it plays a special role in some aspects of the DSM

protocol. Application processes at other hosts be-

come informed about the existence of a DSM object

by receiving its UID via some form of communica-

tion outside the DSM system. The �rst time an

application process at a host tries to attach to the

DSM object, the DSM server at that host applies to

the manager of the object for membership in the ob-

ject; that is, it asks to be added to the list of all hosts

that are currently interested in that object. When

the manager grants membership to a new member,

it informs all previous members about the new mem-

ber, and it informs the new member of the current

membership list, so that each member of a DSM ob-

ject knows at all times who all the other members

are. Members of an object can resign their member-

ship at any time; in this case a message is sent to

the manager, who informs the remaining members

about the change.

The consistency protocol belongs to the class of

protocols that Li [LH89] calls \dynamic distributed

manager algorithms with page invalidation." Just as

each DSM object has a manager, each page within

a DSM object has an owner. However, unlike the

object manager, which is �xed at the time the object

is created and never changes, the owner of a page

changes during execution. Initially, the manager of

an object owns all pages in the object. Each time a

host receives write permission on a page in an object,

it becomes the owner of that page. The owner of a

page has the responsibility of safeguarding the data

in a page, until it has determined which host will be

the next owner and has successfully transferred the

data to that host.

Each host that is a member of a DSM object

maintains the following state information for the ob-

ject as a whole: (1) the number of local clients at-

tached to this object; (2) the identity of the object

manager; (3) the object UID; (4) the current mem-

bership list for the object; (5) the size of the object,

in bytes and pages.

In addition, for each page in the object, the fol-

lowing state is maintained: (1) an \owner hint" in-

dicating who the current owner of that page might

be; (2) a \version hint" indicating the current ver-

sion number of the page; (3) a \copies hint" indi-

cating how many copies there might be of the page;

(4) a
ag indicating whether this host has a copy of

the page; (5) a
ag indicating whether this host has

write permission on the page.

The purpose of the owner hint for a page is to

try to route requests for a page quickly to the DSM

server that has the most recent data for that page.

This hint may become stale, but the protocol guar-

antees that the host mentioned in the hint is always

closer to the actual owner than the host holding the

hint. Furthermore, the owner hint is always accu-

rate if the host currently has a copy of the page.

The version hint is used to �lter out datagrams re-

ceived out of order, which, if processed, might lead

the system to an inconsistent state. The copies hint

is an estimate of the number of copies of the page

that exist. This estimate is conservative in the sense

that the estimate held by the owner of a page is al-

ways at least as large as the actual number of copies

in existence.

There are two basic operations of the DSM proto-

col: READ (reading a page) and (WRITE) writing

a page. We now discuss these operations in some

detail.

4.1 Reading a Page

Figures 5a) to 5c) show three interesting cases of a

READ operation. Figure 5a) shows a simple READ,

in which the host wishing to obtain a copy of a page

has an accurate owner hint, and no messages are

lost. In this case, only two messages are required:

a READ message from the requesting host to the

owner, and a DATA reply from the owner. This is

the situation we expect to occur most frequently in

actual execution. Note that because all messages

exchanged in the consistency protocol use unreliable

datagrams, there are no hidden acknowledgments or

other messages, and so exactly two messages are re-

quired to read a page in this situation.

A slightly more complicated case is when the

owner hint held by the requesting host is stale. In

this case, the host that receives the READ message

uses its own hint to forward the message toward the

actual owner, as depicted in Figure 5b). The DATA

reply goes directly to the requesting host, who up-

dates its owner hint upon receipt. Since owner hints

are updated whenever a host receives new informa-

tion about the owner of a page, we expect that

READ messages will generally be forwarded only a

few hops.

Figure 5c) shows a scenario in which a DATAmes-

sage is lost. In this case, a timeout at the requesting

host (by a process sleeping in the DSM pager code)

triggers the retransmission of the READ message.

This mechanism may lead to the reception of mul-

tiple DATA messages containing the same data. To

detect this situation, DATA messages include the

current version number of the page, and a host re-

ceiving a DATA message discards the message if the

version is either older than the most recent version

of which the host is aware, or the same as the version

of any currently held copy. To provide quick error

recovery, but to avoid
ooding the system with re-

transmitted READ messages in case of heavy load,

we use an exponential backo� scheme with an up-

per bound to increase the timeout value in case

the READ message has to be retransmitted several

times.

4.2 Writing a Page

We use a write-invalidate strategy to ensure se-

quential consistency. That is, before the DSM server

at a host allows a client process to modify a page,

it invalidates all copies of that page that exist at

remote hosts.

In order for a host to initiate a WRITE opera-

tion, it is �rst required to have a copy of the cur-

rent version of the page. If it wishes to perform a

WRITE, but it does not have a current copy, it �rst

executes a READ operation to obtain a copy as de-

scribed above. There are two reasons for requiring

a host wishing to write to have a current copy: (1)

it ensures that the host knows the current owner of

the page, and (2) it ensures that subsequent message

loss during the WRITE operation cannot cause the

loss of the data in the page.

Our protocol for writing a page has some uncom-

mon features not usually found in protocols of this

type. First, the owner of a page keeps track only of

the number of copies of that page, rather than the

actual identities of the hosts that have those copies.

Second, whereas in all the similar protocols that we

know of the write part of the protocol has two dis-

tinct operations: the ownership transfer operation

and the remote copies invalidation operation, in our

protocol the transfer of ownership and the invalida-

tion are combined into a single operation.

Figure 6a) shows what we expect to be the most

common case of the WRITE operation, in which

there are only a few copies of the page, the owner's

copies hint is accurate, and only one host is at-

tempting to write the page. In this situation, the

host wishing to write multicasts a WRITE mes-

sage to every host in the current membership list

for the DSM object containing the page to be writ-

ten. When a member receives the WRITE mes-

sage, it updates its owner hint to point to the host

that issued the WRITE message, and then, if and

only if it has a copy of the page, it invalidates that

READ

READ

READ(fwd)

DATA

a) b) c)

Owner Owner Owner

READ

DATA

READ

DATA

DATA

Figure 5: Read operation of the DSM protocol.

copy and responds with a WRITEOK message. The

WRITEOK message sent by the current owner of

the page implicitly carries with it a transfer of own-

ership of that page to the requesting host, who, upon

receipt of such a message, becomes the new owner,

and issues an acknowledgment to the previous owner

to release it from any further ownership responsibil-

ities. The WRITEOK message sent by the previous

owner also includes a copies hint, which is then used

by the new owner to determine when all the remote

copies of the page have been invalidated. Speci�-

cally, the new owner knows that all copies have been

invalidated when the number of WRITEOK mes-

sages it has received is equal to the copies hint it

received in the WRITEOK message from the previ-

ous owner.

As it is absolutely essential that there be no ambi-

guity about whether ownership has been transferred,

the previous owner must wait for its WRITEOK

message to be acknowledged, retransmitting the

WRITEOK if necessary, before continuing with any

other activity regarding this page. The WRITEOK

from the previous owner to the new owner is the

only reliable datagram used in the consistency pro-

tocol. However, observe that the acknowledgement

message used by the reliable datagram service is not

in the critical path, as the new owner does not have

to wait for the acknowledgement to reach the previ-

ous owner.

Figure 6b) illustrates what happens in the case of

write contention; that is, when two or more hosts try

to write the same DSM page at the same time. When

the owner of the page processes the �rst WRITE

message for that page, it invalidates its copy of the

page and replies with a WRITEOK. If it later sees

a WRITE message from some other host for the

same version of the page, it simply discards the later

WRITE message. This ensures that only one host

will become the owner of the next version of the

page, and consequently at most one host will be

granted the right to write that page.

A host trying to write a page also discards any

WRITE messages it receives. This is necessary, be-

cause the only alternative would be for the host to

invalidate its copy of the page, but then the page

would be lost if the host should happen to be granted

ownership by the previous owner. Thus, without any

special provisions, a deadlock could result when two

hosts try to write the same page and each stead-

fastly refuses to invalidate and send a WRITEOK

to the other. To handle this situation, a host starts

a timer when it �rst multicasts a WRITE message.

If, by the time the timer has expired, it has received

ownership of the page but has not received enough

WRITEOK replies, it multicasts a PURGE message

to the membership list. Upon receiving a PURGE

message, every member is obligated to invalidate any

copy it holds, to update its owner hint to point to the

sender, and to reply to the sender with a WRITEOK

message. If insu�cient WRITEOK messages are re-

ceived after a suitable period, the owner of the page

multicasts another PURGE message. This scenario

repeats until the owner is sure that all pages have

been invalidated.

To be sure that all copies of a page are actually

invalidated, the host issuing a PURGE message has

to be able to distinguish WRITEOK messages sent

in response to the initial WRITE message, and also

in response to subsequent PURGE messages. For

this purpose, the host maintains a \phase counter,"

which is an integer variable that is incremented ev-

ery time the server multicasts a new set of WRITE

or PURGE messages. Each such message includes

the value of the phase counter, which the recipient

Owner

WRITEWRITE

WRITEOK

ACK

a)

WRITE

WRITE

PURGE

WRITEOK

b)

Owner

WRITE

WRITE

PURGE

WRITE

WRITEOK
ACK

WRITEOK

PURGE

WRITEOK

WRITE

WRITEOK

PURGE

Owner

WRITEOK

WRITE

ACK

c)

Figure 6: Write operation of the DSM protocol.

echoes back in the WRITEOK response.

Another requirement for correctness of the proto-

col is that it should not lead to cycles in a page's

owner chain. To satisfy that requirement, once a

PURGE message has been processed for a version of

a page, a host must not again update its owner hint

for that page in response to a WRITE message for

the same version of that page. Actually, our proto-

col uses the following stronger policy concerning the

updates of owner hints: after processing a WRITE

or PURGE message for a version of a page, a host

will not again update its owner hint for that page in

response to a WRITE message for the same version

of that page. However, even if a host has previously

received a WRITE message for a version of a page,

it will still update its owner hint for that page in

response to a PURGE message for a version of that

page, as long as it is not aware of a more recent ver-

sion of the page than that speci�ed in the PURGE

message.

As mentioned previously, the copies hint held by

the owner might not be accurate. For example, due

to a slow network or a slow server, a host might

retransmit a READ message before it receives the

DATA response sent by the owner of the page in

response to the original READ message. Since the

owner does not keep track of the identity of hosts

to which it sent copies of the page, it has no choice

upon receiving a retransmitted READ message but

to send another DATA message and increment its

copies hint to maintain a conservative estimate. This

leads to a possibility that a subsequent WRITE op-

eration will deadlock, due to the fact that it will be

impossible to obtain enough WRITEOK messages.

Eventually, the host wanting to write will time out

as described above. If the host has become the owner

by the time the timeout occurs, it will multicast a

PURGE message as already described. However,

there exists the possibility, due to a slow network

or slow response from the previous owner, that by

the time the timeout occurs, the host wanting to

write has not yet become the owner. In this case,

that host simply retransmits the WRITE message

to the owner of the page, whose identity it knows

because the fact that it has a copy of the page means

that its owner hint is accurate. Figure 6c) illus-

trates such a scenario, in which the previous owner

has an inaccurate copies hint and the WRITEOK

it sends is slow in arriving at the host performing

the WRITE. When the retransmitted WRITE mes-

sage arrives at the previous owner, it discards it be-

cause the WRITEOK has already been sent. Even-

tually, the host performing the WRITE will time

out again. By this time, however, it has received

the WRITEOK from the previous owner, and thus

will proceed to a PURGE operation as above.

In summary, the basic write protocol just de-

scribed consists of a sequence of phases: an initial

WRITE phase, then zero or more phases in which

the WRITE message is retransmitted to the owner

of the page, then zero or more PURGE phases.

Message loss has basically the same e�ect for

write operations as does uncertainty about the num-

ber of copies of a page: the server does not receive

enough WRITEOK messages and consequently can-

not be sure whether its copy of the page is the only

one in the system. Thus, the mechanisms used to

handle inaccuracy of the copy hint also handle the

loss of messages.

In order to reduce the write time, we use one op-

timization that is worth mentioning. As shown in

Figure 6c), a very slow network or host can trig-

ger a new WRITE/PURGE phase, due to the late

arrival of a WRITEOK message at the host perform-

ing the WRITE/PURGE operation. If the situation

persists, the host performing the WRITE/PURGE

operation will never receive enoughWRITEOKmes-

sages for a phase before its timer for that phase ex-

pires. To prevent such a scenario, a host performing

a WRITE operation keeps track of the WRITEOK

messages received for a �xed number of previous

WRITE/PURGE phases, and it accepts WRITEOK

messages sent in the scope of any such phase, even

though it might have initiated several new phases.

5 Experimental Results and Discus-

sion

We have run reasonably rigorous tests of the con-

sistency protocol using some simple exerciser pro-

grams, and we have measured some basic perfor-

mance parameters. In this section, we describe the

results of these tests. Important testing that we have

not yet done is to use the system for a realistic ap-

plication.

In order to evaluate the performance of our im-

plementation, we performed two sets of experiments:

one to determine the basic costs of handling read and

write faults on DSM pages, and another to assess

the scalability of our protocol. In these experiments

we used PC's each with either Pentium 75 MHz or

Pentium 100 MHz microprocessors, with 256 Kbyte

\write back" second level cache and 16 Mbyte of

main memory. These machines are interconnected

by an 100 Mbps Ethernet via a SMC EtherPower

10/100 adapter, which sits in the PCI bus and sup-

ports DMA.

To determine the costs of both read and write

faults, we ran a simple \ping-pong" exerciser pro-

gram in which two clients running on di�erent hosts

alternately write a DSM page in such a way that

the page bounces back-and-forth between the two,

and there is no write contention. Table 1 shows

both the minimum values and the average values

over 100,000 operations, for both the read and write

times, measured at the kernel level on machines with

75 MHz processors. The read times give the actual

time taken to handle a read fault by a client pro-

cess. The write times include only the time taken to

execute the invalidation protocol { in general, han-

dling a write fault may also require an initial read

operation to obtain a local copy of the page before

beginning invalidation.

These results are encouraging, they are within 1.5

ms of the best published values that we know of

[BB93], which were measured on a kernel implemen-

tation using a network subsystem specially designed

for performance that accesses the network interface

directly, bypassing the UDP and other communica-

tions software layers. Note however, that the values

presented in that paper were measured using IBM

RISC System/6000 Model 530, which run with a

clock frequency of 25 MHZ, interconnected by point-

to-point 220 Mbps optical �ber network.

It is worth mentioning that a \ping" (ICMP echo

request/response) between the machines we used in

our experiments takes on average 0.44 ms, and the

messages exchanged in a ping neither traverse the

UDP layer nor are they processed at user level. We

believe that improved performance would result due

to reduced IPC costs, if the DSM server were moved

into the kernel.

Table 2 shows the breakdown of both the read

and write faults times (again, these are averages

over 100,000 operations). The IPC times, RD IPC

and WR IPC, measure the time from the moment

the DSM pager sends a request to the local DSM

server to the time that server starts processing that

request. Thus it includes the time to send a mes-

sage to the local host, the time needed for a con-

text switch, the time to receive the message from a

socket, the time spent by that message in a queue of

messages in the DSM server, and the time required

to do some preprocessing of the message. For this

experiment, the message queue at the DSM server

is empty, so the message is processed immediately.

The DSM server times, RD SRV and WR SRV, are

the times taken by the server to satisfy the DSM

pager request; that is, the times taken to get a page

from a remote server or to invalidate copies of the

page in remote servers.

To assess the scalability of our algorithms we mea-

sured the time to invalidate the remote copies of a

page under conditions of no contention and when

the number of copies of the page is equal to the

number of members of the object. As one would

hope, the invalidation time depends roughly linearly

on the number of remote copies: our measurements

showed a constant overhead of 1.3ms, plus an ad-

ditional 0.4ms for each copy to be invalidated, over

the range of 2 to 11 remote copies. Note that our

current implementation sends out WRITE messages

sequentially. We expect that using a multicast facil-

ity for this would decrease the per-copy overhead.

We also ran some experiments under conditions of

high write contention. These experiments revealed

two potential problems with our current protocol.

First, the slower machines (the 75MHz processors)

tended to starve in favor of the faster machines (the

100MHz processors). The second problem, which

was exacerbated by the �rst, is that the simple time-

out/retransmit policy with exponential backo� we

currently use to handle message loss and deadlock

Read Write

minimum time (ms) 2.7 2

average time (over 100,000 values) (ms) 2.9 2.2

Table 1: Basic read and write times measured at kernel level.

RD IPC RD SRV WR IPC WR SRV

average time (ms) 0.58 2.1 0.57 1.4

Table 2: Breakdown of the read and write times shown in Table 1.

situations did not adapt well to varying loads, re-

sulting in a large number of retransmitted messages

under conditions of high contention. We are consid-

ering ways of improving the timeout heuristics, and

of modifying the protocol to alleviate the starvation

problem.

A basic aspect of our design that we did not eval-

uate experimentally was our decision to use UDP

rather than TCP for the consistency protocol. We

continue to feel that any simpli�cations in the proto-

col that might be a�orded by the use of TCP as an

underlying reliable communications protocol would

be more than o�set by the overhead of additional

acknowledgements, the loss of control over the re-

transmission policy, and the need for an additional

software layer to re-implement a message-based com-

munication model on top of the stream-based TCP

protocol. In addition, the use of TCP would not

allow us to take advantage of multicast support pro-

vided by IP. In spite of the above, to validate our be-

lief in the superiority of datagrams over streams as

an underlying protocol, it would probably be worth-

while to perform some experiments in which we com-

pare the performance of the UDP-based version of

our protocol with a reasonably similar TCP-based

version.

Another interesting question concerns the impact

on paging performance of our scheme for \pageout"

of DSM pages by copying the data to the second

object in the shadow chain. It is possible that the

\second chance" this scheme gives to pages contain-

ing DSM data could have unforseen interactions with

the pre-existing page replacement policy. To exam-

ine these questions, we would have to test our system

with a realistic application, under conditions that

would cause heavy pageout to the disk. We have

not yet performed such tests.

6 Related Work

Research in the area of DSM systems has been

very intense and there is an extensive literature

[Esk96]. We compare our system to other soft-

ware DSM implementations that support a sequen-

tial consistency model. The main points that we

feel distinguish our facility are: (1) The consistency

protocol is a lightweight, distributed protocol, which

uses unreliable datagrams, but which is robust with

respect to message loss, reordering, or duplication.

(2) The facility is for a version of Unix (FreeBSD

2.1) for which source code is readily available and

which runs on commodity hardware. (3) The clean

interface between the user-level server and the ker-

nel should facilitate experimentation with a variety

of DSM protocols.

Most of the �rst implementations of software

DSM systems, including that of IVY [Li88], the DSM

system for Clouds [RK89] and Mirage [FP89], were

implemented in operating systems di�erent from

Unix and the consistency protocols used assumed

reliable communications. Mether [MF89] is the ex-

ception among early implementations. It is a kernel

level implementation of DSM for SunOS 4.0. Al-

though it uses UDP, it relies on HW support for

error correction. A more recent implementation of

Mirage [FHJ94], although for the AIX operating sys-

tem, uses reliable communication services. Further-

more, every page request has to be sent to the page's

manager, which sends it to the current owner of the

page.

The DSM systems described in [FBS89] and

[AAO92] take advantage of the VM external pager

interface provided by Mach and CHORUS micro-

kernels, respectively. The consistency protocol of

Mach's DSM uses only a point-to-point reliable com-

munication service, in contrast to ours which uses

multicast and unreliable communication services.

Chorus's DSM uses one of Li's dynamic manager

distributed algorithms with page invalidation [LH89]

but the authors do not specify which and their de-

scription of the protocol is rather incomplete. In

addition, they do not provide details with respect to

the kind of communication services used for IPC. As

does our DSM system, Chorus' DSM supports pag-

ing out pages to disk, but, in contrast to our system,

paging out is handled by the object manager.

Both DVSM6K [BB93], a DSM system developed

for AIX v3, and the DSM system developed for the

TOPSY multicomputer [SWS92] have an architec-

ture very similar to that of our system. However,

the latter was designed for a distributed memory

multiprocessor system using a multiprocessor oper-

ating system, and DVSM6K assumes that the com-

munication system provides reliable communication,

i.e. in-order delivery, no message loss and no data

corruption.

7 Conclusion and Future Work

In this paper we described a DSM facility,

supporting a sequential consistency model, for

FreeBSD, a freely and widely available version of

Unix. We believe that this facility meets most of

our design goals. The consistency protocol is a

lightweight protocol that uses only UDP/IP, but is

nevertheless tolerant to both message reordering and

message loss. We were able to de�ne a very sim-

ple client application interface based on the Unix

mmap() interface. One of the most successful as-

pects of our design is its smooth integration into the

VM subsystem of FreeBSD, which required very lit-

tle in the way of modi�cations to existing code. We

believe that it should be possible, with minimal ef-

fort, to port this code to other Unix systems, such

as OSF/1, with Mach-based VM subsystems.

Besides improving the performance of our system

in ways that have already been discussed, we are

interested in using the facility for real applications.

We are especially interested in the idea of using DSM

as a tool for programming distributed applications,

rather than for concurrent computation, which has

been the focus of most DSM research.

8 System Availability

We are making our code available to anyone in-

terested under a Berkeley-style copyright and li-

cense. The code may be obtained via the URL:

http://www.cs.sunysb.edu/~ stark/, or by mail-

ing to one of the authors.

9 Acknowledgements

We wish to thank Professor Tzi-cker Chiueh for

making his laboratory facilities available to us, as

well as the other members of the Experimental Com-

puter Systems Laboratory for their generous coop-

eration in the sharing of these facilities.

References

[AAO92] V. Abrosimov, F. Armand, and M.I. Or-

tega. A Distributed Consistency Server

for the CHORUS System. In Proc.

of the Symposium on Experiences with

Distributed and Multiprocessor Systems

(SEDMS III), pages 129{148. USENIX,

March 1992.

[ATT90] ATT. UNIX SYSTEM V Release 4 -

Programmers Guide: System Services

and Application Packaging Tools. Unix

Press, 1990.

[BB93] Marion L. Blount and Maria Butrico.

DSVM6K: Distributed Shared Virtual

Memory on the RISC System/6000.

In Proc. of the 38th IEEE Interna-

tional Computer Conference (COMP-

COM Spring 93), pages 491{500. IEEE,

February 1993.

[Esk96] M. Rasit Eskicioglu. A Comprehen-

sive Bibliography of Distributed Shared

Memory. Operating Systems Review,

30(1):71{96, January 1996.

[FBS89] A. Forin, J. Barrera, and R. Sanzi. The

Shared Memory Server. In Proc. of

the Winter 1989 USENIX Conference,

pages 229{243. USENIX, January 1989.

[FHJ94] B. D. Fleisch, R.L. Hyde, and N. C.

Juul. MIRAGE+: A Kernel Imple-

mentation of Distributed Shared Mem-

ory on a Network of Personal Comput-

ers. Software - Practice and Experience,

10(24):887{909, October 1994.

[FP89] B. D. Fleisch and G. J. Popek. Mirage:

A Coherent Distributed Shared Memory

Design. In Proc. of 12th ACM Sympo-

sium on Operating Systems Principles

(SOSP'89), pages 211{223, December

1989.

[Lam79] L. Lamport. How to make a multipro-

cessor computer that correctly executes

multiprocess programs. IEEE Transac-

tions on Computers, C28(9):690{691,

September 1979.

[LH89] Kai Li and Paul Hudak. Memory Co-

herence in Shared Virtual Memory Sys-

tems. ACM Transactions on Computer

Systems, 7(4):321{359, November 1989.

[Li88] Kai Li. IVY: A shared virtual memory

system for parallel computing. In Proc.

of the 1988 International Conference on

Parallel Processing, pages 94{101, Au-

gust 1988.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic,

Michael J. Karels, and John S. Quarter-

man. The Design and Implementation of

the 4.4 BSD Operating System. Addison

Wesley, 1996.

[MF89] Ronald G. Minnich and David J. Far-

ber. The Mether System: Distributed

Shared Memory for SunOS 4.0. In Proc.

of the Summer 1989 USENIX Confer-

ence, pages 51{60. USENIX, June 1989.

[RK89] U. Ramachandran and M. Y. A. Kha-

lidi. An Implementation of Distribu-

ted Shared Memory. In Proc. of the

Workshop on Experiences with Distribu-

ted and Multiprocessor Systems, pages

21{38. USENIX, October 1989.

[SWS92] T. Stiemerling, T. Wilkinson, and

A. Saulsbury. Implementing DVSM on

the TOPSY Multicomputer. In Proc.

of the Symposium on Experiences with

Distributed and Multiprocessor Systems

(SEDMS III), pages 263{279. USENIX,

March 1992.

[Tev87] Avadis Tevanian. Architecture-Indepen-

dent Virtual Memory Management for

Parallel and Distributed Environments.

PhD thesis, Department of Computer

Science, Carnegie Mellon University,

December 1987.

