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Abstract

Given suitable categories T;C and functor F : T ! C, if X; Y are objects of T,

then we de�ne an (X; Y )-relation in C to be a triple (R; r; �r), where R is an object

of C and r : R ! FX and �r : R ! FY are morphisms of C. We de�ne an alge-

bra of relations in C, including operations of \relabeling," \sequential composition,"

\parallel composition," and \feedback," which correspond intuitively to ways in which

processes can be composed into networks. Each of these operations is de�ned in terms

of composition and limits in C, and we observe that any operations de�ned in this way

are preserved under the mapping from relations in C to relations in C

0

induced by a

continuous functor G : C! C

0

.

To apply the theory, we de�ne a category Auto of concurrent automata, and we

give an operational semantics of dataow-like networks of processes with indetermi-

nate behaviors, in which a network is modeled as a relation in Auto. We then de�ne

a category EvDom of \event domains," a (non-full) subcategory of the category of

Scott domains and continuous maps, and we obtain a coreection between Auto and

EvDom. It follows, by the limit-preserving properties of coreectors, that the denota-

tional semantics in which dataow networks are represented by relations in EvDom,

is \compositional" in the sense that the mapping from operational to denotational se-

mantics preserves the operations on relations. Our results are in contrast to examples

of Brock and Ackerman, which imply that no compositional semantics is possible in

terms of set-theoretic relations.

1 Introduction

Dataow networks (see, e.g. [4, 3, 5, 7, 9, 10]) consist of a collection of concurrently and

asynchronously executing sequential processes that communicate by transmitting sequences

�
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or \streams" of \value tokens" over FIFO communication channels. Typically, a network is

described as a directed graph, whose nodes are processes and whose arcs are communication

channels. Each channel serves to connect an \output port" of one process to an \input port"

of another process. \Determinate" (or functional) networks were �rst studied by Kahn [9],

who gave an elegant �xed-point principle for determining the function computed by a network

from the functions computed by the components.

\Indeterminate" (or non-functional) networks remain less well understood, despite exten-

sive study. An interesting class of indeterminate processes are the \merge" processes, which

shu�e together sequences of values from two input channels onto a single output channel.

Brock and Ackerman have shown [3, 4] that no naive generalization of Kahn's theory to

indeterminate networks, obtained by replacing input/output functions with input/output

relations, can be \compositional" in the sense that the mapping from operational to deno-

tational semantics preserves the operations by which networks are built from component

processes. Their examples use only functional processes and a weak form of merge process;

thus, their results apply to essentially any interesting class of indeterminate networks.

The title of this paper advertises \compositional relational semantics for indeterminate

dataow networks." This reason this is not a contradiction with Brock and Ackerman's

results is that their results apply only to the usual set-theoretic notion of a relation, whereas

here we use instead a category-theoretic generalization. Our notion of relation involves two

suitably complete categories T and C, and a suitable functor F : T ! C. If X and Y

are objects of T, then by an \(X;Y )-relation in C" we mean a triple (R; r; �r) where R is

an object of C, and r : R ! FX and �r : R ! FY are morphisms of C. We think of the

objects of T as \types," and in our semantics of dataow networks the types X and Y are

simply the sets of input ports and output ports over which a process may communicate. An

algebra of relations in C can be de�ned, including operations of \relabeling," \sequential

composition," \parallel composition," and \feedback" that correspond intuitively to ways in

which networks can be built from component processes. These operations have categorical

de�nitions in terms of composition and limits in C. It is a simple observation (Theorem 1)

that any operations de�nable in this way are preserved by the mapping from relations in C

to relations in C

0

induced by a continuous functor G : C! C

0

.

To obtain a correct semantics of process networks, we must choose properly the category

C, and this is a bit tricky. In this paper, we give two examples for C: (1) a category Auto

of concurrent automata, and (2) a certain (non-full) subcategory EvDom of the category

of Scott domains and continuous maps. The semantics based on Auto is \operational,"

because it involves automata and computation sequences, and it is not di�cult to become

convinced that it can serve as accurate model of the usual informal \token-pushing" oper-

ational semantics usually given for dataow networks (see, e.g. [3]). The semantics based

on EvDom is more \denotational," because it is de�ned using order-theoretic notions that

do not necessarily have to do with computation. The objects of EvDom are the \event

domains," which have been studied previously [6, 20], but the morphisms we use are ap-

parently new, and are crucial to our results. We obtain a coreection between Auto and

EvDom, and from the limit-preserving properties of coreectors it follows immediately that

2



the denotational semantics based on EvDom is \compositional" in the sense that the map

from operational to denotational semantics preserves the operations of our relational alge-

bra. Moreover, the denotational semantics is not \too abstract," in the sense that networks

having distinct input/output relations in the ordinary set-theoretic sense, also determine

distinct relations in EvDom. The semantics is not fully abstract, though.

In this paper, FX or F (X) denotes the application of functor (or function) F to argument

X. If F : X ! Y and G : Y ! Z, then GF or G � F denotes the composition of F and

G. We use parentheses freely to increase readability. For basic de�nitions and terminology

of category theory, we refer the reader to [8, 11]. The text [15] and the unpublished [14]

contain material on domain theory.

2 An Algebra of Relations

We begin by de�ning a category-theoretic generalization of the notion of a relation, and we

show how to obtain various operations on relations that correspond intuitively to ways in

which processes can be composed into networks.

2.1 Relations

Let T be a category equipped with a speci�ed terminal object and binary products, and let

C be a category with a speci�ed terminal object, binary products, and equalizers of parallel

pairs of arrows. Let F : T ! C be a functor that preserves the speci�ed terminal object

and products. Intuitively, we think of T as a category whose objects are \types" and whose

morphisms are \relabeling maps." Pairs of objects of T will be used to index classes of

relations, which are built in the category C.

Formally, if X and Y are objects of T, then an (X;Y )-relation in C (with respect to the

functor F ) is a triple (R; r; �r), where R is an object of C and r : R! FX, �r : R! FY are

morphisms of C:

?

-

FY

R FX

�r

r

When there can be no confusion, we usually say \let R be an (X;Y )-relation in C," and use

corresponding lower-case letters r, �r to denote the morphisms.

If R and S are (X;Y )-relations in C, then a morphism from R to S is a morphism

f : R! S in C such that the obvious diagram commutes:
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?

-

FY

R FX

�r

r

�

6

S

�s

s

@

@

@

@

@

@R

f

Let Reln

C

(X;Y ) denote the category of (X;Y )-relations in C and their morphisms.

For example, if T = C = Set, the category of sets and functions, and F : T! C is the

identity functor, then an ordinary set-theoretic relation R � X � Y may be represented as

an (X;Y )-relation in C by taking r : R ! X and �r : R ! Y to be the projections on the

�rst and second components, respectively.

2.2 Operations on Relations

We may de�ne various operations on relations.

2.2.1 Relabeling

Suppose R is an (X;Y )-relation in C. If � : Y ! Y

0

is a morphism in T, then the output

relabeling of R by � is the (X;Y

0

)-relation R;� = (R; r; (F�)�r). Similarly, if  : X ! X

0

is a morphism in T , then the input relabeling of R by  is the (X

0

; Y )-relation  ;R =

(R; (F )r; �r). Output relabeling by � extends to a functor

( - );� : Reln

C

(X;Y )! Reln

C

(X;Y

0

):

and input relabeling by  extends to a functor

 ; ( - ) : Reln

C

(X;Y )! Reln

C

(X

0

; Y ):

2.2.2 Sequential Composition

Relations may be composed in sequence as suggested by the picture:

- - -

X Y Z

R S

Formally, if R is an (X;Y )-relation in C and S is a (Y;Z)-relation in C, then their sequential

composition is the (X;Z)-relation R;S = (R;S; rs

0

; �sr

0

), where r

0

and s

0

are de�ned to make

the square in the following diagram a pullback:
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?

-

S

R;S

R

r

0

s

0

-

?

FY

s

�r

-

?

FZ

FX

r

�s

It should be noted that in the case T = C = Set, with F : T! C the identity functor,

the above de�nition of sequential composition of relations does not agree exactly with the

standard set-theoretic de�nition. Speci�cally, if R � X � Y and S � Y � Z, then

R;S ' f(x; y; z) : (x; y) 2 R; (y; z) 2 Sg:

2.2.3 Parallel Composition

Relations may also be composed in parallel, as suggested by the picture:

- -

- -

X

0

Y

0

X Y

S

R

Formally, suppose R is an (X;Y )-relation in C and S is an (X

0

; Y

0

)-relation in C. Then

their parallel composition is the (X �X

0

; Y �Y

0

)-relation RkS = (R�S; r� s; �r� �s), where

we have used the assumption that F (X �X

0

) = FX � FX

0

and F (Y � Y

0

) = FY � FY

0

.

The mapping that takes the pair (R;S) to RkS extends to a functor

k : Reln

C

(X;Y )�Reln

C

(X

0

; Y

0

)! Reln

C

(X �X

0

; Y � Y

0

):

2.2.4 Feedback

We can also de�ne an operation of \feedback," corresponding to the picture:
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-

-

-

R

X

Z

Y

�

Formally, suppose R is an (X � Z; Y )-relation in C, and � : Y ! Z is a morphism in T.

The feedback of R by � is the (X;Y )-relation (R

	�

; �

FX

re; �re), where e is the equalizer of

�

FZ

r and (F�)�r in C:

R

	� R

FY

F (X � Z)

FZ

FX

FY

-

6

?

-

-

-

-

e

r

�r

�

FZ

F�

�

FX

id

FY

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Hj

The map ( - )

	�

extends to a functor

( - )

	�

: Reln

C

(X � Z; Y )! Reln

C

(X;Y ):

The operations we have de�ned are not independent: in particular, sequential compo-

sition is de�nable (up to isomorphism) in terms of parallel composition, output relabeling,

and feedback. Formally, suppose R is an (X;Y )-relation in C and S is a (Y;Z)-relation in

C. Let �

Y

: Y �Z ! Y and �

Z

: Y �Z ! Z be the projections associated with the product

Y � Z in T. Then

R;S ' ((RkS)

	�

Y

);�

Z

:

2.3 Preservation of Operations by Functors

Suppose now we have two categories, C and C

0

, equipped with speci�ed terminal object,

binary products, and equalizers, and two functors F : T ! C and F

0

: T ! C

0

that
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preserve the speci�ed terminal object and products. If G : C ! C

0

is a functor such

that GF = F

0

, then each (X;Y )-relation R = (R; r; �r) in C determines an (X;Y )-relation

GR = (GR;Gr;G�r) in C

0

. The map taking R to GR extends, for each (X;Y ), to a functor

G

X;Y

: Reln

C

(X;Y )! Reln

C

0(X;Y ):

Moreover, if G preserves the speci�ed limits, then the ensemble of functors fG

X;Y

: X;Y 2

Tg preserves the operations of relabeling, sequential composition, parallel composition, and

feedback on relations in a way made precise by the following result:

Theorem 1 Suppose C;C

0

; F; F

0

and G are as above. Then

1. If R 2 Reln

C

(X;Y ), � : Y ! Y

0

, and  : X ! X

0

, then

G

X;Y

0

(R;�) = G

X;Y

(R);�; G

X

0

;Y

( ;S) =  ;G

X;Y

(S):

2. If R 2 Reln

C

(X;Y ) and S 2 Reln

C

(Y;Z), then G

X;Z

(R;S) = G

X;Y

(R);G

Y;Z

(S):

3. If R 2 Reln

C

(X;Y ) and R

0

2 Reln

C

(X

0

; Y

0

), then

G

X�X

0

;Y�Y

0

(RkR

0

) = G

X;Y

(R)kG

X

0

;Y

0

(R

0

):

4. If R 2 Reln

C

(X � Z; Y ) and � : Y ! Z, then G

X;Z

(R

	�

) = G

X�Z;Y

(R)

	�

:

Proof { All of these operations have categorical de�nitions in terms of composition and

limits, and these are preserved by the functor G.

Obviously, the same reasoning applies to show that the functors G

X;Y

preserve any other

operations on relations in C we might wish to consider, provided those operations can be

de�ned in terms of composition and limits in C.

3 Concurrent Automata

In this section, we de�ne a category Auto of concurrent automata. This category serves

as our operational semantics for dataow networks, in that we shall model networks as

relations in Auto. The kind of automata we consider incorporate concurrency in the form

of a binary concurrency relation k on a set E of events. The pair (E; k) is called a \concurrent

alphabet." Intuitively, events represent primitive occurrences during computation. If events

e and e

0

are both possible occurrences when in state q, and if e and e

0

are related by the

concurrency relation, then e and e

0

can be executed in either order, with equivalent e�ect.

Similar automata have been studied by Bednarczyk [2], and by the author [18, 19].
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3.1 Concurrent Alphabets

A concurrent alphabet is a set E, equipped with a symmetric, irreexive binary relation k

E

,

called the concurrency relation. Elements e; e

0

2 E are said to commute if ek

E

e

0

, and a subset

U of E is called commuting if every pair of its elements commutes. Let Com(E) denote the

set of all �nite commuting subsets of E. Suppose U; V 2 Com(E). Then U and V are called

orthogonal, and we write U ?

E

V , if U [ V 2 Com(E) and U \ V = ;.

A morphism from a concurrent alphabet E to a concurrent alphabet F is a function

� : Com(E)! Com(F ) such that

1. �(;) = ;.

2. If U [ V 2 Com(E), then �(U) [ �(V ) 2 Com(F ), and �(U n V ) = �(U) n �(V ).

Here the symbol n denotes set di�erence. Let Alph denote the category of concurrent

alphabets and their morphisms.

Concurrent alphabets constitute the starting point for \trace theory" [1, 12]. The above

de�nition of morphism of concurrent alphabets was motivated by the author's study of

\concurrent transition systems" [16, 17, 18]. The category Alph has a number of pleasant

properties, although the author is not aware of it having been studied previously.

Lemma 3.1 Suppose � : E ! F is a morphism of concurrent alphabets. If U[V 2 Com(E),

then (1) �(U [ V ) = �(U) [ �(V ) and (2) �(U \ V ) = �(U) \ �(V ).

Proof { (1) Observe that for arbitrary sets A;B;C, we have C = A[B i� AnC = ; = BnC,

CnA = BnA, and CnB = AnB. Clearly, ; = �(U n(U[V )) = �(U)n�(U[V ), and similarly

�(V ) n �(U [ V ) = ;. Since �(U [ V ) n �(V ) = �((U [ V ) n V ) = �(U n V ) = �(U) n �(V ),

and similarly, �(V [ U) n �(U) = �(V ) n �(U), it follows that �(U [ V ) = �(U) [ �(V ).

(2) �(U \ V ) = �(U n (U n V )) = �(U) n (�(U) n �(V )) = �(U) \ �(V ).

Lemma 3.2 Suppose � : E ! F is a morphism of concurrent alphabets. Then �(e) ?

F

�(e

0

)

whenever ek

E

e

0

. Conversely, any function � : E ! Com(F ) having this property extends

uniquely to a morphism � : E ! F .

Proof { If � : E ! F is a morphism, and ek

E

e

0

, then �(feg) = �(feg n fe

0

g) = �(feg) n

�(fe

0

g), and similarly, �(fe

0

g) = �(fe

0

g) n �(feg), so �(feg) \ �(fe

0

g) = ;.

Conversely, if � : E ! Com(F ) has the stated property, then it extends to a morphism

by de�ning �(U) =

S

fe 2 U : �(e)g. Moreover, by Lemma 3.1, any extension of � to a

morphism must satisfy this relation, so the extension of � is uniquely determined.

Theorem 2 Alph has �nite limits.
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Proof { We show that Alph has: (1) a terminal object, (2) binary products, and (3)

equalizers of parallel pairs.

(1) The empty concurrent alphabet is easily seen to be a terminal object (in fact a zero

object) in Alph.

(2) Suppose E and F are concurrent alphabets. Let E
F denote the concurrent alphabet

with elements E+F (disjoint union), and with k

E
F

= k

E

[ k

F

[ (E�F )[ (F �E). Note

that the sets in Com(E 
 F ) are precisely those of the form U + V with U 2 Com(E) and

V 2 Com(F ). De�ne projections �

E

: E 
 F ! E and �

F

: E 
 F ! F by �

E

(U) = U \ E

and �

F

(U) = U \ F . It is easy to check that �

E

and �

F

are morphisms, and that E 
 F ,

equipped with �

E

and �

F

, has the universal property required of a categorical product.

(3) Suppose �; � : E ! F are morphisms inAlph. De�ne a nonempty set U 2 Com(E) to

be equalizing if �(U) = � (U). Call U minimal equalizing if it is equalizing and it has no proper

equalizing subsets. We observe the following fact: if U and V are distinct minimal equalizing

subsets of E, and U [ V 2 Com(E), then U and V are disjoint. For, if U \ V = W 6= ;,

then �(W ) = �(U) \ �(V ) = � (U) \ � (V ) = � (W ), so W is equalizing, a contradiction

with the assumed minimality of U , V . It follows from this observation that every equalizing

U 2 Com(E) can be written uniquely as a �nite union of minimal equalizing subsets.

Now, let D be the set of all minimal equalizing subsets of E, and de�ne Uk

D

V i� U [V 2

Com(E). De�ne � : D ! E to be the morphism that satis�es �(fU

1

; . . . ; U

n

g) =

S

k

U

k

whenever fU

1

; . . . ; U

n

g 2 Com(D). One may now check that � is an equalizer of � and � .

3.2 Automata

An automaton is a tuple A = (E;Q; q

o

; T ); where

� E is a concurrent alphabet of events, not containing the special symbol �, called the

identity event.

� Q is a set of states.

� q

o

2 Q is a distinguished start state.

� T � Q � (E [ f�g) � Q is a set of transitions. We write t : q

e

�!r, or just q

e

�!r, to

denote a transition t = (q; e; r) 2 T or to assert the existence of such a transition in T .

These data are required to satisfy the following conditions:

(Identity) q

�

�!r i� q = r.

(Disambiguation) If q

e

�!r and q

e

�!r

0

, then r = r

0

.

(Commutativity) For all states q and events e; e

0

2 E, if ek

E

e

0

, q

e

�!r, and q

e

0

�!r

0

, then

for some state s there exist transitions r

e

0

�!s and r

0

e

�!s.
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If t : q

e

�!r, then q is called the domain dom(t) of t and r is called the codomain cod(t) of

t. Transitions t and u are called coinitial if dom(t) = dom(u). We say that event e 2 E is

enabled in state q if there exists a transition q

e

�!r in T .

Intuitively, if e 2 E, then a transition q

e

�!r represents a potential computation step of

A in which event e occurs and the state changes from q to r. Identity transitions q

�

�!q

do not represent computation steps of A; they serve merely to \pad" computations. The

(Identity) condition ensures that this is all they can do. The (Disambiguation) condition

ensures that the new state r in a transition q

e

�!r is uniquely determined by q and e. The

(Commutativity) condition says that if two commuting events are enabled in the same state,

then they can occur in either order with the same e�ect.

A �nite computation sequence for an automaton A is a �nite sequence  of transitions of

the form:

q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

:

The number n is called the length jj of F . (By convention, if n = 0 then the computation

sequence consists of the single state q

0

, and no transitions.) Similarly, an in�nite computation

sequence for A is an in�nite sequence of transitions:

q

0

e

1

�!q

1

e

2

�! . . . :

We extend notation and terminology for transitions to computation sequences, so that if 

is a computation sequence, then the domain dom() of  is the state q

0

, and if  is �nite,

then the codomain cod() of  is the state q

n

. We write  : q ! r to assert that  is a

�nite computation sequence with domain q and codomain r. A computation sequence 

is initial if dom() is the distinguished start state q

o

. If  : q ! r and � : q

0

! r

0

are

�nite computation sequences, then  and � are called composable if q

0

= r, in which case

we de�ne their composition to be the �nite computation sequence � : q ! r

0

, obtained by

concatenating  and � and identifying cod() with dom(�).

If A = (E;Q; q

o

; T ) and A

0

= (E

0

; Q

0

; (q

o

)

0

; T

0

) are automata, then a morphism from A

to A

0

is a pair � = (�

e

; �

s

), where �

e

: E ! E

0

is a morphism of concurrent alphabets, and

�

s

: Q! Q

0

is a function, such that

1. �

s

(q

o

) = (q

o

)

0

.

2. Suppose q

e

�!r 2 T , with e 6= �. Then for every enumeration fe

0

1

; . . . ; e

0

n

g of �

e

(feg),

there exists a (necessarily unique) �nite computation sequence

�

s

(q) = r

0

0

e

0

1

�!r

0

1

e

0

2

�! . . .

e

0

n

�!r

0

n

= �

s

(r)

of A

0

.

We usually drop the subscripts on �

e

and �

s

, writing � for both.

Let Auto denote the category of automata and their morphisms. There is an obvious

forgetful functor AuAl : Auto ! Alph, which takes each automaton A = (E;Q; q

o

; T ) to

the concurrent alphabet E, and each morphism (�

e

; �

s

) of automata to the morphism �

e

of

concurrent alphabets.

10



Theorem 3 The forgetful functor AuAl : Auto ! Alph has a right adjoint AlAu :

Alph ! Auto.

Proof { Given a concurrent alphabet E, let AlAu(E) be the one-state automaton (E; f�g; �; T ),

where T = f�g � (E [ f�g) � f�g. We claim that this construction de�nes the object

map of a functor AlAu : Alph ! Auto, which is right-adjoint to the forgetful functor

AuAl : Auto ! Alph. To prove this, it su�ces to show that for each E 2 Alph, there

exists an \evaluation map" "

E

: AuAl(AlAu(E))! E, universal from AuAl to E. We may

simply take "

E

= id

E

.

Theorem 4 Auto has �nite limits.

Proof { We show that Auto has (1) a terminal object, (2) binary products, and (3) equal-

izers.

(1) It is easy to see that the one-state, one-transition automaton with the empty alphabet

of events is a terminal object (in fact a zero object) in Auto.

(2) Suppose A

1

= (E

1

; Q

1

; q

o

1

; T

1

) and A

2

= (E

1

; Q

2

; q

o

2

; T

2

) are automata. Let A

1

� A

2

be the automaton

A

1

�A

2

= (E

1


 E

2

; Q

1

�Q

2

; (q

o

1

; q

o

2

); T );

where T is the set of all ((q

1

; q

2

); e; (r

1

; r

2

)) such that one of the following conditions holds:

1. e = �, q

1

= r

1

, and q

2

= r

2

.

2. e 2 E

1

, (q

1

; e; r

1

) 2 T

1

, and q

2

= r

2

.

3. e 2 E

2

, (q

2

; e; r

2

) 2 T

2

, and q

1

= r

1

.

De�ne projections �

i

: A

1

� A

2

! A

i

(i 2 f1; 2g) by letting (�

i

)

e

: E

1


 E

2

! E

i

be the

projection in Alph and (�

i

)

s

: Q

1

�Q

2

! Q

i

be the projection in Set. It is straightforward

to verify that A

1

�A

2

, equipped with projections �

1

and �

2

, is a product in Auto.

(3) Suppose �; � : A ! A

0

are morphisms in Auto, where A = (E;Q; q

o

; T ) and A

0

=

(E

0

; Q

0

; (q

o

)

0

; T

0

). Let �

e

: D ! E be an equalizer of �

e

and �

e

in Alph, let �

s

: R ! Q

be an equalizer of �

s

and �

s

in Set. Recall that D is the set of all minimal equalizing sets

U 2 Com(E). De�ne B = (D;R; q

o

; T ), where T consists of all triples (q; U; r) such that to

each enumeration fe

1

; . . . ; e

n

g of U there corresponds a computation sequence

q = q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

= r

of A. Let � = (�

e

; �

s

), then it is straightforward to verify that � is an equalizer of � and �

in Auto.

4 Operational Semantics of Dataow Networks

In this section, we give a formal operational semantics for dataow networks as relations in

Auto.
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4.1 Port Sets

Let Port be the category whose objects are �nite or countably in�nite sets (of ports), and

whose morphisms are the opposites of functions; thus, a morphism f : P � P

0

is a function

from P

0

to P . The empty set ; is clearly a terminal object in Port, and if + denotes disjoint

union, then the set P + P

0

is obviously a product of P and P

0

in Port. Let V be a �xed

universe of data values, which we assume contains the set of natural numbers as a subset. If

P is an object of Port, then de�ne a P -event to be an element of the concurrent alphabet

Events(P ) = P � V , where (p; v)k(p

0

; v

0

) i� p 6= p

0

. Intuitively, we think of a P -event

e = (p; v) as representing the transmission of data value v over port p. We write port(e) to

denote the port component p and value(e) to denote the value component v, of e.

De�ne the functor PoAl : Port ! Alph to take each object P of Port to the con-

current alphabet Events(P ), and each morphism f : P � P

0

of Port to the morphism

� : PoAl(P )! PoAl(P

0

), de�ned by

�(U) = fe 2 PoAl(P

0

) : (f(port(e)); value(e)) 2 Ug

for all U 2 Com(Events(P )). Intuitively, we think of a morphism f : P � P

0

in Port as

a relabeling map that labels each port in P

0

by a port in P . The corresponding morphism

� : PoAl(P ) ! PoAl(P

0

) in Alph has the dual e�ects: (1) of deleting events for ports in

P that are not the labels of ports in P

0

, and (2) of duplicating events for ports in P that

happen to be the labels of more than one port in P

0

.

Lemma 4.1 The functor PoAl preserves �nite products.

Proof { Straightforward.

Let PoAu : Port ! Auto be the composite functor AlAu � PoAl. Then since PoAl

preserves �nite products and AlAu is a right adjoint, hence preserves limits, it follows that

PoAu also preserves �nite products.

4.2 Port Automata

De�ne a port signature to be a pair (X;Y ) of objects of Port. The elements of X are called

input ports and those of Y , output ports. If (X;Y ) is a port signature, then an (X;Y )-

port automaton is an automaton A = (E;Q; q

o

; T ), such that E = Events(X + Y + Z) =

Events(X) 
 Events(Y )
 Events(Z) and the following condition holds:

(Receptivity) For all q 2 Q and all a 2 Events(X), there exists a transition q

a

�!r in T .

Elements of Events(X), Events(Y ), and Events(Z) are called input events, output events,

and internal events, respectively. Intuitively, the receptivity condition states that a port

automaton is always prepared to receive arbitrary input.

A port automaton is determinate if the following additional condition holds:

12



(Determinacy) For all q 2 Q and all b; b

0

2 Events(Y +Z), if both b and b

0

are enabled in

state q, then bkb

0

.

Intuitively, determinate port automata make no internal choices between conicting events.

As an example of how we can model a dataow process as a port automaton, consider the

case of a \merge" process, whose function is to shu�e together sequences of values arriving

on two input ports into a single output sequence. Let i

1

and i

2

denote the two input ports

and let o denote the single output port. We may represent the merge process as a port

automaton

A

mrg

= (Events(fi

1

; i

2

g+ fog+ fng); V

�

� V

�

� V

�

; (?;?;?); T );

where ? denotes the empty string, and the set of transitions T contains a transition

((x

1

; x

2

; y); e; (x

0

1

; x

0

2

; y

0

))

i� one of the following conditions holds:

1. e = �, x

0

1

= x

1

, x

0

2

= x

2

, and y

0

= y.

2. e = (i

1

; v), x

0

1

= x

1

v, x

0

2

= x

2

, and y

0

= y.

3. e = (i

2

; v), x

0

1

= x

1

, x

0

2

= x

2

v, and y

0

= y.

4. e = (n; 1), vx

0

1

= x

1

, x

0

2

= x

2

, and y

0

= yv.

5. e = (n; 2), x

0

1

= x

1

, vx

0

2

= x

2

, and y

0

= yv.

6. e = (o; v), x

0

1

= x

1

, x

0

2

= x

2

, and vy

0

= y.

It is straightforward to check that A

mrg

satis�es the conditions for a port automaton, and

that it is not determinate.

Intuitively, the state of A

mrg

contains two \input bu�ers" and one \output bu�er." Tran-

sitions of type (2) and (3) correspond to arriving input values being placed at the end of the

appropriate input bu�er. Transitions of type (4) and (5) are internal transitions that corre-

spond to the indeterminate selection of input in one input bu�er or the other to be moved

to the output bu�er. Transitions of type (6) correspond to the transmission of output from

the output bu�er. Similar constructions can be used to model many other kinds of dataow

processes.

4.3 Port Automata as Relations

An (X;Y )-port automaton A = (E;Q; q

o

; T ) may be identi�ed with the (X;Y )-relation

(A;�

X

; �

Y

) in Auto (with respect to the functor AlAu � PoAl : Port! Auto), where

�

X

: A! AlAu(PoAl(X)); �

Y

: A! AlAu(PoAl(Y ))

13



are the adjoint transforms of the projections

�

X

: AuAl(A)! PoAl(X); �

Y

: AuAl(A)! PoAl(Y ):

(Recall that AuAl(A) = E = PoAl(X) 
 PoAl(Y )
 PoAl(Z).)

By making the above identi�cation of port automata as relations in Auto, the de�nitions

of Section 2.2 immediately become applicable, yielding operations of relabeling, sequential

composition, parallel composition, and feedback on port automata. However, since not every

(X;Y )-relation in Auto is an (X;Y )-port automaton, we do not know a priori that the class

of port automata is closed under these operations.

Theorem 5 The classes of port automata and of determinate port automata are closed under

the following operations:

1. Input relabeling by bijections, and output relabeling by injections.

2. Sequential composition.

3. Parallel composition.

4. Feedback by injections.

Proof { The proof simply requires substituting the characterizations of Theorem 4 into the

de�nitions of the operations on relations, and checking that the conditions for port automata

are satis�ed in each case. We omit the details.

By working through the details of the previous proof, one may convince oneself that

the port automaton model is a reasonable operational semantics for dataow networks. For

example, suppose A = (E;Q; q

o

; T ) is an (X � Z; Y )-port automaton, and let � be an

injection from Z to Y , viewed as a morphism � : Y � Z in Port. Intuitively, we think

of � as specifying, for each input port in Z, a corresponding port in Y to which it is to

be \connected" by a \feedback loop." Applying the feedback operation

	�

to A results

(up to isomorphism) in an (X;Y )-port automaton A

0

= (E n Events(Z); Q; q

o

; T

0

). Each

input transition q

e

�!r of A with port(e) 2 X is also a transition of A

0

, and if q

e

�!r is an

output transition of A with port(e) 2 Y n �(Z), then A

0

has that same output transition.

However, if q

e

�!r is an output transition of A with e = (�(z); v) for some z 2 Z, then A

0

has instead a transition q

e

�!r

0

, where r

0

is the unique state such that r

(z;v)

�!r

0

is a transition

of A. Intuitively, A

0

behaves like A, except that in A

0

outputs of values on ports in �(Z)

occur simultaneously with inputs of the same values on the corresponding ports in Z.

4.4 Set-Theoretic Input/Output Relations

We now complete our operational semantics of dataow networks by showing how the usual

set-theoretic input/output relation between domains of \port histories" can be extracted

from port automata.
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Formally, if P is a set of ports, then a P -history is a mapping from P to the CPO V

1

of all �nite and in�nite sequences of values in V , equipped with the pre�x ordering v. If

H is a P -history, and P

0

� P , then we write HjP

0

to denote the P

0

-history H

0

such that

H

0

(p) = H(p) for all p 2 P

0

.

Suppose A = (Events(P ); Q; q

o

; T ) is an (X;Y )-port automaton, where P = X + Y +Z.

Then each �nite or in�nite computation sequence

 = q

0

e

1

�!q

1

e

2

�! . . .

of A determines a P -history H



as follows: for each p 2 P , the sequenceH



(p) is the sequence

of values value(e

0

1

); value(e

0

2

); . . ., where e

0

1

; e

0

2

; . . ., is the subsequence of e

1

; e

2

; . . . consisting

of precisely those e

k

6= � with port(e

k

) = p.

A computation sequence  of A is called completed if there exists no computation se-

quence �, such that dom() = dom(�), H



jX = H

�

jX, and H



@ H

�

. That is, completed

computation sequences are those whose histories are maximal among all computation se-

quences having the same domain and input port history. This is actually a kind of \fairness"

property (see [13]), which intuitively is true when \every enabled output or internal event,

not in conict with some other enabled output or internal event, eventually occurs." The

set-theoretic input/output relation Rel(A) of A is the set of all pairs (H



jX;H



jY ) such that

 is a completed initial computation sequence of A.

For example, the input/output relation of the automaton A

mrg

de�ned in the previous

section is the set of all (H

in

;H

out

), with H

in

an fi

1

; i

2

g-history and H

out

an fog-history, such

that H

out

(o) is a shu�e of a pre�x x

1

of H

in

(i

1

) and a pre�x x

2

of H

in

(i

2

), subject to the

following conditions:

1. If H

in

(i

1

) is �nite, then x

2

= H

in

(i

2

).

2. If H

in

(i

2

) is �nite, then x

1

= H

in

(i

1

).

3. If both H

in

(i

1

) and H

in

(i

2

) are in�nite, then either x

1

= H

in

(i

1

) or else x

2

= H

in

(i

2

).

Thus, the input/output relation of A

mrg

is the angelic merge relation [13]. It is also possible

to construct a port automaton having a slightly di�erent merging relation, called in�nity-fair

merge, as its input/output relation. However, it is shown in [13] that no port automaton can

have as its input/output relation the fair merge relation, which is the set of all (H

in

;H

out

)

such that H

out

(o) is a shu�e of all of H

in

(i

1

) and all of H

out

(i

2

).

We may regard the set-theoretic input/output relation Rel(A) of an (X;Y )-port automa-

ton A as an (X;Y )-relation in the category Set of sets and functions. To do this, let F be the

functor Hist : Port! Set that takes a set P of ports to the set Hist(P ) of all port histories

over P , and that takes a morphism f : P ! P

0

to the corresponding duplication/restriction

map Hist(f) : Hist(P ) ! Hist(P

0

), given by Hist(f)(H)(p) = H(f(p)) for all p 2 P

0

.

This functor is easily seen to preserve �nite products. The set-theoretic input/output re-

lation Rel(A) of an (X;Y )-port automaton A may now be regarded as the (X;Y )-relation

(Rel(A); �

X

; �

Y

) in Set, where �

X

: Rel(A) ! Hist(X) and �

Y

: Rel(A) ! Hist(Y ) are the

obvious projections.
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It is important to observe that, although we may regard the set-theoretic input/output

relation of an (X;Y )-port automaton as an (X;Y )-relation in Set, and thereby obtain formal

operations of relabeling, composition, product, and feedback on such relations, these oper-

ations are incompatible with the corresponding operations on port automata. Speci�cally,

the feedback operation is not preserved by the mapping from port automata to input/output

relations. Brock and Ackerman have given speci�c examples of this failure of commutativity,

and it has come to be called the \Brock-Ackerman anomaly." The situation may be described

succinctly as the failure of the set-theoretic relational semantics to be \compositional."

5 Denotational Semantics of Dataow Networks

The goal of this section of the paper is to replace the category Set, which does not yield a

compositional denotational semantics for dataow networks, with a more highly structured

category EvDom, for which a compositional semantics is obtained. We do this in two steps:

�rst we de�ne a category TrDom of \trace domains," which are domains that are embedded

as certain normal subdomains of the domains of \traces" generated by a concurrent alphabet,

then we throw away the embedding domains and obtain a category EvDom, whose objects

are \event domains" and whose morphisms are certain continuous maps. We construct

coreections between Auto and TrDom and between TrDom and EvDom, with the right

adjoints (coreectors) going from Auto to TrDom and from TrDom to EvDom. It follows

by Theorem 1 and the fact that right adjoints preserve limits, that the induced ensemble

of functors, from (X;Y )-relations in Auto to (X;Y )-relations in EvDom, preserves the

operations of relabeling, sequential and parallel composition, and feedback.

5.1 Domains

A (Scott) domain is an !-algebraic, consistently complete CPO. A domain D is �nitary if

for all �nite (=isolated=compact) elements d 2 D the set fd

0

2 D : d

0

v dg is �nite. If D

and E are domains, then a monotone map f : D ! E is continuous if it preserves directed

lubs, strict if f(?

D

) = ?

E

, and additive if whenever d; d

0

are consistent elements of d, then

f(d); f(d

0

) are consistent elements of E, and f(e t e

0

) = f(e) t f(e

0

). Let Dom denote the

category of domains and continuous maps.

A subdomain of D is a subset U of D, which is a domain under the restriction of the

ordering on D, and is such that the inclusion of U in D is strict and continuous. A subdomain

U of D is normal if for all d 2 D, the set fe 2 U : e v dg is directed.

Lemma 5.1 A subdomain U of D is normal i� the inclusion of U in D is additive and

reects consistent pairs.

Proof { Suppose U is a normal subdomain of D. If e; e

0

2 U are consistent in D, then the

set V = fe

00

2 U : e

00

v et

D

e

0

g is directed and contains e; e

0

, so e and e

0

are consistent in U .

Let v =

F

D

V , then v 2 U because V � U and U is a subdomain of D. Clearly, v v e t

D

e

0

.
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Also, e t

D

e

0

v v, because v is an upper bound of e and e

0

. Hence v = e t

D

e

0

= e t

U

e

0

is

an upper bound for e and e

0

in U .

Conversely, suppose that whenever e and e

0

are consistent in D, then e; e

0

are consistent

in U , and e t

U

e

0

= e t

D

e

0

. We claim that for each d 2 D, the set U

d

= fe 2 U : e v dg

is directed. If e; e

0

2 U

d

, then e v d and e

0

v d, so e; e

0

are consistent in D, hence e; e

0

are

consistent in U , and e t

U

e

0

= e t

D

e

0

v d. Thus e t

U

e

0

2 U

d

.

An interval of a domain D is a pair I = (dom(I); cod(I)) 2 D�D, with dom(I) v cod(I).

Intervals I and J are coinitial if dom(I) = dom(J). The interval I is an identity if dom(I) =

cod(I), and a nonidentity interval I is prime if there exists no d 2 D with dom(I) @ d @

cod(I). It is t-prime if there exists a �nite, nonempty set U of prime and identity intervals,

such that dom(J) = dom(I) for all J 2 U , and cod(I) =

F

fcod(J) : J 2 Ug. Coinitial

intervals I and J are consistent if cod(I) and cod(J) are consistent elements of D. If I and

J are consistent, then the residual of I after J is the interval InJ = (cod(J); cod(I)tcod(J)).

In the sequel, we shall use the term \interval" exclusively to mean \interval with �nite

endpoints."

5.2 Trace Domains

Concurrent alphabets generate domains. Formally, suppose E is a concurrent alphabet.

Let E

�

denote the free monoid generated by E, then there is a least congruence � on E

�

such that ek

E

e

0

implies ee

0

� e

0

e for all e; e

0

2 E. The quotient E

�

=� is the free partially

commutative monoid generated by E, and its elements are called traces. De�ne the relation

v on E

�

=� by [x] v [y] i� there exists z 2 E

�

with [xz] = [y]. This relation is a partial order

with respect to which every consistent pair of elements has a least upper bound (this is not

completely trivial to prove). We call v the pre�x relation. By forming the ideal completion

of the poset (E

�

=�;v), we obtain a domain

b

E. The map taking E to

b

E extends to a functor

(

c

- ) : Alph ! Dom.

We may think of the elements of

b

E as equivalence classes of �nite and in�nite strings.

The �nite elements of E are the equivalence classes of �nite strings. All the �nite strings

that are representatives of a given �nite element of

b

E are permutations of each other, hence

have the same length and the same number of occurrences of each element of E. The prime

intervals of

b

E are those of the form ([x]; [xe]), where x 2 E

�

and e 2 E, and the t-prime

intervals are those of the form ([x]; [xe

1

. . . e

n

]), where x 2 E

�

and fe

1

; . . . ; e

n

g 2 Com(E).

Distinct coinitial prime intervals I = ([x]; [xe]) and I

0

= ([x]; [xe

0

]) are consistent i� ek

E

e

0

,

in which case I n I

0

= ([xe

0

]; [xe

0

e]).

Lemma 5.2 If E is a concurrent alphabet, then the domain

b

E is �nitary.

Proof { The �nite elements of E are permutation equivalence classes of �nite strings, and

for �nite [x]; [y] we have [y] v [x] i� there exists z with [yz] = [x]. Thus, the cardinality of

f[y] : [y] v [x]g is bounded by the number of pre�xes of permutations of x, which is �nite.

A trace domain is a pair (E;D), where E is a concurrent alphabet and D is a normal

subdomain of

b

E, such that every prime interval of D is also a prime interval of

b

E. If (E;D)
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and (E

0

;D

0

) are trace domains, then a morphism from (E;D) to (E

0

;D

0

) is a morphism

� : E ! E

0

of concurrent alphabets such that the following two conditions hold:

1.

b

�(D) � D

0

.

2. Whenever (d; d

0

) is a prime interval of D, then (

b

�(d);

b

�(d

0

)) is a t-prime interval of D

0

.

Let TrDom denote the category of trace domains and their morphisms.

We say that an element d of a domain D is secured if there exists a �nite chain

? = d

0

v d

1

v . . . v d

n

= d;

such that each interval (d

k

; d

k+1

) is prime. We call such a chain a securing chain for d. We

say that a domain D is secured if each of its �nite elements is secured. It is easy to see that

�nitary domains are secured. We say that a subdomain U of D is secured in D if each �nite

element of U is secured as an element of D.

Lemma 5.3 Suppose (E;D) is a trace domain. Then D is �nitary and secured in

b

E.

Proof { Since D is a normal subdomain of

b

E, every �nite element of D is also a �nite

element of

b

E. Since

b

E is �nitary, so is D. Now, since D is �nitary we know that D is

secured (in itself). Since every prime interval in D is also a prime interval of E, it follows

that every securing chain for d 2 D is also a securing chain for d 2

b

E. Thus D is secured in

E.

Automata \unwind" to trace domains, and the unwinding map gives a coreection be-

tween Auto and TrDom. Formally, suppose A = (E;Q; q

o

; T ) is an automaton. Each �nite

or in�nite computation sequence

 = q

0

e

1

�!q

1

e

2

�! . . .

of A, determines an element tr() of the domain

b

E, according to the de�nition

tr() =

G

k

e

1

e

2

. . . e

k

;

where concatenation denotes multiplication in the monoid of �nite traces E

�

=�, and we

identify the identity event � with the monoid identity, so that � does not appear in the trace

e

1

. . . e

k

. We call tr() the trace of the computation sequence . Let Traces(A) denote the

set of all traces of initial computation sequences of A.

Theorem 6 Suppose A = (E;Q; q

o

; T ) is an automaton. Then (E;Traces(A)) is a trace

domain. Moreover, the map taking A to (E;Traces(A)) is the object map of a functor AuTr :

Auto! TrDom, which is right-adjoint to a full embedding TrAu : TrDom! Auto.

Proof { See the Appendix.
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Corollary 5.1 TrDom has �nite limits.

Proof { This follows immediately from the previous result, but as an aid to intuition we

give the explicit constructions.

(Terminal Object) The trace domain (;; f?g) is a terminal object (in fact a zero object)

in TrDom.

(Products) Suppose (E

1

;D

1

), (E

2

;D

2

), are trace domains. Let E = E

1


 E

2

be the

product of E

1

and E

2

in Alph, and let �

i

: E

1


 E

2

! E

i

(i 2 f1; 2g) be the associated

projections. Let D be the set of all x 2

b

E such that

b

�

1

(x) 2 D

1

and

b

�

2

(x) 2 D

2

. Then

(E;D), equipped with the morphisms �

1

and �

2

, is a product of (E

1

;D

1

) and (E

2

;D

2

) in

TrDom.

(Equalizers) Suppose �; � : (E

1

;D

1

) ! (E

2

;D

2

) is a parallel pair of morphisms in

TrDom. Let � : E ! E

1

be an equalizer of � and � in Alph. De�ne an element d 2

b

E to

be reachable if there exists a chain

? = d

0

v d

1

v . . .

of �nite elements of

b

E, such that d =

F

k

d

k

,

b

�(d

k

) 2 D

1

for all k � 0, and for all k � 0 the

interval (

b

�(d

k

);

b

�(d

k+1

)) is t-prime. Let D be the set of all reachable elements of E. Then

� : (E;D)! (E

1

;D

1

) is an equalizer of � and � in TrDom.

5.3 Event Domains

We now wish to view a trace domain (E;D) as a domain in its own right, rather than as a

normal subdomain of the domain

b

E of traces. In fact, this can be done. By discarding the

concurrent alphabet component of trace domains we obtain a class of domains called \event

domains," which have been studied previously. It is known that event domains are exactly

those domains that are isomorphic to the \domains of con�gurations" of a certain kind of

\event structure" [6, 20]. A byproduct of our investigation is the following representation

theorem, which the author has not seen explicitly stated before.

� Event domains are precisely those domains D for which there exists a concurrent

alphabet E and an embedding f : D !

b

E of D as a normal subdomain of

b

E, such

that if (d; d

0

) is a prime interval of D, then (f(d); f(d

0

)) is a prime interval of

b

E.

The formal de�nition of event domains requires a few preliminaries. Suppose D is a

domain with the following property:

1. I n J is a prime interval whenever I and J are distinct, consistent prime intervals.

Then it is not di�cult to see that the same property holds if \prime" is replaced by \t-

prime."

If I = (d; d

0

) is a t-prime interval of D, then de�ne

pr(I) = f(d; d

00

) : d @ d

00

v d

0

and (d; d

00

) is primeg:

19



Call coinitial t-prime intervals I and J orthogonal if they are consistent and pr(I)\pr(J) = ;.

Note that coinitial prime intervals are orthogonal i� they are distinct and consistent. Let

� be the least equivalence relation on t-prime intervals of D such that I � I n J whenever

I and J are orthogonal t-prime intervals. A straightforward induction using property (1)

shows that if I is prime and I � I

0

, then I

0

is also prime.

An event domain is a �nitary domain D that satis�es property (1) above, and in addition

satis�es:

2. I � J implies I = J , whenever I, J are coinitial prime intervals.

3. If I; I

0

; J; J

0

are prime intervals such that I � I

0

, J � J

0

, I and J are coinitial, and I

0

and J

0

are coinitial, then I and I

0

are consistent i� J and J

0

are consistent.

A morphism from an event domain D to an event domain D

0

is a strict, additive, contin-

uous function f : D! D

0

with the following two additional properties:

1. Whenever I is a prime interval of D, then f(I) is a t-prime interval of D

0

.

2. Whenever I; J are distinct consistent prime intervals of D, then f(I) and f(J) are

orthogonal.

Let EvDom denote the category of event domains and their morphisms, then EvDom is a

(non-full) subcategory of Dom.

Lemma 5.4 If (E;D) is a trace domain, then D is an event domain. Moreover, the map

taking (E;D) to D extends to a (forgetful) functor TrEv : TrDom! EvDom.

Proof { We �rst show that if E is a concurrent alphabet, then

b

E is an event domain. We

have already seen (Lemma 5.2) that

b

E is �nitary. It remains to verify axioms (1)-(3) for

event domains.

(1) An interval I of

b

E is prime i� it is of the form ([x]; [xe]), with x 2 E

�

and e 2 E.

Distinct, coinitial prime intervals I = ([x]; [xe]) and I

0

= ([x]; [xe

0

]) are consistent i� ek

E

e

0

,

in which case I n I

0

is the interval ([xe]; [xee

0

]), which is prime.

(2) A straightforward induction shows that if I � I

0

, where I = ([x]; [xe]) and I

0

=

([x

0

]; [x

0

e

0

]) are prime intervals, then e = e

0

. Hence if I � I

0

and I; I

0

are coinitial, then

I = I

0

.

(3) If distinct prime intervals I = ([x]; [xe]) and J = ([x]; [xe

0

]) are consistent, then

ek

E

e

0

. If I

0

= ([x

0

]; [x

0

e]) � I and J

0

= ([x

0

]; [x

0

e

0

]) � J , then clearly I

0

and J

0

must also be

consistent.

Next, we show that if D is is a normal subdomain of

b

E, such that an interval of D is

prime in D i� it is also prime in

b

E, then D is also an event domain. Suppose D is such a

domain. Clearly, D has property (1) of an event domain. By an induction we see that if I

and J are prime intervals of D, then I � J in D i� I � J in

b

E. Properties (2)-(3) of an

event domain follow easily from this fact.
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Finally, to see that TrEv is a functor, note that given a morphism � : (E;D)! (E

0

;D

0

)

in TrDom, the map

b

� :

b

E !

b

E

0

restricts to a map TrEv(�) : D ! D

0

. The prime

intervals of D are those of the form I = ([x]; [xe]) where x 2 E

�

and e 2 E. Then

b

�(I) =

(

b

�([x]);

b

�([x])

b

�(e)), which is a t-prime interval of D

0

. Also, if I and J are distinct, consistent

prime intervals ofD, then I = ([x]; [xe]) and J = ([x]; [xe

0

]), where ek

E

e

0

. Since �(e)\�(e

0

) =

;, it follows that

b

�(I) and

b

�(J) are orthogonal. Hence TrEv(�) is a morphism of event

domains.

Theorem 7 The forgetful functor TrEv : TrDom! EvDom has a left adjoint EvTr, such

that TrEv � EvTr ' 1.

Proof { See the Appendix.

Corollary 5.2 EvDom has �nite limits.

5.4 Summary

We have now reached our goal. Dataow networks have an operational semantics as port

automata, which we identify with the corresponding relations in Auto. The functor G =

TrEv �AuTr : Auto! EvDom preserves limits, hence induces an ensemble of functors

G

X;Y

: Reln

Auto

(X;Y )! Reln

EvDom

(X;Y )

which preserve not only the operations of relabeling, sequential composition, parallel com-

position, and feedback, but any operations that have categorical de�nitions in terms of

composition and limits in Auto. Thus, the denotational semantics, in which a dataow

network denotes an (X;Y )-relation in EvDom, agrees with the operational semantics given

by port automata. Moreover, the semantics is not \too abstract," in the sense that networks

with distinct set-theoretic input/output relations receive distinct denotations. This can be

veri�ed by observing that the set-theoretic input/output relation of a port automaton can

still be extracted from the corresponding relation in EvDom.

6 Port Automata and Causal Relations

Not every (X;Y )-relation in EvDom is the relation corresponding to an (X;Y )-port au-

tomaton. There are a number of reasons why this is so, but the easiest to see is that although

the receptivity condition in the de�nition of port automata introduces an asymmetry be-

tween input and output, there is no such asymmetry in the de�nition of relations in EvDom.

We would like to have a theorem that characterizes exactly, in terms of categorical proper-

ties of EvDom, those (X;Y )-relations that are the relations corresponding to (X;Y )-port

automata and those that are the relations corresponding to determinate (X;Y )-automata.

21



Note that the category EvDom has a substantial amount of structure with which to ex-

press such properties; for example, its hom-sets are partially ordered by virtue of its being

a subcategory of the category Dom. At the moment, we have no exact characterization

theorem, but we do have some partial results. In particular, we can show that the relation

in EvDom corresponding to an (X;Y )-port automaton is causal, in a sense to be de�ned

formally below, and that the class of causal relations in EvDom is closed under those rela-

tional operations that make sense for port automata. The notion of causality captures some

of the input/output asymmetry exhibited by port automata.

Formally, let categories T and C, and functor F : T ! C be as in Section 2. Suppose

further that the category C is pointed; that is, it has a unique zero morphism 0

A;B

: A! B

for every pair of objects A;B. Then an (X;Y )-relation R in C is causal if there exists a

morphism m : FX ! R such that rm = id

FX

and �rm = 0. Then r is a retraction and m is

a section.

Theorem 8 The class of causal relations in C is closed under the following operations:

1. Output relabeling by arbitrary morphisms and input relabeling by retractions.

2. Sequential composition on the output with arbitrary relations (hence also sequential

composition on the input with causal relations).

3. Parallel composition.

4. Feedback.

Proof { Omitted.

Lemma 6.1 The category EvDom is pointed.

Proof { The one-point domain is a zero object.

Theorem 9 If R is the (X;Y )-relation in EvDom corresponding to an (X;Y )-port au-

tomaton, then R is causal.

Proof { The receptivity property of an (X;Y )-port automaton A implies that for each input

history H 2 Hist(X), there is a corresponding initial computation sequence  such that 

consists entirely of input or identity transitions, and H



jX = H. The mapm

0

: Hist(X)! R

that takes each such H to the trace tr() 2 R is the m required to show R causal.

It appears that we can go quite a bit further than this. By taking into account the

order relation � on the hom-sets of EvDom, one can see that if R is an (X;Y )-relation in

EvDom corresponding to an (X;Y )-port automaton, then the section m

0

: Hist(X) ! R

produced by the construction in the proof of the previous theorem is characterized by the

properties rm

0

= id

Hist(X)

and m

0

r � id

R

. That is, (m

0

; r) is an embedding-projection pair.

One may also observe that for relations R corresponding to determinate automata, the class
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of all sections m, such that rm = id

Hist(X)

, is directed by � and has m

0

as a least element.

By taking the least upper bound of this collection (working now in the full subcategory of

Dom whose objects are the event domains), we obtain a continuous map � : Hist(X)! R.

By composing with �r, we obtain a continuous map �r� : Hist(X) ! Hist(Y ). Thus we see

that determinate automata determine continuous maps from input to output. We expect

that this observation can form the basis for a nice connection between the category-theoretic

semantics of feedback we gave here in terms of equalizers, and the order-theoretic version

given by Kahn in terms of least �xed points. We are currently attempting to work out the

details of this connection.

7 Conclusion

By showing that the algebra of causal relations in EvDom constitutes a correct semantics

for dataow networks, we obtain a substantial amount of algebraic machinery for reasoning

about such networks. Further clari�cation of the structure of those relations in EvDom that

correspond to port automata should yield even more machinery. The study of relations in

EvDom may also yield useful characterizations of \observational equivalence" of networks,

and information about the structure of the fully abstract semantics with respect to this

equivalence.

A Appendix: Proofs of Theorems 6 and 7

Theorem 6 Suppose A = (E;Q; q

o

; T ) is an automaton. Then (E;Traces(A)) is a trace

domain. Moreover, the map taking A to (E;Traces(A)) is the object map of a functor AuTr :

Auto! TrDom, which is right-adjoint to a full embedding TrAu : TrDom! Auto.

Proof { We �rst show that Traces(A) is a normal subdomain of

b

E. To do this requires

a detailed analysis of the structure of the set of initial computation sequences of A, and

we perform this analysis using the notion of the \residual"  n � of one �nite computation

sequence  \after" another �nite computation sequence �. Intuitively,  n � is obtained from

 by cancelling out transitions that, \up to permutation equivalence," also appear in �.

Formally, the residual operation is a partial binary operation on coinitial pairs of com-

putation sequences. We �rst de�ne n for single transitions, and then extend to arbitrary

�nite computation sequences by induction on their length. For single transitions, suppose

t : q

a

�!r and u : q

b

�!s. If a = �, then t n u = (s

�

�!s) and u n t = u. If a = b 6= �, then

we de�ne t n u = (s

�

�!s) = (r

�

�!r) = u n t. If � 6= a 6= b 6= �, then t n u is de�ned i� ak

E

b,

in which case the commutativity property of A implies there must exist (necessarily unique)

transitions s

a

�!p and r

b

�!p, which we take as t n u and u n t, respectively.

Next, we extend to arbitrary �nite computation sequences. Suppose  : q ! r and

� : q ! s are coinitial �nite computation sequences. Then
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1. If jj = 0 then  n � = id

s

, where id

s

denotes the length-0 computation sequence from

state s.

2. If jj > 0 and j�j = 0, then  n � = .

3. If  = t

0

, � is the single transition u, t n u is de�ned, and 

0

n (u n t) is de�ned, then

 n � = (t n u)(

0

n (u n t)):

4. If jj > 0, � = u�

0

with j�

0

j > 0,  n u is de�ned, and ( n u) n �

0

is de�ned, then

 n � = ( n u) n �

0

:

For a more detailed explanation of this operation and its properties, the reader is referred

to [13, 18].

We now use n to de�ne a relation

@

�

on initial computation sequences as follows: For

�nite sequences  and �, de�ne 

@

�

� to hold precisely when  n � is a sequence of identity

transitions. Extend this de�nition to in�nite sequences by de�ning 

0

@

�

�

0

i� for every �nite

pre�x  of 

0

, there exists a �nite pre�x � of �

0

, such that 

@

�

�.

We observe the following facts about

@

�

:

1. The relation

@

�

is a preorder, and the set of

@

�

-equivalence classes, equipped with the

induced partial ordering, is a domain whose �nite elements are precisely the equivalence

classes of �nite initial computation sequences.

2. The map taking each

@

�

-equivalence class to its trace is strict, additive, and continuous.

3. Initial computation sequences  and � have a

@

�

-upper bound (given by (� n ) or

�( n �), which are

@

�

-equivalent) i� the traces tr() and tr(�) are consistent.

4. 

@

�

� i� tr() v tr(�).

Facts (1) and (2) are shown in [13] using the properties of the residual operation developed

there. Facts (3) and (4) can be veri�ed by straightforward inductive arguments from the

de�nition of the residual operation. It follows from these facts and Lemma 5.1 that the

map taking each

@

�

-equivalence class to its trace is an isomorphism of the domain of equiv-

alence classes of initial computation sequences of A to a normal subdomain of

b

E. Since this

subdomain is Traces(A), we conclude that Traces(A) is a normal subdomain of

b

E.

To complete the proof that (E;Traces(A)) is a trace domain, we observe that the prime

intervals ([]; [�]) in the domain of equivalence classes of initial computation sequences of A

are those for which � n  contains precisely one nonidentity transition. Since this implies

that tr(�) is longer than tr() by one symbol, it follows that prime intervals in Traces(A)

are also prime intervals in

b

E.

It remains to be shown the map AuTr, taking A to (E;Traces(A)), is the object map of

a functor that is right-adjoint to a full embedding TrAu : TrDom! Auto. Given a trace

domain (E;D), de�ne the automaton TrAu(E;D) = (E;Q; q

o

; T ) as follows:
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� Let Q be the set of �nite elements of D, with q

o

= ?. Then Q is a set of equivalence

classes of �nite strings.

� Let T contain all transitions [x]

�

�![x] with [x] 2 Q and all transitions [x]

e

�![xe] with

both [x] and [xe] in Q.

It is straightforward to verify that TrAu(E;D) is an automaton. Moreover, each mor-

phism � : (E;D) ! (E

0

;D

0

) in TrDom determines a morphism TrAu(�) : TrAu(E;D) !

TrAu(E

0

;D

0

), where TrAu(�)

e

= �, and TrAu(�)

s

is the restriction of

b

� to a map from

�nite elements of D to �nite elements of D

0

. To see that TrAu(�) is in fact a morphism

of automata, note that the nonidentity transitions t of TrAu(E;D) correspond bijectively

to the prime intervals ([x]; [xe]) in D. For each such interval, (

b

�([x]);

b

�([xe])) is a t-prime

interval of D

0

. hence is of the form

([x

0

]; [x

0

e

0

1

] t . . . t [x

0

e

0

n

]);

where fe

0

1

; . . . ; e

0

n

g is an arbitrary enumeration of �(feg), and [x

0

e

0

1

]; . . . ; [x

0

e

0

n

] are all in D

0

.

It follows from this that to each enumeration fe

0

1

; . . . ; e

0

n

g of �(feg) there corresponds a

computation sequence

TrAu(�)

s

([x]) = [x

0

]

e

0

1

�![x

0

e

0

1

]

e

0

2

�!([x

0

e

0

1

]t[x

0

e

0

2

])

e

0

3

�! . . .

e

0

n

�!([x

0

e

0

1

]t. . .t[x

0

e

0

n

]) = TrAu(�)

s

([xe])

of TrAu(E

0

;D

0

).

Clearly, the functor TrAu is faithful and injective on objects. It is also full, because

if ( 

e

;  

s

) : TrAu(E;D) ! TrAu(E

0

;D

0

), then (1) an induction on the length of securing

chains shows that  

s

([x]) =

b

 

e

([x]) for each �nite trace [x] 2 D, and (2) it follows from the

de�ning properties of automata that if ([x]; [xe]) is a prime interval of Traces(TrAu(E;D)),

then (

b

 

e

([x]);

b

 

e

([xe])) is a t-prime interval of Traces(TrAu(E

0

;D

0

)). Hence if � : (E;D)!

(E

0

;D

0

) is the morphism in TrDom with � and  

e

the same morphism of concurrent alpha-

bets, then TrAu(�) =  .

Given an automaton A, de�ne the \evaluation map" "

A

: TrAu(AuTr(A))! A to be the

identity on events and to take each state [x] of TrAu(AuTr(A)) to the state cod() of A,

where  is an initial computation sequence of A having trace [x]. Since all such computation

sequences  determine the same state cod() by commutativity, we know that "

A

is well-

de�ned. To see that "

A

is in fact a morphism of automata, suppose that [x]

e

�![xe] is a

transition of TrAu(AuTr(A)). Then there exist initial computation sequences  and � of

A, such that  has trace [x] and � has trace [xe]. Then � n  : cod() ! cod(�) is a

computation sequence of A that contains precisely one nonidentity transition t : cod() !

cod(�). Hence, to every enumeration of feg of "

A

(feg) there corresponds a computation

sequence cod()

e

�!cod(�) of A, as required to show that "

A

is a morphism.

We claim that "

A

is universal from TrAu to A. Suppose  : TrAu(E

0

;D

0

) ! A is a

morphism in Auto. We claim that there is a unique morphism � : (E

0

;D

0

) ! AuTr(A)

in TrDom such that "

A

� TrAu(�) =  . Since "

A

is the identity on events, � and  must

be the same morphism of concurrent alphabets, thus there is only one possible de�nition
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for �. To show that this de�nition actually yields a morphism � : (E

0

;D

0

) ! AuTr(A) of

trace domains, we must show: (1) that

b

�(D

0

) � Traces(A), and (2) if ([x

0

]; [x

0

e

0

]) is a prime

interval in D

0

, then (

b

�([x

0

]);

b

�([x

0

e

0

])) is a t-prime interval in Traces(A).

To show (1), observe that

b

�(D

0

) =

b

 (D

0

). An induction on the length of securing chains

in D

0

shows that each �nite [x

0

] 2 D

0

determines an initial computation sequence  of A

with tr() =

b

 ([x

0

]) and cod() =  

s

([x

0

]). Thus,

b

 ([x

0

]) 2 Traces(A) for all �nite [x

0

] 2 D

0

.

By continuity,

b

 (D

0

) � Traces(A).

To show (2), it su�ces to show that if [x] =

b

�([x

0

]) then [xe] 2 Traces(A) for each

e 2 �(fe

0

g). Given [x

0

], obtain an initial computation sequence 

0

of TrAu(E

0

;D

0

) with

cod(

0

) = [x

0

], and a transition t

0

: [x

0

]

e

0

�![x

0

e

0

] of TrAu(E

0

;D

0

). Using the fact that  is

a morphism of automata, we may construct an initial computation sequence  of A, with

tr() = [x] and cod() =  

s

([x

0

]). Now, e

0

is enabled in state [x

0

] of A

0

, so each element e of

�(fe

0

g) is enabled in state cod() =  

s

([x

0

]) of A. It follows that [xe] 2 Traces(A) for each

e 2 �(fe

0

g).

Theorem 7 The forgetful functor TrEv : TrDom! EvDom has a left adjoint EvTr, such

that TrEv � EvTr ' 1.

Proof { We �rst de�ne a mapping from event domains to trace domains. Given an event

domain D, de�ne the events of D to be the �-classes of prime intervals of D. Let E

D

be

the set of all events of D. Say that events e; e

0

2 E

D

commute, and write eke

0

, when e 6= e

0

and there exist representatives I 2 e and I

0

2 e

0

, such that I and I

0

are consistent. (By the

properties of event domains, this implies that whenever I 2 e and I

0

2 e

0

are coinitial, then

they are consistent.) Then E

D

, equipped with the relation k, is a concurrent alphabet. Let

A be the automaton (E

D

; Q;?; T ), where Q is the set of �nite elements of D and T contains

all transitions q

�

�!q and all transitions q

[I]

�!r such that I = (q; r) is a prime interval of D.

Let U

D

= Traces(A) �

b

E

D

. It follows from Theorem 6 that (E

D

; U

D

) is a trace domain.

Next, we claim that D and U

D

are isomorphic. To see this, note that the �nite initial

computation sequences  of A are in bijective correspondence with the securing chains for

�nite elements d of D. Moreover, by de�nition of the commutativity relation k on E

D

, any

two securing chains for the same element d correspond to computation sequences having

the same trace [x] 2

b

E

D

. Thus the mapping that takes d to the trace [x] determined by a

securing chain for d is a bijection between the �nite elements of D and the �nite elements

of U

D

= Traces(A). It can be shown that this mapping is monotone, hence by continuous

extension we obtain an isomorphism �

D

: D! U

D

.

Finally, we show that the forgetful functor TrEv has a left adjoint whose object map

takes D to (E

D

; U

D

). Given D, let the \inclusion of generators" be the isomorphism �

D

:

D ! U

D

constructed above. We claim that �

D

is universal from D to TrEv. Suppose

(E

0

;D

0

) 2 TrDom and � : D ! D

0

in EvDom are given. Note that each prime interval I of

D determines a t-prime interval �(I) of D

0

, which in turn determines a set V

I

2 Com(E

0

). If

I and J are distinct consistent intervals, then �(I) and �(J) are orthogonal by the properties

of the EvDom-morphism �, hence V

I

\ V

J

= ;. Then an induction using the de�nition of
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� shows that if I � I

0

, then �(I) � �(I

0

), hence V

I

= V

I

0

. Thus, the map taking each

equivalence class [I] to the corresponding V

I

determines an Alph-morphism � : E

D

! E

0

.

Now, an induction on the length of securing chains in U

D

shows that

b

�([x]) = �(�

�1

D

([x]))

for all �nite [x] 2 U

D

, so

b

�(�

D

(d)) = �(d) 2 D

0

for all �nite d 2 D, hence for all d 2 D

by continuity. Also, if I = ([x]; [xe]) is a prime interval of U

D

, then e = [(d; d

0

)], where

d = �

�1

D

([x]) and d

0

= �

�1

D

([xe]). Since then

b

�(I) = (�(d); �(d

0

)), which is a t-prime interval

of D

0

, it follows that

b

� maps prime intervals of U

D

to t-prime intervals of D

0

. Thus, we have

shown that � : (E

D

; U

D

)! (E

0

;D

0

) is a TrDom-morphism, and TrEv(�) � �

D

= �.

Finally, we note that any TrDom-morphism � : (E

D

; U

D

)! (E

0

;D

0

) satisfying TrEv(�)�

�

D

= � must satisfy

b

�([xe]) = �(�

�1

D

([xe])) for all �nite prime intervals I = ([x]; [xe]) 2 U

D

.

Let d = �

�1

D

([x]) and d

0

= �

�1

D

([xe]), then since

b

�([xe]) =

b

�([x])

b

�(e) = �(d)

b

�(e) and �(d

0

) =

�(d)[e

0

1

. . . e

0

n

] for some fe

0

1

; . . . ; e

0

n

g 2 Com(E

0

), it must be the case that

b

�(e) = [e

0

1

. . . e

0

n

] and

�(feg) = fe

0

1

; . . . ; e

0

n

g. Since every e 2 E

D

is [(d; d

0

)] for some prime interval (d; d

0

) 2 D, for

each e 2 E

D

we can �nd a corresponding prime interval ([x]; [xe]) in U

D

by taking [x] = �

D

(d)

and [xe] = �

D

(d

0

). It follows that the condition TrEv(�) � �

D

= � uniquely determines �.
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