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Abstract

The class of monotone input/output automata has been shown in the authors' previous work

to be a useful operational model for dataow-style networks of communicating processes. An

interesting class of problems arising from this model are those that concern the relationship

between the input/output behavior of automata to the structure of their transition graphs. In

this paper, we restrict our attention to the subclass of determinate automata, which compute

continuous functions, and we characterize classes of determinate automata that compute: (1)

the class of functions that are stable in the sense of Berry, and (2) the class of functions that

are sequential in the sense of Kahn and Plotkin.

1 Introduction

The results reported in this paper are part of a general program aimed at relating the input/output

behavior of dataow-like networks of communicating processes, modeled as automata, to the struc-

ture of their transition graphs. In previous work [12], we identi�ed the class of monotone in-

put/output automata as a useful operational model of an interestingly large class of dataow net-

works, and we established a monotonicity property for the input/output relations computed by

such networks. These results have subsequently been generalized in [18], where characterizations

are given for the relations computed by the full class of monotone input/output automata, and for

a subclass of \semi-determinate" automata, which exhibit a more limited form of indeterminacy.

This type of result has interesting implications with respect to the power of dataow networks to

perform various kinds of computational tasks; for example, \merging" operations [11].

In this paper, we are concerned with determinate automata, which are a subclass of monotone

input/output automata whose transition graphs satisfy a kind of Church-Rosser or \diamond"

property. It follows from this property that determinate automata compute continuous functions

from inputs to outputs. We are interested in �nding structural characterizations of classes of

automata that correspond to interesting classes of continuous functions. Here, we identify a class

of automata that computes exactly the \stable" functions, and a class that computes exactly the

\sequential" functions. It should be pointed out that we are not interested in classes of automata
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de�ned in an arbitrary way. Rather, we are interested only in classes that are de�ned in terms of

local properties of their transition graphs. By a local property we mean one that depends on a �xed

number of transitions and, hence, is not couched in terms of quanti�cation over arbitrarily long

computation sequences. Also, interesting classes of automata should be closed under the operations

of \network algebra," by which networks are built from component automata. The classes of stable

and sequential automata we de�ne satisfy these conditions.

The \dataow-like" networks of communicating processes that motivate us are of a type that

was �rst introduced by Kahn [6]. In his paper, Kahn described a class of networks of processes

communicating with each other by sending messages containing data values over unidirectional

FIFO channels of unbounded capacity. The size and communication topology of a network did not

change during execution. Communication between processes was asynchronous and read operations

on input channels were assumed to block until data became available. In the denotational semantics

given by Kahn, processes were modelled by continuous functions between pre�x-ordered domains of

sequences, or \streams." He observed that networks with feedback loops computed functions that

were related to the functions computed by the component processes according to a natural least-

�xed-point principle. This was a very pleasing application of Scott's ideas to a parallel programming

situation.

Subsequently Kahn and Plotkin [7] introduced a general class of domains, called concrete do-

mains, that generalized the stream domains originally used by Kahn and, more importantly, per-

mitted a general de�nition of sequential function. One motivation for the de�nition of sequentiality

was to try to obtain fully abstract models of the typed lambda calculus. Work by Plotkin [13]

showed that the \natural" continuous function models failed to be fully abstract because functions

like \parallel OR" existed as values in the semantic function spaces, but could not be implemented

in the typed lambda calculus with a sequential interpreter. Unfortunately, the Kahn-Plotkin de�-

nition could not be extended to higher types, so it did not yield a fully abstract model. Berry [3]

de�ned a class of domains, the dI-domains, and stable functions between them in order to get a

de�nition that both extended to higher types and also ruled out parallel OR. Unfortunately this ef-

fort also failed: though stability did succeed in ruling out parallel OR it did include some functions

that were intuitively not sequential [5].

Although there has been a reasonably large amount of work on de�ning various classes of do-

mains and continuous functions between them, there has been comparatively little work on relating

these more abstract formulations to a concrete operational semantics. At least in the case of

dataow networks, perhaps the reason has been the lack of a suitable operational framework in

which to perform such an investigation. The results of this paper and others [12, 18, 16, 15, 9],

strengthen the authors' conviction that monotone input/output automata provide such a frame-

work. The key feature of these automata that permits the operational analysis of networks is the

fact that concurrency information is explicitly represented, allowing us to construct a domain of

\concurrent computations" whose structure is quite closely linked to the input/output behavior of

the automata.

2 Overview of Results

In this section, we give just enough of the formal de�nitions to permit the statement of our re-

sults. The central de�nition is that of a monotone input/output automaton, which is a kind of

nondeterministic transition system that models a system that receives input stimuli from its envi-
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ronment and produces output responses to its environment. The term \monotone" refers to the

fact that for these automata, the arrival of an input stimulus can enable an output response, but

can never disable one that was previously enabled. A monotone automaton also incorporates some

information about concurrency, in the form of a binary \concurrency relation" on the set of actions

labeling the transitions of the automaton. The de�nition of a monotone automaton requires that

the concurrency information be reected in the transition structure in a suitable sense. The par-

ticular automata used here have been studied previously by Stark [18, 17]. Related automata have

also been studied by Bednarczyk [2], Kwiatkowska [8], and Shields [14].

To de�ne monotone automata, we �rst need the notion of a \concurrent alphabet," which

intuitively consists of a set of actions equipped with a description of which pairs of actions are

\concurrent" or \commuting." Formally, a concurrent alphabet is a set E, equipped with a sym-

metric, irreexive binary relation k

E

, called the concurrency relation. We usually drop the subscript

of k

E

when no confusion is likely. If E and F are concurrent alphabets, then an isomorphism from

E to F is a bijection � : E ! F such that for all e; e

0

2 E we have ek

E

e

0

i� �(e)k

F

�(e

0

). The direct

product of concurrent alphabets E and F is the concurrent alphabet E 
 F whose set of elements

is the disjoint union of E + F of E and F , and whose concurrency relation k

E
F

is de�ned to be

k

E
F

= k

E

[ k

F

[ (E � F ) [ (F � E):

A monotone input/output automaton (henceforth simply \automaton," or \monotone automa-

ton") is a tuple

A = (E;X; Y;Z;Q; i; T )

where

� E ' X
Y 
Z is a concurrent alphabet of actions, withX; Y; Z � E the concurrent alphabets

of input actions, output actions, and internal actions, respectively. Actions in E nX are called

non-input actions, and those in E n Y are called non-output actions.

� Q is a set of states, and i 2 Q is a distinguished initial state.

� T is a transition function that maps each pair of states q, r 2 Q to a set T (q; r) � E.

These data are required to satisfy the following conditions:

(Disambiguation) r 6= r

0

implies T (q; r)\ T (q; r

0

) = ;.

(Commutativity) For all states q and actions e; e

0

, if eke

0

, e 2 T (q; r), and e

0

2 T (q; r

0

), then

there exists a state s such that e 2 T (r

0

; s) and e

0

2 T (r; s).

(Receptivity) For all states q and input actions a, there exists a state r such that a 2 T (q; r).

A transition of A is a triple q

e

�!r, where e 2 T (q; r). We write t : q

e

�!r, or just q

e

�!r, to

assert the existence of a transition t = (q

e

�!r) of A. Intuitively, a transition q

e

�!r represents a

potential computation step of A in which action e occurs and the state changes from q to r. We say

that action e 2 E is enabled in state q if there exists a transition q

e

�!r in T . By the disambiguation

condition, if q

e

�!r, then r is uniquely determined by q and e, and we sometimes use the notation

qe to denote the state r. If t : q

e

�!r, then q is called the domain dom(t) of t and r is called the

codomain cod(t) of t. Transitions t and u are called coinitial if dom(t) = dom(u).

The term \monotone" refers to the following easily proved property of automata.
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Figure 1: Stability Property for Automata

Lemma 2.1 Suppose A is an automaton, and non-input action e is enabled in state q. Then for

all input actions a, action e is also enabled in state qa.

An automaton is determinate if it satis�es the following condition:

(Determinacy) bkb

0

whenever b 2 T (q; r) and b

0

2 T (q; r

0

), with b and b

0

distinct non-input

actions.

Intuitively, a determinate automaton exhibits no \internal nondeterminism"|the only possible

nondeterministic choices are those that occur between input transitions. The determinacy property

may also be seen as a kind of Church-Rosser or \diamond" property for non-input actions.

An automaton is stable if it is determinate and has the additional property (see Figure 1):

(Stability) Suppose b is a non-input action and a; a

0

are arbitrary actions, such that aka

0

, akb,

and a

0

kb. Suppose further that a 2 T (q; r), a

0

2 T (q; r

0

), and that b is enabled in states r and

r

0

. Then b is also enabled in state q.

Because of the receptivity condition in the de�nition of an automaton, a stable automaton auto-

matically also satis�es the stability condition in the case that b is an input action.

An automaton is sequential if it is determinate and has the additional properties (see Figure 2):

(Sequentiality)

1. Suppose b is an non-input action and a; a

0

are arbitrary actions, such that aka

0

, akb, and

a

0

kb. Suppose further that a 2 T (q; r), a

0

2 T (q; r

0

), and b is enabled in state ra

0

= r

0

a.

Then exactly one of the following holds:

(a) b is enabled in state q.

(b) b is enabled in state r but not in state r

0

.

(c) b is enabled in state r

0

but not in state r.
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Figure 2: Sequentiality Property for Automata

2. The complement of the concurrency relation k is an equivalence relation with a �nite

number of equivalence classes.

An automaton is strictly sequential if it is sequential and in addition no two non-input actions are

concurrent.

The following is obvious from the de�nitions.

Lemma 2.2 If an automaton is sequential, then it is stable.

Our results concern the correspondence between the classes of determinate, stable, and sequen-

tial automata de�ned above, and certain classes of continuous functions between Scott domains.

To state these results in a completely precise fashion requires that we describe how to extract the

input/output behavior of an automaton. The formal de�nitions involve some technical details,

which we postpone for the moment to allow us to get right to the statement of the results. All

that is necessary for now is to assume that there is a natural way to associate with each concurrent

alphabet E a Scott domain

�

E of \traces over E," and to associate with each automaton A, having

input alphabet X and output alphabet Y , a subset of

�

X �

�

Y , called the \input/output relation"

of A. If the input/output relation happens to be the graph of a function f :

�

X !

�

Y , then we call

f the \function computed by A."

The following correspondence between determinate automata and continuous functions was

shown in [15], and forms a prototype after which our new results are patterned.

Theorem 1 Determinate automata compute functions. Moreover, a function f :

�

X !

�

Y is the

function computed by a determinate automaton i� f is a continuous function.

Proof { Immediate from Proposition 4.4 and Proposition 4.5 in Section 4.

Our �rst new result concerns the relationship between the class of stable automata de�ned

above and the class of \stable functions" studied by Berry [3]. Berry originally de�ned the notion

of a stable function in an attempt to provide fully abstract models of the �-calculus. The de�nition

was intended to rule out functions like \parallel OR" that are not implementable in the lambda
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calculus with a sequential operational semantics but were nevertheless elements of the semantic

domain. Intuitively, for a stable function one can specify the minimum input needed to produce a

given output relative to a given input/output pair. Formally, a function f :

�

X !

�

Y is stable if for

all x 2 X and y v f(x), there exists a least x

0

v x such that y v f(x

0

).

Theorem 2 A function f :

�

X !

�

Y is the function computed by a stable automaton i� f is a stable

function.

Proof { Immediate from Proposition 5.2 and Proposition 5.9 in Section 5.

Our second result relates sequential automata to functions that are sequential in the sense of

Kahn and Plotkin [7]. The de�nition of sequential functions used by Kahn and Plotkin applies

to continuous functions between \concrete domains." This class of domains has a rather technical

de�nition, which we do not give in this paper, because the method used in proving our result

requires that we consider a class of domains that is somewhat smaller than the class of concrete

domains. Speci�cally, our proof applies to functions f :

�

X !

�

Y , where the concurrent alphabets

X and Y are such that the complements #

X

and #

Y

of the concurrency relations k

X

and k

Y

are

equivalence relations with a �nite number of equivalence classes. We call such concurrent alphabets

port alphabets. The restriction to port alphabets implies that the associated domains

�

X and

�

Y are

isomorphic to �nite cartesian products of pre�x-ordered domains of sequences. This class of domains

is at least large enough to model dataow networks, in which each process communicates with its

environment by sending and receiving messages containing data values over a �xed, �nite number

of \input ports" and \output ports." At the moment, we do not know how to extend our result to

a larger class of domains.

The formal de�nition of the class of sequential functions is postponed until Section 7.

Theorem 3 Suppose X and Y are port alphabets. Then a function f :

�

X !

�

Y is the function

computed by a sequential automaton i� f is a sequential function.

Proof { Immediate from Proposition 7.6 and Proposition 7.14 in Section 7.

3 Domains and Traces

To prove our results requires a fairly detailed analysis of the structure of the domains of \concurrent

computations" of monotone automata. To express the results of this analysis, it is useful to have at

our disposal some terminology from domain theory. In addition, there is a natural way in which each

concurrent computation of an automaton determines a \trace," in the sense of Mazurkiewicz [10].

Since much of the structure of the domain of concurrent computations is conveniently described in

terms of the mapping from computations to traces, it will therefore also be useful to have available

some basic facts about traces. Additional material on trace theory can be found in [1]. A systematic

development of the properties of monotone automata and their relationship to trace theory is given

in [17].
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3.1 Domains

A (Scott) domain is an !-algebraic, consistently complete CPO D = (D;v;?). A subset U of D

is consistent if it has an upper bound (and hence a least upper bound). If D and E are domains,

then a monotone map f : D ! E is strict if it preserves ?, and continuous if it preserves directed

suprema. A subdomain of D is a subset U of D, which is a domain under the restriction of the

ordering on D, and is such that the inclusion of U in D is continuous. A subdomain U of D is

normal if for all d 2 D, the set fu 2 U : u v dg is directed.

A domain D is �nitary if for all �nite (=isolated=compact) elements d 2 D the set fd

0

2 D :

d

0

v dg is �nite. DomainD is distributive if it satis�es the identity du (d

0

td

00

) = (dud

0

)t (dud

00

),

whenever d

0

and d

00

are consistent. A �nitary, distributive domain has been called a dI-domain [3]. A

continuous function f : D! E is called conditionally multiplicative (c.m.) if f(dud

0

) = f(d)uf(d

0

),

whenever d, d

0

are consistent elements of D. Obviously, the class of c.m. functions is closed under

composition. Berry [3] has shown that for dI-domains, the class of c.m. functions coincides with

the class of stable functions.

If D is a domain, then a complete prime of D is an element p 2 D such that whenever p v

F

U

for some consistent U � D, then in fact p v u for some u 2 U . De�ne primes(d) to be the set of all

complete primes p such that p v d. The domainD is called prime algebraic if d =

F

primes(d) for all

d 2 D. It follows easily from these de�nitions that the set P (D) = fprimes(d) : d 2 Dg, equipped

with inclusion order, is a domain, and the map primes : D! P (D) is an isomorphism. Moreover, if

d; d

0

are consistent elements of D, then primes(dtd

0

) = primes(d)[primes(d

0

) and primes(dud

0

) =

primes(d)\primes(d

0

). It follows from these observations that if a �nitary domain is prime algebraic,

then it is distributive. Winskel [20, 19] has shown the converse: every �nitary, distributive domain

is also prime algebraic. Many of the properties of dI-domains become immediately obvious when

one uses this representation theorem to translate abstract statements about dI-domains to concrete

statements in terms of sets of primes.

3.2 Traces

We now review some basic facts about trace theory. Our presentation here is a bit di�erent than the

usual ones, because rather than emphasizing the monoid of �nite traces over a concurrent alphabet

E, we stress instead the idea of a domain

�

E of �nite and in�nite traces, partially ordered by pre�x.

We shall see that the domain of concurrent computations of an automaton with alphabet E has a

natural embedding as a subdomain of

�

E. We omit most of the proofs in this section because the

results are known, and the proofs are fairly straightforward once one chooses the right concrete

representation for traces.

Suppose E is a concurrent alphabet. Let E

�

denote the free monoid generated by E, then

permutation equivalence is the least congruence �

E

on E

�

such that ak

E

b implies ab �

E

ba for all

a; b 2 E. The quotient E

�

=�

E

is the free partially commutative monoid generated by E, and its

elements are called �nite traces. We use � to denote the monoid identity, and if x 2 E

�

, then we

use [x] to denote the corresponding element of E

�

=�

E

. If t = [x] is a �nite trace, then it is clear

that all representatives of t have the same length, which we de�ne to be its length jtj.

De�ne the relation v on the monoid E

�

=�

E

by: t v u i� 9v(tv = u). The relation v is called

the pre�x relation on �nite traces.

Proposition 3.1 The monoid E

�

=�

E

has the following properties:

7



1. The relation v is a partial order, with � as the least element.

2. For all t; u; v, if tu = tv, then u = v.

3. For all t; u, if there exists v with t v v and u v v, then there exists a least such v, which we

denote by t t u.

These properties permit us to de�ne, for consistent traces t; u, the residual tnu to be the unique

trace v such that ttu = uv. This partial binary operation has many algebraic properties, which are

easily derived from the de�nition in terms of least upper bounds, and which we use here without

further comment. For a systematic development, the reader is referred to [16]. However, many

properties of the residual operation are suggested by the following multiset representation of traces:

If t is a trace, then de�ne M(t) to be the multiset over E that contains e 2 E with multiplicity k if

and only if k is the number of occurrences of e in t. If t and u are consistent traces, then it can be

shown that tnu is the unique su�x of t t u such that M(tnu) = M(t t u)�M(u) = M(t)�M(u)

(multiset di�erence), and that the greatest common pre�x t u u of t and u is the unique pre�x of t

(or u) such that M(t u u) = M(t) \M(u).

As an example of a fact we need that is immediately evident from the multiset representation,

we obtain a useful alternative characterization of t u u in terms of the notion of \orthogonal" or

\independent" traces. Formally, de�ne traces t and u to be orthogonal, and write t ? u, if every

action occuring in t commutes with every action occurring in u. Equivalently, traces t and u are

orthogonal if they are consistent and in addition jtnuj = jtj and juntj = juj. Then the following is

easily shown:

Lemma 3.2 Suppose t; u are consistent traces. Then t u u is the unique trace v such that v v t,

v v u, and tnv ? unv.

Having obtained from a concurrent alphabet E the monoid of �nite traces E

�

=�, and having

observed that E

�

=� is partially ordered by the pre�x relation v, we may now apply the standard

construction of completion by ideals to obtain a domain

�

E, whose �nite elements are the principal

ideals generated by the elements of E

�

=�. We may think of the in�nite elements of

�

E as in�nite

traces; that is, as equivalence classes of in�nite strings. We call

�

E the domain of traces generated

by the concurrent alphabet E. Since the �nite elements of

�

E are in bijective correspondence with

the elements of E

�

=�

E

, they inherit the monoid operation of E

�

=�

E

, with the least element of

�

E

as the monoid identity. In the sequel, we identify elements of E

�

=� with the corresponding �nite

elements of

�

E.

Proposition 3.3 Suppose E is a concurrent alphabet. Then the domain of traces

�

E is a dI-domain.

Moreover, a trace t 2

�

E is a complete prime i� it is �nite, and for some e 2 E there exists no

u < t such that u and t contain the same number of occurrences of e.

It is not di�cult to see that if X and Y are concurrent alphabets, then X 
 Y '

�

X�

�

Y . We will

make extensive use of this fact. In Section 5 we need to know that the projections �

X

:

�

X�

�

Y !

�

X

and �

Y

:

�

X �

�

Y !

�

Y are c.m. This is easily veri�ed using the representation of dI-domains in

terms of sets of complete primes.

Lemma 3.4 Suppose E is a concurrent alphabet of the form X
Y . Then the projection �

Y

:

�

E !

�

Y is c.m.

8



Proof { We observe that if p is a complete prime in

�

X 


�

Y , then p cannot simultaneously contain

occurrences of elements of both X and Y . It is then easy to see that p is a complete prime of

�

X 


�

Y i� it is either a complete prime of

�

X or a complete prime of

�

Y . Thus, for an arbitrary

t 2

�

X�

�

Y , we have primes(�

Y

(t)) = �

Y

(primes(t)). Since primes(�

Y

(tuu)) = �

Y

(primes(tuu)) =

�

Y

(primes(t))\�

Y

(primes(u)) = primes(�

Y

(t))\primes(�

Y

(u)), the result follows by the isomorphic

representation of a dI-domain as an inclusion-ordered domain of sets of complete primes.

4 Computational Behavior of Monotone Automata

In this section, we show how to associate with each monotone automaton a corresponding in-

put/output relation. We �rst give a standard de�nition of \computation sequence." Then, just as

the concurrency relation k

E

of a concurrent alphabet E induces a permutation equivalence on �nite

strings over E, the relation k

E

also induces a permutation equivalence on the �nite computation

sequences of an automaton A having E as its alphabet of actions. This equivalence extends to in�-

nite computation sequences in a natural way, and we de�ne a \computation" to be an equivalence

class of computation sequences. The set of all computations of an automaton starting from the

initial state is partially ordered by \pre�x," and in fact forms a Scott domain Comp

i

(A) with a

number of important properties. Many of these properties are consequences of the fact that there

is a natural embedding tr : Comp

i

(A)!

�

E of Comp

i

(A) as a normal subdomain of

�

E.

Having de�ned the notion of computation of an automaton A, we then proceed to de�ne the

input/output relation of A. Roughly, we want the input/output relation of A to be the set of all

hx; yi 2

�

X �

�

Y such that x is the \input trace" and y is the \output trace," of some computation

 2 Comp

i

(A). However, we are not interested in all computations in Comp

i

(A), but rather

only those that are \completed" in the sense that every non-input action that becomes enabled

and conicts only �nitely often with other enabled non-input actions, eventually occurs. A major

advantage of working with monotone automata is that the notion of a completed computation can

be formulated as a maximality condition, in terms of the \pre�x" ordering on computations.

Finally, having shown how automata determine input/output relations, we observe that deter-

minate automata have functional input/output relations, and that a function is computed by a

determinate automaton if and only if that function is continuous.

4.1 Computations

A �nite computation sequence for an automaton is a �nite sequence  of transitions of the form:

q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

:

The number n is called the length jj of . We call the computation sequence of length 0 from state

q the identity computation sequence, and we denote it by id

q

, or just id, when q is clear from the

context. An in�nite computation sequence is an in�nite sequence of transitions:

q

0

e

1

�!q

1

e

2

�! . . . :

We extend notation and terminology for transitions to computation sequences, so that if  is

a computation sequence, then the domain dom() of  is the state q

0

, and if  is �nite, then the

codomain cod() of  is the state q

n

. We write  : q ! r to assert that  is a �nite computation

9



sequence with domain q and codomain r. A computation sequence  is initial if dom() is the

distinguished initial state i. If  : q ! r and � : q

0

! r

0

are �nite computation sequences, then

 and � are called composable if q

0

= r, and we then de�ne their composition to be the �nite

computation sequence � : q ! r

0

, obtained by concatenating  and � and identifying cod() with

dom(�). The operation of composition of �nite computation sequences is associative, and identity

computation sequences behave as units for it. A �nite computation sequence  is a pre�x of a

computation sequence �, and we write  � �, i� there exists a computation sequence � with � = �.

De�ne permutation equivalence to be the least congruence �, respecting concatenation, on the

set of �nite computation sequences of A such that:

� Computation sequences q

a

�!r

b

�!p and q

b

�!s

a

�!p are �-related if akb.

Closely related to permutation equivalence is the permutation preorder relation

<

�

on �nite com-

putation sequences of A, which is de�ned to be the transitive closure of � [ �. It is not di�cult

to see that  � � i� 

<

�

� and �

<

�

. Permutation preorder extends in a straightforward way

to in�nite computation sequences as well: if 

0

and �

0

are coinitial �nite or in�nite computation

sequences, then de�ne 

0

<

�

�

0

to hold i� for every �nite  � 

0

there exists a �nite � � �

0

, such

that 

<

�

�. We may then extend permutation equivalence to in�nite computation sequences by

de�ning 

0

� �

0

i� 

0

<

�

�

0

and �

0

<

�



0

.

A computation is a �-equivalence class of computation sequences. Obviously, all �nite compu-

tation sequences that are representatives of the same �-equivalence class have the same length, so

the notion of the length jj of a �nite computation  makes sense. For each state q, the permuta-

tion preorder

<

�

on computation sequences from state q induces a partial order v on the set of all

computations from state q. Coinitial computations  and 

0

are called consistent if they have an

upper bound with respect to v. For �nite , 

0

, this is equivalent to the existence of a pair of �nite

computations �, �

0

such that �

0

= 

0

�.

An extremely useful property of computations is that they, like traces, admit a \residual"

operation. Proposition 4.1 below characterizes this operation uniquely. See [17] for an explicit

inductive de�nition and a systematic development of its properties.

Proposition 4.1 Suppose  and 

0

are consistent �nite computations. Then there exists a unique

pair of �nite computations n

0

and 

0

n, such that (

0

n) = 

0

(n

0

), and such that if � and �

0

are any �nite computations with �

0

= 

0

�, then there exists a unique �nite computation � such

that (n

0

)� = � and (

0

n)� = �

0

.

Since we shall make extensive use of the algebra of residuals in some of our proofs, we summarize

here its most important laws.

Proposition 4.2 The operation n has the following properties, where , �, and � denote compu-

tations.

1. If n� is de�ned, then so is �n, and we have dom(n�) = cod(�), dom(�n) = cod(), and

cod(n�) = cod(�n).

2. For all coinitial  : q ! r and � : q ! s,  v � i� n� = id

s

.

3. For all  : q ! r, we have id

q

n = id

r

, nid

q

= , and n = id

r

.

10



The following identities hold whenever either side is de�ned:

3. (�n)n(�n) = (�n�)n(n�).

4. n�� = (n�)n�

��n = (�n)(�n(n�)):

5. n(� t �) = (n�)n(�n�)

(� t �)n = (�n)t (�n):

We use the notation Comp

q

(A) to denote the set of all computations of automaton A from state

q. There is an obvious mapping that takes each computation sequence to the sequence of actions

that occur in it, and this mapping induces a function

tr : Comp

q

(A)!

�

E

which assigns a trace to each computation.

The following result, proved in [17], gives a great deal of information about the structure of the

domain of computations of an automaton.

Proposition 4.3 For each state q, the set Comp

q

(A), partially ordered by v, is a domain. The

map tr : Comp

q

(A)!

�

E is an embedding of Comp

q

(E) as a normal subdomain of

�

E. Moreover, the

map tr is length-preserving, and has the property that if  and � are consistent �nite computations,

then tr() and tr(�) are consistent traces, and tr(n�) = tr()ntr(�).

Computations  and � are called orthogonal, and we write  ? �, if they are consistent, jn�j =

jj, and j�nj= j�j. Since the map tr preserves length and residual, it also preserves orthogonality.

4.2 Input/Output Relations

Suppose A is an automaton. If  is a computation of A, then the input trace of  is the trace

tr

in

() = �

X

� tr(), where �

X

:

�

E !

�

X is the obvious projection map. Similarly, the output

trace of  is the trace tr

out

() = �

Y

� tr(). A computation  of A is called completed if it is

v-maximal among all computations 

0

such that dom(

0

) = dom() and tr

in

(

0

) = tr

in

(). It is

shown in [12] that the condition of completedness can in fact be viewed as a \fairness" property,

which is satis�ed when every non-input action that becomes enabled and conicts only �nitely often

with other enabled non-input actions, eventually occurs. In de�ning the input/output behavior of

an automaton, we are only interested in computations having such a fairness property. Thus, we

de�ne the input/output relation of A to be the set of all htr

in

(); tr

out

()i �

�

X �

�

Y , such that  is

a completed initial computation of A.

The following result is shown in [15]:

Proposition 4.4 Suppose A is a determinate automaton. Then for each x 2

�

X, there exists a

unique completed initial computation �

A

(x) having input trace x. Moreover, the map �

A

:

�

X !

Comp

i

(A) is continuous, and the input/output relation of A is the graph

fhx; (tr

out

� �

A

)(x)i : x 2

�

Xg

of the continuous function

tr

out

� �

A

:

�

X !

�

Y :

11



We call the function tr

out

� �

A

the function computed by the determinate automaton A.

There is a standard way to construct a determinate automatonA from a continuous function f .

Simply let the states of A be pairs hx; yi of �nite elements of

�

X�

�

Y , where the x component records

the input that has arrived so far, and the y component records the output that has been emitted

so far. The transitions of the automaton are de�ned to preserve the invariant relation y v f(x).

We formalize this idea in the following:

Proposition 4.5 Suppose f :

�

X !

�

Y is continuous. Then f is the function computed by a

determinate automaton.

Proof { De�ne the automaton A = (E;X;Y; ;; Q; i; T ) as follows:

� Q = (X

�

=�)� (Y

�

=�), with i = h�; �i.

� T is de�ned as follows: If a 2 X , then a 2 T (hx; yi; hx

0

; y

0

i) i� x

0

= xa and y

0

= y. If b 2 Y ,

then b 2 T (hx; yi; hx

0

; y

0

i) i� x

0

= x, y

0

= yb, and yb v f(x).

It is straightforward to verify that A satis�es the requirements for a determinate automaton, and

that the function computed by A is f .

5 Stability

In this section we show that stable automata compute exactly the stable functions. Recall that a

function f :

�

X !

�

Y is stable if for all x 2 X and y v f(x), there exists a least x

0

v x such that

y v f(x

0

). Now, we are interested here only in functions of the form f :

�

X !

�

Y where X and Y are

concurrent alphabets. For functions between such domains, stability has a simpler characterization.

Lemma 5.1 (Berry) Suppose D and E are dI-domains. Then a function f : D ! E is stable i�

it is c.m.

By this result, to show that stable automata compute exactly the stable functions, it su�ces to

show that they compute exactly the c.m. functions.

It is not di�cult to show that every c.m. function is the function computed by some stable

automaton.

Proposition 5.2 Suppose f :

�

X !

�

Y is a c.m. function. Then f is the function computed by a

stable automaton.

Proof {We verify that the automaton constructed in the proof of Proposition 4.5 is stable. Suppose

aka

0

, akb, and a

0

kb. Let q = (x; y), and suppose b is enabled in states qa and qa

0

. There are three

cases: (1) both a and a

0

are input actions, (2) a is a non-input action, or (3) a

0

is an input action.

(1) Suppose both a and a

0

are input actions. Then yb v f(xa) and yb v f(xa

0

), so yb v

f(xa) u f(xa

0

) = f(xa u xa

0

) = f(x). Hence b is enabled in state (x; y).

(2) Suppose a is a non-input action. Then yb v yba = yab v f(x), hence b is enabled in state

(x; y).

(3) Similar to case (2).

12



We now wish to show that stable automata always compute stable functions. We have already

observed that the function f computed by a determinate automaton A factors as f = tr

out

� �

A

,

where �

A

:

�

X ! Comp

i

(A) takes each input to the unique completed initial computation for that

input, and the function tr

out

: Comp

i

(A) !

�

Y takes computations to their output traces. It is

therefore su�cient to show that the functions �

A

and tr

out

are c.m. if A is stable.

The fact that �

A

is c.m. for any determinate A is an easy observation:

Lemma 5.3 Suppose A is a determinate automaton, and let �

A

:

�

X ! Comp

i

(A) be the map that

takes each trace x 2

�

X to the unique completed computation of A having x as its input trace. Then

�

A

is c.m.

Proof { Suppose x; x

0

2

�

X are consistent. Then �

A

(xux

0

) v �

A

(x) and also �

A

(xux

0

) v �

A

(x

0

),

hence �

A

(xux

0

) v �

A

(x)u�

A

(x

0

). Conversely, if  v �

A

(x) and  v �

A

(x

0

), then tr

in

() v xux

0

,

hence  v �

A

(x u x

0

). Thus, �

A

(x) u �

A

(x

0

) v �

A

(x u x

0

).

To prove that the map tr

out

: Comp

i

(A)!

�

Y is c.m. if A is stable is more di�cult, and requires

a certain amount of technical analysis of the structure of the domains of computations of stable

automata. Our goal is to characterize the meets of computations in terms of the orthogonality

relation. Since we know from Section 3 that the map tr

out

preserves length and residual, hence

orthogonality, the meet-preserving property of tr

out

will then follow using Lemma 3.2.

We obtain the desired characterization in the next four lemmas, of which the �rst two apply

to arbitrary determinate automata, and the second two apply only to stable automata. The �rst

lemma (Lemma 5.4) says that any pre�x of the join of two orthogonal computations itself has

an orthogonal join-decomposition. This lemma is used to prove the second (Lemma 5.5), which

intuitively says that if cancelling a common pre�x from two given computations yields orthogonal

results, then the pre�x that was cancelled was in fact the greatest common pre�x. The third lemma

(Lemma 5.6) extends the stability property to \large diamonds" (see Figure 1), whose sides can be

arbitrary orthogonal computations rather than just single transitions. The fourth lemma (Lemma

5.7) is a converse to Lemma 5.5, which says that if we cancel the greatest common pre�x from

two given computations, then the results are orthogonal. In the proofs of these lemmas, we make

extensive use of the algebraic properties of residuals (Proposition 4.2).

Lemma 5.4 Suppose A is an arbitrary automaton, and ; 

0

are �nite computations of A with

 ? 

0

. If � v  t 

0

, then � = � t �

0

where � v  and �

0

v 

0

.

Proof { We proceed by induction on j�j. If j�j = 0, then � = id, and we may take � = �

0

= id.

If j�j > 0, then � = t�, where t is a single transition. Then either t v  and t ? 

0

, or else

t v 

0

and t ? . We consider the �rst case; the other is symmetric. Since  ? 

0

, we have also

nt ? 

0

nt = 

0

. Since � v  and � v 

0

, we have also � v nt and � v 

0

. We may then apply the

induction hypothesis to �, nt, and 

0

to show that � = � t �

0

, where � v nt and �

0

v 

0

. But

then � = t� t �

0

, where t� v  and �

0

v 

0

.

Lemma 5.5 Suppose A is an arbitrary automaton, and  and 

0

are consistent �nite computations

of A. If � v , � v 

0

, and n� ? 

0

n�, then � =  u 

0

.

Proof { (See Figure 3.) If � satis�es these conditions, then since � v  and � v 

0

, clearly

13
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Figure 3: Diagram for Lemma 5.5

� v  u 

0

. It remains to be shown that  u 

0

v �, or equivalently, that ( u 

0

)n� = id.

Now, ( u 

0

)n� v ( t 

0

)n� = (n�) t (

0

n�). Since n� ? 

0

n�, by Lemma 5.4 we deduce

the existence of � v n� and �

0

v 

0

n� such that ( u 

0

)n� = � t �

0

. From this we get  u 

0

=

� t ( u 

0

) = �(( u 

0

)n�) = �(� t �

0

). Thus, id = ( u 

0

)n = (�(� t �

0

))n. Using properties of

residuals we have

(�(� t �

0

))n = (�n)((� t �

0

)n(n�))

= (� t �

0

)n(n�)

= (�n(n�))t (�

0

n(n�))

= �

0

n(n�):

But we know that �

0

? (n�), hence the only way that �

0

n(n�) can be id is if �

0

is id. Mutatis

mutandis we can show that � = id as well. Thus we see that ( u 

0

)n� = id, which is what we

needed to prove.

The next two lemmas apply only to stable automata.

Lemma 5.6 Suppose A is a stable automaton. Suppose coinitial �nite computations ; 

0

and

transitions t; t

0

are such that  ? 

0

and tn(

0

n) = t

0

n(n

0

). Then there exists a transition u such

that un = t and un

0

= t

0

.

Proof { (See Figure 4.) We �rst prove the lemma for the special case in which 

0

is a single

transition v

0

. This is done by induction on jj. If jj = 0, then  = id and we may take u = t. If

jj > 0, then  = �v, where v is a single transition. Let v

00

= v

0

n�. Since

tn(v

00

nv) = t

0

n(nv

0

) = (t

0

n(�nv

0

))n(vnv

00

);

we may apply the stability property of A to obtain a transition w such that wnv = t and

wnv

00

= t

0

n(�nv

0

). Then, since wnv

00

= t

0

n(�nv

0

), we may apply the induction hypothesis to ob-

tain a transition u with un� = w and unv

0

= t

0

. But then also un = t, as required.

Now, we use the special case to prove the general case. This is done by induction on j

0

j. If

j

0

j = 0, then 

0

= id and we may take u = t

0

. If j

0

j > 0, then 

0

= �

0

v

0

, where v

0

is a single

transition. Let 

00

= n�

0

. Then since

(tn(�

0

n))n(v

0

n

00

) = t

0

n(

00

nv

0

);
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Figure 4: Diagram for Lemma 5.6

we may apply the special case of the lemma to obtain a transition w such that wn

00

= tn(�

0

n) and

wnv

0

= t

0

. Since tn(�

0

n) = wn

00

, we may apply the induction hypothesis to obtain a transition u

with un = t and un�

0

= w. But then also un

0

= t

0

, as required.

Lemma 5.7 Suppose A is a stable automaton. Then for all consistent pairs of �nite computations

; 

0

of A, we have n( u 

0

) ? 

0

n( u 

0

).

Proof { (See Figure 5.) Proof by induction on pairs (; 

0

), ordered componentwise by v. For the

basis case, if (; 

0

) = (id; id), then the result is obvious. For the induction step, suppose we have

shown the result for all pairs strictly less than (; 

0

), where at least one of ; 

0

is not an identity.

Suppose  6= id, the other case is symmetric. Then  = �t, where t is a single transition. Let

� = �n(� u 

0

) and �

0

= 

0

n(� u 

0

). By inductive hypothesis, � ? �

0

. Observe also that �n�

0

= �n

0

and �

0

n� = 

0

n�. There are now two cases.

Case tn(�

0

n�) 6= id: Then t ? (�

0

n�), so �t ? �

0

. But then  = (� u 

0

)�t and 

0

= (� u 

0

)�

0

,

where �t ? �

0

, so by Lemma 5.5 it follows that  u 

0

= � u 

0

, n(u 

0

) = �t, and 

0

n(u 

0

) = �

0

.

Hence n( u 

0

) = �t ? �

0

= 

0

n( u 

0

), as required.

Case tn(�

0

n�) = id: Let �

0

be the greatest computation v �

0

such that tn(�

0

n�) 6= id. Since

tn(�

0

n�) = id, there must exist a transition u

0

such that tn(�

0

u

0

n�) = id. Then tn(�

0

n�) = u

0

n(�n�

0

)

and � ? �

0

, so by Lemma 5.6 there exists a transition v such that vn� = t and vn�

0

= u

0

. Since

 = (� u 

0

)�t = (� u 

0

)v(�nv), 

0

= (� u 

0

)v(�

0

nv), and �nv ? �

0

nv, it follows by Lemma 5.5 that

 u 

0

= (� u 

0

)v, n( u 

0

) = �nv, and 

0

n( u 

0

) = �

0

nv.

Lemma 5.8 Suppose A is a stable automaton. Then the map tr : Comp

i

(A)!

�

E is c.m.

Proof { Suppose ; 

0

2 Comp

i

(A) are consistent and �nite. Then by Lemma 5.7 we have � =

n(u

0

) ? 

0

n(u

0

) = �

0

. Since tr preserves orthogonality, tr(�) ? tr(�

0

). Since also tr(u

0

) v

tr() and tr(u

0

) v tr(

0

), it follows by Lemma 3.2 that tr(u

0

) = tr()utr(

0

). We have shown

that tr is c.m. on �nite computations. It follows immediately that it is c.m. on all computations,

by the fact that the domain of computations is algebraic.
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Figure 5: Diagram for Lemma 5.7
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We observe in passing that a simple corollary of Lemma 5.8 and Proposition 4.3 is that if A

is a stable automaton, then Comp

i

(A) is distributive, hence is a dI-domain. For more general

automata, this need not be the case.

Proposition 5.9 Suppose A is a stable automaton. Then A computes a stable function.

Proof { If f :

�

X !

�

Y is the function computed by A, then f = �

Y

� tr � �

A

, where �

A

:

�

X ! Comp

i

(A) takes each input to the unique completed initial computation for that input,

tr : Comp

i

(A)!

�

E takes each computation to its trace, and �

Y

:

�

E !

�

Y projects each trace to the

corresponding output trace. The function �

A

is c.m. by Lemma 5.3, the map tr is c.m. by Lemma

5.8, and the map �

Y

is c.m. by Lemma 3.4, so f is c.m. as well. Since f is a c.m. function between

dI-domains, it is stable by Lemma 5.1.

6 Networks of Automata

In contrast to the \analytic" nature of our proof that stable automata compute stable functions, our

proof that sequential automata compute sequential functions has more of a \synthetic" avor. The

reason for this is that we do not know how to do the proof simply by analyzing the structure of the

domain of computations of a sequential automaton. Instead, we proceed as follows: (1) We show

that strictly sequential automata compute sequential functions. (2) We show that a \network" of

sequential automata is sequential, and if each of the component automata in a network computes

a sequential function, then the entire network does as well. (3) We show that every sequential

automaton is simulated by a network of strictly sequential automata. To prepare the way for such

a proof, we need to de�ne a suitable notion of a \network of automata." That is the subject of this

section.

6.1 Network Algebra

We de�ne here four algebraic operations on automata: \internalization," which takes some output

actions and makes them into internal actions, \tupling," which takes a �nite collection of automata,

each having the same alphabet of input actions, and places them in parallel with shared input,

\sequential composition," which connects two automata in tandem, and \feedback," which takes

some outputs of an automaton and feeds them back to some of the inputs. These operations can

be used to construct complex networks of automata. It should be noted that we have made no

attempt at de�ning a \complete" and \independent" set of operations; we have merely de�ned a

set of operations that is convenient for the proofs in Section 7. Notably absent are operations for

renaming input and output actions, for restricting an automaton to a smaller alphabet of input

actions, and for expanding the input and output alphabets of an automaton.

6.1.1 Internalization

Suppose A = (E;X; Y 
 V; Z;Q; i; T ) is an automaton. Then the internalization of V in A is the

automaton

A n V = (E;X; Y;Z
 V;Q; i; T ):

17



6.1.2 Tupling

Suppose A

1

; A

2

; . . . ; A

n

is a �nite collection of automata, where A

i

= (E

i

; X; Y

i

; Z

i

; Q

i

; i

i

; T

i

). Then

the tupling of A

1

; A

2

; . . .A

n

is the automaton

hA

1

; A

2

; . . . ; A

n

i = (E;X;Y; Z;Q; i; T );

where E = X 
 Y 
 Z, Y = Y

1


 . . . 
 Y

n

, Z = Z

1


 . . . 
 Z

n

, i = hi

1

; . . . ; i

n

i, and e 2

T (hq

1

; . . . ; q

n

i; hr

1

; . . . ; r

n

i) i� one of the following holds:

1. e 2 X and e 2 T

i

(q

i

; r

i

) for all i.

2. e 2 Y

i


 Z

i

, e 2 T

i

(q

i

; r

i

), and for all j 6= i we have r

j

= q

j

.

6.1.3 Sequential Composition

Suppose A = (E 
 V;X; V;Z;Q; i; T ) and B = (E

0


 V; V; Y; Z

0

; Q

0

; i

0

; T

0

) are automata. Then the

sequential composition of A and B is the automaton

A;B = (E 
 E

0


 V;X; Y;Z 
 Z

0


 V;Q�Q

0

; hi; i

0

i; T

00

);

where e 2 T

00

(hq; q

0

i; hr; r

0

i) i� one of the following holds:

1. e 2 E, e 2 T (q; r) and r

0

= q

0

.

2. e 2 E

0

, e 2 T

0

(q

0

; r

0

) and r = q.

3. e 2 V , e 2 T (q; r) and e 2 T

0

(q

0

; r

0

).

6.1.4 Feedback

Suppose A = (E
W;X
W;Y 
V; Z;Q; i; T ) is an automaton, and � : V ! W is an isomorphism

of concurrent alphabets. Then the feedback of A by � is the automaton

A[W  �(V )] = (E;X; Y 
 V; Z;Q; i; T

0

);

where e 2 T

0

(q; r) i� one of the following conditions holds:

1. e 62 V and e 2 T (q; r).

2. e 2 V , �(e) = e

0

, and there exists a computation sequence q

e

�!s

e

0

�!r for A.

6.2 Networks of Determinate Automata

It is an important fact that all the classes of automata we have de�ned are closed under the

operations of network algebra.

Lemma 6.1 The classes, of determinate automata, stable automata, and sequential automata, are

all closed under the operations of internalization, tupling, sequential composition, and feedback.
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Proof { The proof is a tedious, but straightforward, use of the de�nitions.

The following results show how operations on determinate automata correspond to operations

on the functions they compute. These results are proved by a systematic analysis of the way in

which the operations of network algebra a�ect the structure of the domain of computations. The

only case that is somewhat di�cult to prove is the case for feedback, and we refer the reader to

[9, 15] for the method.

Proposition 6.2 For determinate automata:

1. If A computes function f :

�

X !

�

Y �

�

V , then A n V computes function �

Y

� f :

�

X !

�

Y .

2. If automata A

1

; . . . ; A

n

compute functions f

1

; . . . ; f

n

, respectively, where f

i

:

�

X !

�

Y

i

, then

hA

1

; . . . ; A

n

i computes function hf

1

; . . . ; f

n

i :

�

X !

�

Y

1


 . . .


�

Y

n

.

3. If A computes function f :

�

X !

�

V , and B computes function g :

�

V !

�

Y , then A;B computes

function g � f :

�

X !

�

Y .

4. Suppose A computes function f :

�

X �

�

W !

�

Y �

�

V Let � : V ! W be an isomorphism of

concurrent alphabets, and let

�

� :

�

V !

�

W be the induced map on traces. Let the functional

� : [

�

X !

�

Y �

�

V ]! [

�

X !

�

Y �

�

V ]

be de�ned by: �(g)(x) = f(x; (

�

� � �

V

� g)(x)). Then � is continuous, and A[W  �(V )]

computes its least �xed point ��.

De�ne a network of automata A

1

; . . . ; A

n

to be an automaton N(A

1

; . . . ; A

n

), equipped with a

speci�c way to construct it from the automata A

1

; . . . ; A

n

by a �nite number of applications of the

operations of network algebra. In a more formal presentation, we would give a formal syntax for

network algebra, and then de�ne a network to be a pair consisting of an automaton and a term of

network algebra. Such a high degree of formality is unnecessary for the purposes of this paper.

7 Sequentiality

In this section, we establish the connection between sequential automata and functions that are

sequential in the sense of Kahn and Plotkin [7]. As mentioned in Section 2, whereas Kahn and

Plotkin's original de�nition of sequentiality applies to continuous functions between arbitrary con-

crete domains, we work here only with domains

�

X and

�

Y where X and Y are port alphabets. We

therefore state the de�nition of sequentiality only as it applies to this special case.

Recall that a concurrent alphabet E is a port alphabet if the complement #

E

of the concurrency

relation k

E

is an equivalence relation with a �nite number of equivalence classes. We call the

equivalence classes of #

E

the ports of E. If E is a port alphabet, then it is easy to see that E

is isomorphic to a �nite direct product E

1


 . . .
 E

n

, where each E

i

has an empty concurrency

relation. Also, the domain

�

E of traces is isomorphic to a �nite cartesian product

�

E

1

� . . .�

�

E

n

,

where each

�

E

i

is a pre�x-ordered domain of sequences of actions. If p is a port of E, and x; x

0

2

�

E,

then we write x

0

=

p

x if x

0

w x and �

p

(x

0

) = �

p

(x), where �

p

:

�

E !

�

E

p

is the evident projection.

If X and Y are port alphabets, where X has m ports and Y has n ports, then a function

f :

�

X !

�

Y can be thought of as having m inputs or arguments and producing n outputs or results.

The function f is sequential if it is continuous and the following condition holds:
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� Suppose f(x) = y, and o is a port of Y . If there exists x

0

= x such that f(x

0

) =

o

y, then there

exists a port i of X such that whenever x

0

= x is such that f(x

0

) =

o

y, then also x

0

=

i

x.

We say then that input on port i is needed at x for output on port o. In other words, f is sequential

if for all inputs x and all output ports o, if there is some way in which additional input beyond x

can cause additional output to be produced on port o, then there exists an input port i such that

input on i is needed at x for output on o.

It is easily veri�ed from the above de�nition that constant functions are sequential, as are all

order-isomorphisms. Moreover, the composition of sequential functions is sequential, projections

�

X

:

�

X �

�

Y !

�

X and �

Y

:

�

X �

�

Y !

�

Y are sequential, and if f :

�

X !

�

Y and g :

�

X !

�

Z

are sequential, then so is hf; gi :

�

X !

�

Y �

�

Z. We observe also that every one-input, one-output

continuous function is sequential.

If a continuous function has more than one input, then it need not be sequential even if it has

just one output. One way such a function can fail to be sequential is if it is not stable. As an

example, consider the following two-input, one-output function:

f :

�

X

1

�

�

X

2

!

�

Y ;

where X

1

= X

2

= Y = f�g. The function f is de�ned by: f(x

1

; x

2

) = � if either (�; �) v (x

1

; x

2

)

or else (�; �) v (x

1

; x

2

), otherwise f(x

1

; x

2

) = �.

However, even if a one-output function is stable, it need not be sequential, as is shown by the

following instructive three-input, one-output example (due to Berry [4]):

f :

�

X

1

�

�

X

2

�

�

X

3

!

�

Y ;

where X

1

= X

2

= X

3

= fa; bg with no commuting actions, and

�

Y = f�g, the one-action concurrent

alphabet. The function f is de�ned by: f(x; y; z) = �, if either (a; b; �) v (x; y; z), (b; �; a) v (x; y; z),

or else (�; a; b) v (x; y; z), and f(x; y; z) = � otherwise. This function is easily seen to be stable,

but it is not sequential, because there is no single input port that is needed for the production of

the output �. Rather, depending on the values that arrive, various combinations of inputs on pairs

of ports may cause the output. For this function, the construction in the proof of Proposition 4.5

produces an automaton that is stable, but not sequential, since for example the output � is enabled

after a arrives on input 1 and b arrives on input 2, but � is not enabled in the absence of one of

these inputs.

We can show that the class of sequential functions is closed under the operations of network

algebra.

Proposition 7.1

1. If function f :

�

X !

�

Y �

�

V is sequential, then so is �

Y

� f :

�

X !

�

Y .

2. If ff

1

; . . . ; f

n

g is a �nite collection of sequential functions, where f

i

:

�

X !

�

Y

i

, then hf

1

; . . . ; f

n

i :

�

X !

�

Y

1

� . . .


�

Y

n

is sequential.

3. If f :

�

X !

�

V and g :

�

V !

�

Y are sequential, then so is g � f :

�

X !

�

Y .

4. Suppose function f :

�

X �

�

W !

�

Y �

�

V is sequential. Let � : V ! W be an isomorphism of

concurrent alphabets, and let

�

� :

�

V !

�

W be the induced function on traces. Let

� : [

�

X !

�

Y �

�

V ]! [

�

X !

�

Y �

�

V ]
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be the continuous functional de�ned by: �(g)(x) = f(x; (

�

� � �

Y

� g)(x)). Then the least �xed

point �� of � is sequential.

Proof { Assertions (1)-(3) are fairly straightforward. We sketch the proof of (4), which is not trivial

but also not particularly profound. The basic idea is to prove the following assertion: a chain of

sequential functions has a sequential function as its lub. Statement (4) then follows immediately

from this in view of the standard characterization of the least �xed point �� as the lub of a chain

of iterates of �.

To prove the assertion, it is convenient to work in terms of concrete data structures as in [5].

If f : D ! D

0

is a continuous function between the domains of states D and D

0

of two concrete

data structures, then for each x 2 D and cell c of D

0

\accessible" from f(x), we use N(f; c; x) to

denote the set of cells of D that are \needed" to �ll cell c. The set N(f; c; x) is always �nite by the

continuity of f . Now, suppose f

0

v f

1

v . . . is a chain of sequential functions, and f =

F

i�0

f

i

.

Then the essential observation is that for some m � 0, we have N(f

m

; c; x) � N(f

m+1

; c; x) � . . .,

and N(f; c; x) =

T

i�m

N(f

i

; c; x). From this, and the fact that the sequentiality of the f

i

implies

that each N(f

i

; c; x) is nonempty, it follows that N(f; c; x) is nonempty as well, as required to show

that f is sequential.

7.1 Automata From Sequential Functions

In this section, we prove that every sequential function is the function computed by some sequential

automaton. We do this by showing �rst that the construction, given in the proof of Proposition

4.5, of an automaton from a function, produces a strictly sequential automaton in the case that

the function has one input port and one output port. Next, we show that this construction also

produces a strictly sequential automaton for a certain class of multiple-input, one-output functions,

called \serializers." Finally, we show that every m-input, n-output sequential function f can

be expressed in the form f = hh

1

� g

1

; . . . ; h

n

� g

n

i, where h

1

; . . . ; h

n

are one-input, one-output

continuous functions, and g

1

; . . . ; g

n

are m-input, one-output serializers that merge their inputs

onto one output using a strategy that depends on f . It follows from these facts that the function

f is computed by a network of strictly sequential automata, which is a sequential automaton by

Lemma 6.1.

Lemma 7.2 If f is a constant function or a one-input, one-output continuous function, then f is

the function computed by a strictly sequential automaton.

Proof { The construction in the proof of Proposition 4.5 is easily seen to produce strictly sequential

automata for such f .

We have already de�ned in Section 2 the notion of the direct product of concurrent alphabets.

Here we need the notion of the direct sum of concurrent alphabets E and F . Formally, this is the

concurrent alphabet E � F which, like the direct product E 
 F , has the disjoint union E + F as

its set of elements, but whose concurrency relation k

E�F

is de�ned to be

k

E�F

= k

E

[ k

F

:

Suppose X is a port alphabet with m � 1 ports, so that

�

X '

�

X

1

� . . .�

�

X

m

where X

1

; . . . ; X

m

are one-port concurrent alphabets. De�ne X

�

= X

1

� . . .�X

m

, and if a 2 X

i

, then let (a)

i

denote
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the corresponding element of X

�

. Then the domain

�

X

�

is just the domain of �nite and in�nite

strings over the disjoint union of the X

i

, and there is an obvious quotient map �

X

:

�

X

�

!

�

X which

is the unique continuous extension of the map that takes a �nite string (a

1

)

i

1

. . . (a

n

)

i

n

2

�

X

�

to the

corresponding trace a

1

. . .a

n

in

�

X.

De�ne a serializer of X to be an m-input, one-output continuous function

f :

�

X

1

� . . .�

�

X

m

!

�

X

�

;

such that:

1. �

X

� f v id

�

X

.

2. For all �nite x 2

�

X, if there exists x

0

= x such that f(x

0

) = f(x), then there exists a unique

port i of

�

X such that for all x

0

= x we have f(x

0

) = f(x) i� x

0

=

i

x.

Intuitively, a serializer uses a deterministic strategy to repeatedly select one of its input ports,

read one input action from that port, and output that action onto its single output port. Clearly,

serializers are sequential functions.

Lemma 7.3 If f is a serializer, then f is the function computed by a strictly sequential automaton.

Proof { The construction in the proof of Proposition 4.5 is easily seen to produce strictly sequential

automata for these functions.

Lemma 7.4 Suppose f is a one-output sequential function with at least one input. Then f = h�g,

where g is a serializer and h is a one-input, one-output continuous function.

Proof { Suppose f :

�

X !

�

Y , where X = X

1


 . . .
X

m

is such that each X

i

has just one port.

De�ne h = f � �

X

: X

�

! Y , where X

�

and �

X

are de�ned as above. Clearly, h is a one-input,

one-output continuous function.

Call an input x 2

�

X extensible if there exists x

0

= x such that f(x

0

) = f(x). Since f is a

one-output sequential function, for each extensible input x 2

�

X there exists an input port i that

is needed by f at x, in the sense that whenever x

0

= x is such that f(x

0

) = f(x), then x

0

=

i

x.

Choose arbitrarily a partial function s :

�

X ! f1; . . . ; mg that assigns such a needed port to each

extensible input x 2

�

X, and is unde�ned if input x is not extensible.

De�ne function g :

�

X !

�

X

�

and auxiliary function g

0

:

�

X �

�

X

�

!

�

X

�

to be the least solution

to the following recursion equations:

g(x

1

; . . . ; x

m

) = g

0

(x

1

; . . . ; x

m

; �)

g

0

(x

1

; . . . ; x

m

; z) =

8

>

<

>

:

�; if s(�(z)) unde�ned

or s(�(z)) = i and x

i

= �

(a)

i

g

0

(x

1

; . . . ; x

0

i

; . . . ; x

m

; z(a)

i

); if s(�(z)) = i and x

i

= ax

0

i

:

That is, the function g uses s as a \strategy" for selecting inputs one-at-a-time and transferring

them to the single output. Clearly, g is a serializer.

To complete the proof, we claim that f = h � g. Since g is a serializer, �

X

� g v id

X

, so

h � g = f � �

X

� g v f . It remains to be shown that we do not have h � g < f . Suppose we do,
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then for some �nite x 2

�

X we have h(g(x)) < f(x). Let z = g(x), then we must have �

X

(z) < x

by de�nition of h.

Now, since �

X

(z) < x and f(�

X

(z)) = h(z) < f(x), the input �

X

(z) is extensible, and it follows

by the sequentiality of f that there exists some input port that is needed by f at input �

X

(z).

Thus, we have s(�

X

(z)) = i for some input port i such that x =

i

�

X

(z) does not hold. But then

we have f(�

X

(z)) < f(x) and �

X

(z) < x, but not x =

i

�

X

(z). This is a contradiction with the

sequentiality of f .

Lemma 7.5 Suppose f is an m-input, n-output sequential function, with m;n � 1. Then f =

hh

1

� g

1

; . . . ; h

n

� g

n

i, where g

1

; . . . ; g

n

are serializers, and h

1

; . . . ; h

n

are one-input, one-output

continuous functions.

Proof { Suppose f :

�

X !

�

Y , and express Y as the direct product Y

1


 . . . 
 Y

n

of one-port

concurrent alphabets. Then, apply the previous lemma to the functions �

i

� f , where �

i

:

�

Y !

�

Y

i

is the projection on the ith output.

Proposition 7.6 Suppose f :

�

X !

�

Y is an m-input, n-output sequential function. Then f is the

function computed by a sequential automaton.

Proof { If either m = 0 or n = 0, then f is constant, hence is computed by a strictly sequential

automaton by Lemma 7.2. Suppose m;n � 1. Then by Lemma 7.5, f = hh

1

�g

1

; . . . ; h

n

�g

n

i, where

g

1

; . . . ; g

n

are m-input serializers, and h

1

; . . . ; h

n

are one-input, one-output continuous functions.

By Lemmas 7.2 and 7.3, the g

i

and h

i

are computed by strictly sequential automata, say A

i

and B

i

,

respectively. Let N be the network hA

1

;B

1

; . . . ; A

n

;B

n

i. Since N is a network of strictly sequential

automata, by Lemma 6.1 it is sequential. By Proposition 6.2, N computes f .

7.2 Strictly Sequential Automata

We now turn our attention to the problem of showing that strictly sequential automata compute

sequential functions. For this section, let a strictly sequential automaton A be �xed. Let X and Y

be the input and output alphabets of A, respectively.

If x 2

�

X is a �nite trace, and q is a state of A, then we call x an enabling input from state q if

there are no non-input transitions enabled in state q, but there is a non-input transition enabled

in state qx.

Lemma 7.7 Suppose x; x

0

2

�

X are �nite traces, such that x ? x

0

and x t x

0

is an enabling input

from state q. Then either x is an enabling input from state q, or else x

0

is an enabling input from

state q.

Proof { Let x

0

= x and x

0

0

= x

0

. For i � 0, we show that if x

i

and x

0

i

are such that both x

i

and x

0

i

are nonempty, x

i

? x

0

i

, and x

i

t x

0

i

is an enabling input from state q, then there exist

x

i+1

v x

i

and x

0

i+1

v x

0

i

such that x

i+1

t x

0

i+1

is an enabling input from state q, but such that

jx

i+1

j + jx

0

i+1

j < jx

i

j + jx

0

i

j. Since jx

0

j + jx

0

0

j is �nite, we eventually obtain x

n

and x

0

n

such that

x

n

tx

0

n

is an enabling input from state q, and one of x

n

and x

0

n

is empty. If x

0

n

is empty, then x

n

is

an enabling input from state q, hence x is an enabling input from state q by monotonicity (Lemma

2.1). Similarly, if x

n

is empty, then x

0

is an enabling input from state q.
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So, suppose x

i

and x

0

i

are both nonempty. Then x

i

= za and x

0

i

= z

0

a

0

, where a; a

0

2 X . Since

x

i

? x

0

i

, we must have aka

0

, and x

i

tx

0

i

= (zt z

0

)aa

0

= (zt z

0

)a

0

a. Now, since x

i

tx

0

i

is an enabling

input from state q, there is some non-input action b that is enabled in state q(x

i

t x

0

i

). Applying

the sequentiality property, there are three possibilities:

1. b is enabled in state q(z t z

0

). In this case we may take x

i+1

= z and x

0

i+1

= z

0

.

2. b is enabled in state q(x

i

t z

0

) but not in state q(z t x

0

i

). Then x

i

t z

0

is an enabling input

from state q, so we may take x

i+1

= x

i

and x

0

i+1

= z

0

.

3. b is enabled in state q(z t x

0

i

) but not in state q(x

i

t z

0

). Then z t x

0

i

is an enabling input

from state q, so we may take x

i+1

= z and x

0

i+1

= x

0

i

.

Call a �nite trace x 2

�

X single-port if it consists entirely of actions for one port.

Lemma 7.8 Suppose a �nite trace x 2

�

X is an enabling input from state q. Then there exists a

single-port x

0

v x such that x

0

is also an enabling input from state q.

Proof { We show that if x is not single-port, then there exists a pre�x x

0

of x, such that x

0

is an

enabling input from state q, and such that the number of distinct ports on which input occurs in

x

0

is strictly less than the number on which input occurs in x. For, if x is not single port, then it

can be decomposed x = x

i

tx

0

, where x

i

consists entirely of inputs on port i, and x

0

is a nonempty

trace that contains no inputs on port i, so that x

i

? x

0

. By the previous lemma, either x

i

is an

enabling input from state q, or else x

0

is an enabling input from state q. In the �rst case, we are

done, since x

i

is single-port. In the second case, we have reduced by one the number of ports on

which input occurs.

Since every �nite trace contains input on at most a �nite number of ports, repeated application

of this argument eventually yields the required single-port enabling input.

Lemma 7.9 If �nite traces x; x

0

2

�

X are both single-port enabling inputs from state q, then x; x

0

are inputs for the same port.

Proof { Suppose x and x

0

were two single-port enabling inputs from state q, such that x consists

of inputs for port i and x

0

consists of inputs for port i

0

6= i. Then x ? x

0

. Suppose non-input action

b is enabled by x and non-input action b

0

is enabled by x

0

. Then by monotonicity, both b and b

0

are

enabled by x t x

0

. Since A is strictly sequential, we cannot have bkb

0

. Since A is determinate, we

must have b = b

0

. But then since b is not enabled in state q we have a contradiction with stability

by Lemma 5.6.

Say that input port i is needed at state q if every enabling input from state q contains some

action for port i. It follows from the results above that if there exists an enabling input x from

state q, such that x consists entirely of inputs for port i, then in fact port i is needed at state q,

and every single-port enabling input from state q consists entirely of inputs for port i.

Lemma 7.10 Let  be a �nite completed computation. If there exists � such that  < � and

tr

out

() < tr

out

(�), then there exists an input port i that is needed at state cod(). Moreover, for

every such � we have that tr

in

(�) =

i

tr

in

().
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Proof { Suppose  is a �nite completed computation, such that there exists � as stated. Then

there exists some �nite input trace x that is an enabling input from state cod(). By Lemma

7.8, we may assume without loss of generality that x consists entirely of input for a single port i.

Moreover, by Lemma 7.9, any two single-port enabling inputs from cod() consist of inputs for the

same port i. Hence port i is needed in state cod(), and every � with the stated properties must

be such that tr

in

(�) =

i

tr

in

().

Lemma 7.11 Suppose A is a strictly sequential automaton. Then A computes a sequential func-

tion.

Proof { If A is strictly sequential, then no two non-input actions of A are concurrent, hence A

either has one internal port and no output ports, or else A has one output port and no internal

ports. If A has no output ports, then the output domain

�

Y of A is the trivial one-point domain,

and A computes a constant function, hence a sequential function. For the rest of the proof, suppose

A has one output port and no internal ports. Let f :

�

X !

�

Y be the function computed by A.

By results of Berry and Curien [4], to show that f is sequential, it su�ces to show that it

is sequential at all �nite x 2

�

X; that is, if x; x

0

2

�

X are �nite traces such that x

0

= x and

f(x

0

) = f(x), then there exists some input port i that is needed at x. Let �

A

(x) be the unique

completed computation for input x, so that tr

out

(�

A

(x)) = f(x). Now f(x) cannot be in�nite, since

in that case (because there is just one output port) it would be impossible to have f(x

0

) = f(x).

Hence f(x) is �nite. Therefore, there must exist a �nite  v �

A

(x), such that  is completed, and

tr

out

() = f(x). Since f(x

0

) = f(x), the unique completed computation �

A

(x

0

) on input x

0

is such

that �

A

(x

0

) =  and tr

out

(�

A

(x

0

)) = tr

out

(). Thus, by Lemma 7.10 there exists some input port i

that is needed at state cod().

Now, if x

00

2

�

X is any trace such that x

00

= x and f(x

00

) = f(x), then we must have  < �

A

(x

00

).

Since input i is needed in state cod(), and since tr

out

(�

A

(x

00

)) = f(x

00

) = f(x) = tr

out

(�

A

(x)), it

follows that x

00

=

i

x. We have therefore shown that for any x

00

= x, if f(x

00

) = f(x), then x

00

=

i

x.

In other words, port i is needed at x.

7.3 Decomposition of Sequential Automata

In this section, we show that every sequential automaton is simulated, in a very strong sense, by a

network of strictly sequential automata. It follows from this and the results of the previous section,

that every sequential automaton computes a sequential function.

We �rst de�ne the notion of simulation we use. Suppose A and A

0

are automata with the same

alphabets of input, output, and internal actions. A simulation of A by A

0

is a partial function

h : Q

0

! Q, such that the following conditions hold:

1. h(i

0

) = i.

2. Suppose h(q

0

) is de�ned. Then the set of actions enabled for A

0

in state q

0

is identical to the

set of actions enabled for A in state h(q

0

). Moreover, if e 2 T

0

(q

0

; r

0

), then h(r

0

) is de�ned

and e 2 T (h(q

0

); h(r

0

)).

Lemma 7.12 Suppose h is a simulation of A by A

0

. Then the domains of computations of A and

A

0

are isomorphic, hence A and A

0

have identical input/output relations.
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Proof { Obvious from the de�nition of simulation.

Lemma 7.13 If A is a sequential automaton, then A is simulated by some network

N(A

1

; . . . ; A

n

; B

1

; . . . ; B

p

);

whose component automata A

1

; . . . ; A

n

; B

1

; . . . ; B

p

are all strictly sequential.

Proof { Suppose A = (E;X; Y;Z;Q; i; T ). Since A is sequential, the complement #

E

of the

concurrency relation k

E

is an equivalence relation with a �nite number of equivalence classes. Let

n, p be the number of equivalence classes of #

E

that contain, respectively, only output actions,

or only internal actions. If n + p � 1 then A is already strictly sequential and there is nothing to

prove, so assume that n+ p > 1. Suppose further that

Y = Y

1


 . . .
 Y

n

Z = Z

1


 . . .
 Z

p

;

where each of the Y

i

and Z

j

has exactly one port. De�ne

Y

0

= Y

0

1


 . . .
 Y

0

n

Z

0

= Z

0

1


 . . .
 Z

0

p

E

0

= X 
 Y

0


 Z

0

;

where Y

0

1

; . . . ; Y

0

n

and Z

0

1

; . . . ; Z

0

p

are isomorphic copies of Y

1

; . . . ; Y

n

and Z

1

; . . . ; Z

p

, respectively.

In what follows, if e denotes an action in an unprimed alphabet, say Y

i

, then e

0

will denote the

corresponding action in Y

0

i

. We use the same convention for traces.

The idea of the proof is to construct strictly sequential automata fA

i

: 1 � i � ng and

fB

j

: 1 � j � pg, where A

i

has input alphabet E

0

and output alphabet Y

i

, and B

j

has input

alphabet E

0

and output alphabet Z

j

, such that A

i

is responsible for ensuring that actions in Y

i

occur only in situations where they would be enabled for A, and B

j

has a similar responsibility

for actions in Z

j

. The network N(A

1

; . . . ; A

n

; B

1

; . . . ; B

p

) is obtained by tupling the A

i

and B

j

,

feeding back the output of each of the A

i

and B

j

to the corresponding inputs of all the others, and

�nally internalizing all actions in Z

j

. The reason for feeding back the output of each automaton to

the inputs of all the others is to ensure that each automaton has enough information to carry out

its responsibilities.

Formally, for each i 2 f1; . . . ; ng, de�ne

A

i

= (E

0


 Y

i

; E

0

; Y

i

; ;; (E

0

)

�

=�; �; T

i

);

where e 2 T

i

(z

0

; w

0

) i� one of the following holds:

1. e 2 Y

0

i

and w

0

= z

0

(automaton A

i

ignores inputs in Y

0

i

).

2. e 2 E

0

n Y

0

i

and w

0

= z

0

e (automaton A

i

records the occurrence of all inputs in E

0

n Y

0

i

).

3. e 2 Y

i

, w

0

= z

0

e

0

, and the trace w 2

�

E is enabled for A in state i (automaton A

i

permits

actions in Y

i

to occur only if they would be enabled for A in the same situation).

For each j 2 f1; . . . ; pg, de�ne

B

j

= (E

0


 Z

j

; E

0

; Z

j

; ;; (E

0

)

�

=�; �; U

j

);
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similarly to A

i

, except with Z

j

replacing Y

i

. The fact that the A

i

and B

j

are strictly sequential is

immediate from the above de�nitions and the assumption that A is sequential.

We now de�ne (with slight abuse of our network algebra notation):

N(A

1

; . . . ; A

n

; B

1

; . . . ; B

p

) = hA

1

; . . . ; A

n

; B

1

; . . . ; B

p

i

[(Y

0

1

; . . . ; Y

0

n

; Z

0

1

; . . . ; Z

0

p

) (Y

1

; . . . ; Y

n

; Z

1

; . . . ; Z

p

)

0

]

n(Z

1

; . . . ; Z

p

):

That is, the network N is obtained by tupling all the A

i

and B

j

, then feeding back each of the Y

i

and Z

j

outputs to the corresponding primed inputs, and �nally internalizing all the Z

j

.

By following through the de�nitions of the network algebra operations involved, it can be shown

that the network N(A

1

; . . . ; A

n

; B

1

; . . . ; B

p

) is isomorphic to the automaton

N = (E;X; Y;Z;Q

0

; i

0

; T

0

);

where I = f1; 2; . . . ; n + pg, the state set Q

0

=

Q

i2I

(E

�

=�) is the product of n + p copies of the

monoid of �nite traces E

�

=�, the initial state i

0

= h� : i 2 Ii consists of n+ p copies of the empty

trace �, and the transition relation T

0

is de�ned as follows:

� e 2 T

0

(hz

i

: i 2 Ii; hw

i

: i 2 Ii) i� for all i, the trace w

i

is enabled for A in state q

i

, and

w

i

= z

i

e.

De�ne a state hz

i

: i 2 Ii of N to be reachable if there exists some �nite computation 

from the initial state such that hz

i

: i 2 Ii = cod(). It is easily proved, by induction on the

length of a �nite computation , that if hz

i

: i 2 Ii is reachable, then z

i

= z

j

for all i; j 2 I . De�ne

h : (

Q

i2I

(E

0

)

�

=�)! Q to be the partial function whose domain of de�nition is the set of reachable

states, and is such that if hz : i 2 Ii is reachable, then h(hz : i 2 Ii) = iz, the unique state reached

by automatonA by applying trace z to the initial state i. It is now obvious that h is a simulation of

A by N , hence because N ' N(A

1

; . . . ; A

n

; B

1

; . . . ; B

p

), we conclude that there exists a simulation

of A by N(A

1

; . . . ; A

n

; B

1

; . . . ; B

p

).

Proposition 7.14 Suppose A is a sequential automaton. Then A computes a sequential function.

Proof { If A is a sequential automaton, then by Lemma 7.13 A is simulated by a network

N(A

1

; . . . ; A

n

; B

1

; . . . ; B

p

) of strictly sequential automata. By Lemma 7.11, each A

i

computes

a sequential function, so by Proposition 7.1, the network, hence A, computes a sequential function

as well.

8 Conclusions

In this paper we have examined the relationship between operational and mathematical character-

izations of sequentiality and stability. We have de�ned easily identi�able properties of concurrent

automata that correspond to sequentiality and to stability. The proof proceeds by an examina-

tion of the mathematical properties of the domains of computations that result. Though it was a

well-known \folk theorem" that Kahn networks compute sequential functions the characterization
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of such networks that people had in mind was expressed informally in terms of an underlying lan-

guage for Kahn processes. Roughly speaking, if communication with input chanels is restricted to

be via \blocking reads" then the resulting process computes a sequential function. Our characteri-

zation is in terms of abstract automata and, more importantly, shows that all sequential functions

are computed by the automata that we de�ne. Our characterization of stable automata is the �rst

such characterization that we have seen.
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