
A Proof Technique for Rely/Guarantee Properties

Eugene W. Stark

�

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, New York 11794-4400/USA

June 30, 1986

Abstract

A rely/guarantee speci�cation for a program P is a speci�cation of the form R � G (R

implies G), where R is a rely condition and G is a guarantee condition. A rely condition

expresses the conditions that P relies on its environment to provide, and a guarantee

condition expresses what P guarantees to provide in return. This paper presents a proof

technique that permits us to infer that a program P satis�es a rely/guarantee speci�cation

R � G, given that we know P satis�es a �nite collection of rely/guarantee speci�cations

R

i

� G

i

; (i 2 I). The utility of the proof technique is illustrated by using it to derive global

liveness properties of a system of concurrent processes from a collection of local liveness

properties satis�ed by the component processes. The use of the proof rule as a design

principle, and the possibility of its incorporation into a formal logic of rely/guarantee

assertions, is also discussed.

1 Introduction

A rely/guarantee speci�cation for a program P is a speci�cation of the form R � G (R

implies G), where R is a rely condition and G is a guarantee condition. A rely condi-

tion expresses the conditions that P relies on its environment to provide, and a guarantee

This research was supported in part by ARO grant DAAG29-84-K-0058, NSF grant DCR-83-02391, and

DARPA grant N00014-82-K-0125.

1

condition expresses what P guarantees to provide in return. This paper presents a proof

technique that permits us to infer that a program P satis�es a rely/guarantee speci�cation

R � G, given that we know P satis�es a �nite collection of rely/guarantee speci�cations

R

i

� G

i

; (i 2 I). In a typical application, R � G will be a global property of a large pro-

gram P , whereas each R

i

� G

i

will be a locally veri�able property of a smaller component

P

i

of P . In a top-down design methodology based on successive decomposition [Lis79]

[Wir71], the proof technique can be used as a decomposition principle for determining

speci�cations R

i

� G

i

for component modules, when these component modules are used

to implement a \higher-level module" that must satisfy the speci�cation R � G.

Two examples are given to illustrate the utility of the proof technique: a distributed

synchronization algorithm, in which a collection of processes communicate in a ring-like

pattern to synchronize access to critical sections, and a distributed resource allocation

algorithm, in which processes communicate in a tree-like pattern to distribute a �nite

collection of resources among themselves. Although the statement of the proof technique

does not depend on the choice of a particular speci�cation or programming language, in the

examples we use as a programming language a concurrent version of Dijkstra's guarded

command language [Dij76], and as a speci�cation language a version of temporal logic

[Pnu77] [Lam80] [Lam83] [MP83].

In the examples, we are concerned with the proof of liveness properties of systems of

concurrent processes. In particular, we are interested in deriving global liveness properties

satis�ed by a system from a collection of local liveness properties satis�ed by the component

processes. The fact that the technique applies readily to the proof of general liveness

properties is interesting, since not many useful techniques for performing such proofs have

been developed.

1.1 Related Work

The proof rule and examples presented in this paper are adapted from [Sta84].

The idea that program speci�cations are conveniently formulated and manipulated in

the form of rely/guarantee conditions is not new. Pre/postcondition speci�cations for se-

quential programs are examples of rely/guarantee speci�cations, in which the precondition

expresses the conditions on the program variables the program relies on when control en-

ters it, and the postcondition expresses the conditions the program guarantees when and

if control leaves it. In fact, the Floyd/Hoare techniques for proving partial correctness of

sequential programs [Flo67] [Hoa69] can be viewed as a special case of the proof technique

2

presented here (see Section 2). However, our technique extends the Floyd/Hoare approach,

since the former can be applied to the proof of liveness properties, whereas the applicability

of the latter (in the usual formulation) is limited to safety, or invariance properties.

For concurrent or distributed programs, a kind of rely/guarantee speci�cation and

associated proof technique was introduced in [MC81]. In that paper, a process h is speci�ed

by an assertion of the form rjhjs, where r and s are predicates on �nite sequences (called

traces) of communication events. Such an assertion is interpreted as: \The predicate s

holds of the empty trace, and for all traces t that can be produced by process h, if r holds

for all proper pre�xes of t, then s holds for all pre�xes (both proper and improper) of t.

Misra and Chandy's proof technique is expressed as a \Theorem of Hierarchy," which

gives conditions under which speci�cations that are satis�ed by a collection of component

processes can be used to infer a speci�cation that holds for the network formed by in-

terconnecting the components. Their proof technique can be stated as follows: To show

that the speci�cation R

0

jHjS

0

for the network H is a consequence of the speci�cations

r

i

jh

i

js

i

; (i 2 I) for the components, it su�ces to show that:

1. S implies S

0

,

2. (R

0

and S) implies R,

where R and S denote the conjunction of the r

i

and s

i

, respectively. These conditions are

closely related to the cut set conditions presented below.

In [MCS82], the techniques of [MC81] are extended to encompass a weak form of liveness

speci�cation in which an additional predicate q is used to state conditions under which

a process trace is guaranteed to be extended. The Theorem of Hierarchy is augmented

with additional conditions to permit its application to these more general speci�cations.

The additional conditions do not appear to relate in a simple way to the proof technique

presented here.

The use of rely and guarantee conditions has also been proposed for safety speci�-

cations by Jones [Jon81] [Jon83]. Barringer and Kuiper [BK83] (see also [BKP84]) have

proposed the use of liveness speci�cations that are partitioned into an \environment part,"

which captures assumptions made about the environment, and a \component part," which

captures committments made by the module being speci�ed. Jones, as well as Barringer

and Kuiper, exploit the rely/guarantee condition structure of speci�cations by de�ning

inference rules for process composition.

Hailpern and Owicki [HO80] have performed some example proofs in which liveness

properties (expressed in temporal logic) for network protocols are derived from more prim-

3

itive liveness properties satis�ed by each of the constituent processes. Although they are

successful at constructing proofs for examples of reasonable complexity, it is di�cult to

discern much in the way of general principles that might be used to systematize the con-

struction of proofs for di�erent examples. In contrast, the proof rule presented here sug-

gests a way of thinking about process interaction that can systematize and simplify the

construction of correctness proofs.

2 The Proof Rule

We assume a programming language, a meaning function that assigns to each program

the set of its computations, a speci�cation language, and a binary relation j= between

computations and speci�cations, where if x is a computation and S is a speci�cation, then

x j= S means that computation x satis�es speci�cation S .

We assume that the speci�cation language is closed under the formation rules for the

logical connectives : and �:

(:) If S is a speci�cation, then :S is a speci�cation,

(�) If S

1

and S

2

are speci�cations, then S

1

� S

2

is a speci�cation,

and that : and � are endowed with their usual meanings:

(:) x j= :S i� x 6j= S ,

(�) x j= S

1

� S

2

i� x j= S

1

implies x j= S

2

.

The other standard logical connectives can be treated as de�nitional extensions in the

usual way.

We are interested in establishing statements of the form \P j= S ," which we de�ne to

mean \x j= S for all computations x of program P ."

To state our proof rule we do not need to make any other assumptions about the

precise form of computations or the programming or speci�cation languages. Later, in

demonstrating the application of the rule to examples, we will assume that computations

are sequences of states and that speci�cations are sentences in a language of temporal

logic. Although the proof rule is a logical truth that has nothing speci�c to do with the

structure of programs, speci�cations, or computations, it derives power from the fact that

the rely/guarantee paradigm is a useful way to think about interaction between program

modules.

4

The proof rule described in this section permits us to derive a statement of the form:

P j= R � G

from a �nite collection of statements of the form:

P j= R

i

� G

i

; i 2 I

under certain conditions on the speci�cations R;G;R

i

, and G

i

.

Intuitively, R � G should be thought of as an \abstract" or \high-level" statement

that we wish to prove about the program P , and each R

i

� G

i

should be thought of as

a \concrete" or \low-level" statement that we have already shown to hold for P . In the

examples given later on in the paper, P will be a parallel program composed of a �nite

set of component processes fP

i

: i 2 Ig, and each R

i

� G

i

will express a property of

the component process P

i

that we assume has already been shown to hold by arguments

involving P

i

alone.

The proof rule presented below is based on the following intuition: If we know, for

each i 2 I, that component program P

i

guarantees condition G

i

under assumption R

i

,

then we can prove that P guarantees condition G under assumption R by showing the

existence of a set of speci�cations that \cuts," in a certain sense, the dependence between

each pair of component programs, and between each component program and the external

environment. The sense in which dependence is cut is highly analogous to the way in which

a loop invariant is used to isolate reasoning about one iteration of the loop from reasoning

about the preceding and succeeding iterations.

Formally, we say that the collection of speci�cations fRG

i;j

: i; j 2 I [fextgg is a cut

set for the program P and speci�cations R;G; fR

i

; G

i

: i 2 Ig if:

P j= R � (

V

j2I

RG

ext;j

) (1)

P j= (

V

i2I

RG

i;ext

) � G (2)

P j= (

V

i2I[fextg

RG

i;j

) � R

j

; for all j 2 I (3)

P j= G

i

� (

V

j2I[fextg

RG

i;j

); for all i 2 I: (4)

Here \ext" is a special symbol that does not appear in I.

If i; j are both in I, then the speci�cation RG

i;j

should be thought of as expressing

both what component i guarantees to component j , and dually, what component j relies

on component i to provide. The speci�cation RG

ext;j

expresses what the external envi-

ronment of the entire program guarantees to component j , and also what component j

5

relies on the external environment to provide. Similarly, the speci�cation RG

i;ext

expresses

what component i guarantees to the external environment, and also what the external

environment relies on module i to provide. By convention, we de�ne RG

ext;ext

� true. This

speci�cation is not used in the proof rule and has no particular intuitive signi�cance. We

include it merely for uniformity.

Conditions (1) and (2) above can be interpreted as stating, respectively, that the rely

condition R implies what each component relies on the external environment to provide,

and the guarantee condition G is implied by the conjunction of what each component

guarantees to the external environment. Conditions (3) and (4) can be interpreted, re-

spectively, as stating that component j 's rely condition is implied by the conjunction of

what the external environment and each component i guarantees to provide to j , and com-

ponent i's guarantee condition implies the conjunction of what the external environment

and each component j relies on i to provide.

The existence of a cut set is not su�cient to imply that P j= R � G is a consequence

of fP j= R

i

� G

i

: i 2 Ig. Intuitively, the reason is that even though the rely and

guarantee conditions imply each other in the proper way, it might still be the case in

a computation of P satisfying the rely condition R, that no component's rely condition

R

i

holds, hence no component's guarantee condition G

i

need necessarily hold either, and

hence the guarantee condition G need not hold. To avoid this kind of degeneracy, we

introduce the additional condition that, in every computation of P , every possible cycle of

mutual dependence between components is broken by at least one condition in RG that

holds for that computation.

Formally, If I is a �nite set, then de�ne a cycle of I to be a nonempty �nite set of pairs

of the form f(i

0

; i

1

); (i

1

; i

2

); . . . ; (i

n�1

; i

n

)g such that i

n

= i

0

. We say that the collection

fRG

i;j

: i; j 2 Ig is acyclic if:

P j=

n�1

_

k=0

RG

i

k

;i

k+1

for all cycles f(i

0

; i

1

); . . . ; (i

n�1

; i

n

)g of I.

Note that acyclicity implies the \diagonal" elements RG

i;i

hold unconditionally:

P j= RG

i;i

for all i 2 I:

We now present our proof rule.

Theorem 1 (Rely/Guarantee Proof Rule) { Suppose P is a program, I is a �nite index

set, and the collection RG = fRG

i;j

: i; j 2 I [fextgg is an acyclic cut set for program P

6

and speci�cations R;G; fR

i

; G

i

: i 2 Ig. Then to prove the statement

P j= R � G;

it su�ces to show

P j= R

i

� G

i

;

for all i 2 I.

Proof { Suppose RG = fRG

i;j

: i; j 2 I [fextgg is a cut set for program P and

speci�cations R;G; fR

i

; G

i

: i 2 Ig. Suppose further that

P j= R

i

� G

i

holds for each i 2 I, but

P 6j= R � G:

This means that there is a computation x of P such that x j= R, but x 6j= G. We perform

an inductive construction to obtain a cycle

f(i

m

; i

m+1

); . . . ; (i

n�1

; i

n

)g

of I such that x 6j=

W

n�1

k=m

RG

i

k

;i

k+1

. This implies that RG is not acyclic for P .

As the induction hypothesis at stage k of the construction, we assume that i

0

; i

2

; . . . ; i

k

have been constructed so that x 6j= R

i

k

and x 6j=

W

k�1

j=1

RG

i

j

;i

j+1

.

Basis: From property (1) of a cut set and the assumption that x j= R, we know that

x j= RG

ext;j

for all j 2 I. Since x 6j= G, by property (2) of a cut set we know that

x 6j= RG

i

0

;ext

for some i

0

2 I. By property (4) of a cut set we know that x 6j= G

i

0

, and from

the assumption that x j= R

i

0

� G

i

0

, we conclude that x 6j= R

i

0

.

Induction: Assume the induction hypothesis holds for some k � 0. By property (3)

of a cut set we know that x 6j= RG

i

k

;i

k+1

for some i

k+1

in I. If i

k+1

= i

m

for some m with

0 � m � k, then we have obtained the desired cycle and the construction terminates.

Otherwise, by property (4) of a cut set we know that x 6j= G

i

k+1

, and from the assumption

that x j= R

i

k+1

� G

i

k+1

, we conclude that x 6j= R

i

k+1

. This establishes the induction

hypothesis for k + 1.

Since the set I is �nite by hypothesis, we cannot extend the sequence i

0

; i

1

; . . . ; i

k

inde�nitely without obtaining a cycle.

In a sense, Theorem 1 can be viewed as a generalization of the Floyd/Hoare technique

[Flo67] [Hoa69] for proving partial correctness of sequential programs. In the Floyd/Hoare

7

proof technique, a program contains a collection of control points, which are \tagged" or

\annotated" by associating with them assertions about the values of the program variables.

The meaning of an assertion A

p

associated with control point p is the invariance property:

\Whenever control is at point p, assertion A

p

will be true of the program variables." If

we assume (which we can, without loss of generality) that to each ordered pair (S

i

; S

j

)

of program statements there corresponds at most one control point p

i;j

, representing the

point at which control leaves S

i

and enters S

j

, then the invariance property corresponding

to control point p

i;j

can be thought of both as what statement S

i

guarantees to statement

S

j

, and as what statement S

j

relies on S

i

to provide. The collection of all such invariance

properties therefore corresponds directly to the set RG in the proof technique presented

here.

Once an annotation for a program has been selected, proving the partial correctness of

the program with respect to a precondition R and a postcondition G is reduced to showing

the partial correctness of each statement S

i

with respect to precondition R

i

and postcon-

dition G

i

, assuming a certain relationship holds between the pre- and postconditions and

the annotations associated with the control points. In Floyd's original formulation, the

precondition for statement S

i

is required to be exactly the conjunction of the assertions

associated with points at which control enters S

i

, and the postcondition is required to be

exactly the conjunction of the assertions associated with points at which control leaves S

i

.

In Hoare's version, the pre- and postconditions need not be exactly these conjunctions, as

long as they imply or are implied by them in an appropriate way.

The precise relationship that must hold between the pre- and postconditions and the

annotations of the control points corresponds to the \cut set" conditions de�ned above.

Furthermore, the acyclicity condition de�ned above can be shown to follow from the fact

that states in a computation are reachable from an initial state in a �nite number of steps,

plus the requirement that enough control points be tagged to cut any program loop. The

problem of annotating a program with assertions can therefore be thought of as a special

case of the problem of �nding an acyclic cut set.

3 Parallel Programs and Temporal Speci�cations

To illustrate the use of the rely/guarantee proof rule in proving properties of concurrent

programs, we now make some speci�c assumptions about the programming and speci�ca-

tion languages.

We assume that expressions of both the speci�cation and programming language are

8

built from two kinds of symbols: �xed symbols and variable symbols. The set of �xed

symbols includes function and relation symbols, logical connectives, and programming

language constructs. The set of variable symbols comprises logical variables and program

variables. Logical variables cannot appear in programs, and although both program and

logical variables can appear in speci�cations, only logical variables are permitted to be

bound by quanti�ers.

We assume that the semantics of the speci�cation and programming languages assign

to �xed symbols a single interpretation that does not change during the course of a com-

putation. An interpretation for the variable symbols is called a state. A computation is

a sequence of states. We assume that all computations are in�nite; this convenient as-

sumption results in no loss of generality because �nite computations can be modeled by

introducing a special \halt
ag" into the state, and assuming that �nite computations are

made in�nite by repeating the �nal state with the halt
ag set.

For our concurrent programming language, we use a self-explanatory variant of Dijk-

stra's guarded command language [Dij76], augmented with a parallel construct k. Commu-

nication between processes is accomplished through the use of shared variables. A multiple

assignment statement of the form:

v

1

; v

2

; . . . ; v

n

:= t

1

; t

2

; . . . ; t

n

;

where the v

i

are program variables and the t

i

are terms, is used to read and update

a collection of variables in a single atomic step. We assume that process scheduling is

fair in the sense that no process can be forever enabled without taking a step. It is

straightforward to give a formal semantics to this programming language by de�ning a

mapping from programs to sets of computations.

We assume that our speci�cation language is the set of all sentences in the language

of �rst-order temporal logic whose atomic formulas are formed from variables, function

symbols, and relation symbols. In addition to the usual logical connectives and quanti�ers,

we assume the speci�cation language contains the temporal operators 2 (henceforth) and

3 (eventually), which are applied to formulas to yield new formulas, and
 (next), which

can either be applied to a formula to yield a new formula, or to a term to yield a new

term. We assume that these operators are endowed with \linear time" semantics in the

usual way (see [MP83]), and we write x j= � to indicate that the computation x satis�es

the temporal sentence �.

It will also be convenient to introduce the derived temporal operators ; (leads to), "

9

(increases), and # (decreases), de�ned by:

�; � 2(� � 3)

t " � t <
t

t # � t >
t;

where in the latter two de�nitions we assume that t is an integer-valued term and the

relation symbols > and < denote the usual ordering relations on the integers.

4 Example 1: Distributed Synchronization

In this section we consider the problem of coordinating the accesses of N user processes

to critical sections, the executions of which must be mutually exclusive. The coordination

should be done in such a way as to avoid the phenomenon of starvation, in which one process

is prevented forever from entering its critical section while other processes repeatedly enter

and exit their critical sections.

Program Ring in Figure 1 is a distributed algorithm that solves the mutual exclusion

problem. In program Ring, each user process, represented by the code labeled User

i

, has

been associated with an additional node process Node

i

. The user process User

i

communi-

cates with the associated node process Node

i

through the boolean variables waiting

i

and

critical

i

. When process User

i

is ready to enter its critical section, it informs process Node

i

by setting the variable waiting

i

to true. Process User

i

then waits for the variable critical

i

to become true before entering its critical section. When process User

i

�nishes its critical

section, it sets critical

i

to false.

The node processes communicate with each other in a ring-like pattern; that is, process

Node

i

communicates with processes Node

i�1

and Node

i+1

, where we assume the addition

and subtraction to be performed modulo N . Mutual exclusion is obtained through the use

of a single token, which propagates around the ring in the forward direction (i.e., 0 to 1

to 2, . . .), in response to requests, which propagate in the reverse direction. The process

Node

i

permits its user process User

i

to execute in its critical section only while Node

i

possesses the token. The current position of the token is recorded by the variables token

i

,

and requests are recorded by the variables request

i

.

The main loop of process Node

i

operates as follows: If Node

i

does not currently have

the token, and if either User

i

is waiting to enter its critical section, or Node

i+1

wants the

token, then Node

i

must request the token from Node

i�1

by setting request

i

to true. If User

i

is not waiting, and Node

i+1

doesn't want the token, then there is nothing to do. If Node

i

10

has the token, and User

i

is currently executing in its critical section, then there is also

nothing to do. If Node

i

has the token, and User

i

is not in its critical section, then Node

i

must examine the variables waiting

i

, request

i+1

, and sched

i

to see what to do. If User

i

is

waiting, and Node

i+1

doesn't want the token, then User

i

is allowed into its critical section.

If Node

i+1

wants the token, and User

i

is not waiting, then the token is passed to Node

i+1

. If

both User

i

is waiting and Node

i+1

wants the token, then the choice is resolved on the basis

of the scheduling variable sched

i

|if sched

i

is true, then the token is passed to Node

i+1

,

and if sched

i

is false, then User

i

is allowed to enter its critical section. In either case, the

variable sched

i

is complemented to ensure that the opposite decision will be made next

time.

Using standard concurrent program proof techniques (e.g., [OG76] [MP83]), we can

show that the program Ring satis�es the following invariants:

Ring j= 2

V

N�1

i=0

(critical

i

� token

i

) (1)

Ring j= 2

�

P

N�1

i=0

token

i

= 1

�

(2)

where the expression

P

N�1

i=0

token

i

= 1 denotes the �rst order formula that states that

precisely one of the variables token

i

is true.

1

These invariants together imply that program

Ring has the mutual exclusion property

Ring j= 2

V

i 6=j

(critical

i

� :critical

j

) :

Besides the above invariants, we can show (for example, by the \proof lattice" tech-

niques of [OL82] or by the \chain principle" of [MP83]), that program Ring satis�es the

following rely/guarantee speci�cation for all i with 0 � i � N � 1:

Ring j= R

i

� G

i

;

where

R

i

� critical

i

; :critical

i

^ request

i

; token

i

G

i

� request

i+1

; token

i+1

^ waiting

i

; critical

i

To prove these properties, we must make use of our fair scheduling assumption.

Our goal is to show that if critical sections always terminate, then no process waits

forever to enter its critical section. That is,

Ring j= R � G

1

In the sequel, we shall occasionally write expressions like this, which although not themselves �rst-order

formulas, can be regarded as denoting equivalent �rst-order formulas in an obvious way.

11

Ring � boolean (token

i

initially (if i = 0 then true else false)) : (0 � i � N � 1);

boolean (waiting

i

; critical

i

; request

i

; sched

i

initially false ; false; false ; false) : (0 � i � N � 1);

k

N�1

i=0

(User

i

k Node

i

);

User

i

� do Noncritical Section;

waiting

i

:= true;

do :critical

i

! skip;od;

Critical Section;

critical

i

:= false;

od;

Node

i

� do :token

i

! if :request

i

^ (waiting

i

_ request

i+1

) ! request

i

:= true;

request

i

_ (:waiting

i

^ :request

i+1

)! skip;

�;

token

i

^ critical

i

! skip;

token

i

^ :critical

i

! if :waiting

i

^ :request

i+1

! skip;

request

i+1

^ (:waiting

i

_ sched

i

)

! token

i

; token

i+1

; request

i+1

; sched

i

:= false ; true; false; false;

waiting

i

^ (:request

i+1

_ :sched

i

)

! waiting

i

; critical

i

; sched

i

:= false ; true; true;

�;

od;

Figure 1: Distributed Synchronization Algorithm

12

where

R �

V

N

i=1

(critical

i

; :critical

i

)

G �

V

N

i=1

(waiting

i

; critical

i

)

Note that the property Ring j= R

i

� G

i

is local in the sense that it is stated solely in

terms of variables that are referenced by the process Node

i

. In contrast, the property

Ring j= R � G is a global property that involves variables referenced by all processes. In

general, we imagine that the proof rule presented in this paper will be most useful when

it is used, as in this example, to reduce the proof of a global property to the proof of a

collection of local properties.

To apply our rely/guarantee proof rule, we de�ne the set of speci�cations

RG = fRG

i;j

: i; j 2 f0; 1; . . .N � 1g [fextgg

as follows:

RG

i;j

�

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

waiting

i

; critical

i

; 0 � i � N � 1; j = ext

critical

j

; :critical

j

; i = ext; 0 � j � N � 1

request

j

; token

j

; 0 � i; j � N � 1; j = i+ 1

true; 0 � i; j � N � 1; j 6= i+ 1:

With these de�nitions, the conditions required for RG to be a cut set for program Ring

and speci�cations R;G; fR

i

; G

i

: 1 � i � Ng, are tautological. To complete the proof that

Ring j= R � G it therefore remains only to prove that RG is acyclic for Ring.

To prove the acyclicity condition we need consider only the cycle f(0; 1); (1; 2):::; (N �

1; 0)g, since all other cycles contain links (i; j) for which j 6= i + 1 and hence for which

RG

i;j

� true. We show Ring j=

W

N�1

i=0

RG

i;i+1

indirectly, by assuming the existence of a

computation x of Ring such that x j=

V

N�1

i=0

:RG

i;i+1

, and deriving a contradiction.

Suppose x j=

V

N�1

i=0

:RG

i;i+1

. Then

x j=

V

N�1

i=0

:(request

i

; token

i

):

Using the de�nition of ; and temporal reasoning, we have

x j=

V

N�1

i=0

3(request

i

^ 2(:token

i

)) :

Since the conjunction

V

N�1

i=0

is �nite, it is valid (in linear-time temporal logic) to interchange

it and the temporal operator 3. Since

V

N�1

i=0

and 2 are both of universal character, it is

valid to to interchange them as well, yielding

x j= 32

V

N�1

i=0

:token

i

:

13

This implies that

x j= 32

�

P

N�1

i=0

token

i

= 0

�

;

which contradicts invariant (2) above.

5 Example 2: Distributed Resource Allocation

In this section we consider the problem of allocating a �xed number of resources in response

to requests from a collection of user processes. An algorithm to solve this problem should

have the property that as long as the total number of requests issued by users does not

exceed the number of originally available resources, a resource will eventually be issued in

response to each user request.

Program Tree in Figure 2 is a distributed algorithm, based on the \dynamic match"

algorithm of [FLG83], that solves the problem. As in programRing of the previous example,

each user process, labeled User

i

, has been associated with a node process Node

i

. The user

process User

i

communicates with the node process Node

i

through the variable pending

i

,

which represents the number of user requests that have not yet been satis�ed. Process

User

i

starts out with an initial number of requests IREQ

i

, which it issues to Node

i

(by

incrementing pending

i

) at unpredictable times during execution of the system. Process

Node

i

records the number of free resources it has in the variable free

i

, which is initially set

to the constant IFREE

i

. Process Node

i

\responds" to requests from User

i

by decrementing

pending

i

and free

i

{ a practical algorithm would also transmit a capability for a resource

to the user process as well, but we ignore this here.

In contrast to the previous example, where the communication pattern of the node

processes was a ring, the communication pattern of the node processes in this example is

a tree. The set T is the set of process identi�ers, which we imagine to be arranged as a

binary tree. For each process i 2 T , we write p(i); l(i); r(i) for the parent, left child, and

right child, respectively, of process i. For uniformity, we introduce a special symbol nil,

and de�ne p(i) = nil when i is the root of the tree, and de�ne l(i) = r(i) = nil when i is a

leaf of the tree. Furthermore, we de�ne p(nil) = l(nil) = r(nil) = nil. If i 2 T , then let D(i)

represent the set of all j 2 T (including i itself, but omitting nil) that are descendants of i.

Certain of the steps of process Node

i

, are to be omitted from the program in case i is

the root or a leaf, respectively. These branches are indicated by comments in Figure 2.

If i; j 2 T and i = p(j), then processes Node

i

and Node

j

communicate through the

variables owes

i;j

and estim

i;j

. Intuitively, the variable owes

i;j

records the net number of

14

Tree � integer (owes

i;j

; estim

i;j

initially 0;

P

k2D(j)

IFREE

k

) :

((j 2 T and i = p(j)) or (i 2 T and j 2 fl(i); r(i)g));

integer (pending

i

; free

i

initially 0; IFREE

i

) : (i 2 T);

k

i2T

(User

i

k Node

i

);

User

i

� integer request

i

initially IREQ

i

;

do request

i

> 0! request

i

; pending

i

:= request

i

� 1; pending

i

+ 1;

request

i

� 0! skip;

od;

Node

i

� do pending

i

> 0 ^ free

i

> 0 (issue resource to user)

! pending

i

; free

i

:= pending

i

� 1; free

i

� 1;

owes

p(i);i

< 0 ^ free

i

> 0 (pay resource owed to parent � i not root)

! owes

p(i);i

; free

i

; free

p(i)

:= owes

p(i);i

+ 1; free

i

� 1; free

p(i)

+ 1;

owes

i;l(i)

> 0 ^ free

i

> 0 (pay resource owed to left child � i not leaf)

! owes

i;l(i)

; free

i

; free

l(i)

:= owes

i;l(i)

� 1; free

i

� 1; free

l(i)

+ 1;

owes

i;r(i)

> 0 ^ free

i

> 0 (pay resource owed to right child � i not leaf)

! owes

i;r(i)

; free

i

; free

r(i)

:= owes

i;r(i)

� 1; free

i

� 1; free

r(i)

+ 1;

DEFCT

i

> 0 ^ estim

i;l(i)

> 0 (forward request to left child)

! owes

i;l(i)

; estim

i;l(i)

:= owes

i;l(i)

� 1; estim

i;l(i)

� 1;

DEFCT

i

> 0 ^ estim

i;r(i)

> 0 (forward request to right child)

! owes

i;r(i)

; estim

i;r(i)

:= owes

i;r(i)

� 1; estim

i;r(i)

� 1;

DEFCT

i

> 0 ^ estim

i;l(i)

� 0 ^ estim

i;r(i)

� 0 (reject request up to parent)

! owes

p(i);i

; estim

p(i);i

:= owes

p(i);i

+ 1; 0;

DEFCT

i

� 0 ^ (free

i

� 0 _ (pending

i

� 0 (nothing to do; idle)

^ owes

p(i);i

� 0 ^ owes

i;l(i)

� 0 ^ owes

i;r(i)

� 0))

! skip;

od;

where

DEFCT

i

= (pending

i

+ owes

i;l(i)

+ owes

i;r(i)

) � (free

i

+ owes

p(i);i

)

Figure 2: Distributed Resource Allocation Algorithm

15

resources that Node

i

owes to Node

j

. If owes

i;j

is positive, then Node

i

owes resources to

Node

j

. If owes

i;j

is negative, then Node

j

owes resources to Node

i

. The variable estim

i;j

contains an estimate of the number of free resources remaining in the subtree headed

by j . It is initially set to the total number of free resources initially available in the

subtree headed by j . The important invariant property of this estimate is that it is always

optimistic; that is, estim

i;j

is always greater than or equal to the number of free resources

actually available in the subtree headed by j .

Intuitively, the steps of process Node

i

serve either to satisfy a pending user request

with a locally available resource, to pay a resource owed to a neighboring node, or to

reduce a projected de�cit of resources at node i. The quantity DEFCT

i

in the code for

process Node

i

represents this projected de�cit, and should be thought of as the amount by

which requests exceed resources at node i, once all debts have been paid. If process Node

i

projects a de�cit (DEFCT

i

> 0), then to reduce this de�cit, it can either forward a request

to its left or right child, or reject a request to its parent. Requests are forwarded to a child

only in case it is estimated that there is a surplus of resources in the subtree headed by

that child. Requests are rejected to the parent only if neither of the subtrees headed by

the child nodes are estimated to have a surplus of resources.

The program Tree can be shown, by standard techniques, to satisfy the following in-

variants:

Tree j= 2(owes

nil;root

� 0); (1)

Tree j= 2

V

i2T

�

owes

p(i);i

> 0 � owes

p(i);i

�

P

j2D(i)

(pending

j

� free

j

)

�

: (2)

Invariant (2) expresses the fundamental relationship between amount owed and amount

needed: If node i is owed resources by its parent, then the amount owed to i by its parent

is a lower bound on the instantanous amount by which pending requests exceed available

resources in the subtree rooted at i.

It can also be shown that Tree satis�es the following rely/guarantee speci�cations for

all i 2 T :

Tree j= R

i

� G

i

;

where

R

i

� owes

p(i);i

> 0; owes

p(i);i

#

^ owes

i;l(i)

< 0; owes

i;l(i)

"

^ owes

i;r(i)

< 0; owes

i;r(i)

"

16

G

i

� pending

i

> 0; pending

i

#

^ owes

p(i);i

< 0; owes

p(i);i

"

^ owes

i;l(i)

> 0; owes

i;l(i)

#

^ owes

i;r(i)

> 0; owes

i;r(i)

#

The rely condition R

i

states that debts owed to node i by its parent and each of its children

will eventually be paid. The guarantee condition G

i

states that debts owed by node i to

its parent and each of its children will eventually be paid. To obtain these properties,

we must assume the scheduling of the branches of the main loop in the node program is

strongly fair, in the sense that no branch that is enabled in�nitely often during the course

of a computation can fail to be selected during that computation.

2

We are interested in establishing that, assuming the total number of user requests never

exceeds the total number of resources initially available, then a resource will eventually be

issued for every user request. Formally, we would like to show:

Tree j= R � G;

where

R � 2 (

P

i2T

pending

i

�

P

i2T

free

i

)

G � (

P

i2T

pending

i

> 0); (

P

i2T

pending

i

) #

That this property holds is not immediately obvious. Examples of the kinds of things that

might go wrong are resources being shuttled endlessly around the system without ever

reaching nodes where they are needed, and nodes with surplus resources never receiving

requests from nodes with de�cits.

To apply our rely/guarantee proof rule, we de�ne the set of speci�cations

RG = fRG

i;j

: i; j 2 T [fextgg

as follows:

RG

i;j

�

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2(owes

nil;root

= 0); i = ext; j = root

true; i = ext; j 2 T � root

pending

i

> 0; pending

i

#; i 2 T; j = ext

owes

i;j

> 0; owes

i;j

#; i; j 2 T; i = p(j)

owes

j;i

< 0; owes

j;i

"; i; j 2 T; j = p(i)

true; i; j 2 T; j 6= p(i); i 6= p(j):

2

Actually, we can make do with the weaker fairness condition used in Example 1 if we introduce scheduling

variables as we did there. We have omitted scheduling variables here in the interests of simplicity.

17

We must �rst show that RG is a cut set. To prove condition (1) in the de�nition of a

cut set, we must show that

Tree j= R � (

V

j2T

RG

ext;j

);

which, applying the de�nitions of R and RG

ext;j

, becomes

Tree j= 2 (

P

i2T

pending

i

�

P

i2T

free

i

) � 2(owes

nil;root

= 0) :

Suppose x is a computation of Tree such that

x j= 2 (

P

i2T

pending

i

�

P

i2T

free

i

) :

Then

x j= 2 (

P

i2T

free

i

� pending

i

� 0) : (3)

From the fundamental invariant (2) above, and the fact that D(root) = T , we infer that

x j= 2(owes

nil;root

> 0 � owes

nil;root

�

P

i2T

pending

i

� free

i

) :

From this and (3), we conclude that

x j= 2(owes

nil;root

> 0 � owes

nil;root

� 0) ;

which, combined with the invariant (1), implies that

x j= 2(owes

nil;root

= 0);

as required.

To prove condition (2) in the de�nition of a cut set, we must show that

Tree j= (

V

i2T

RG

i;ext

) � G;

that is,

Tree j=

V

i2T

(pending

i

> 0; pending

i

#)

� ((

P

i2T

pending

i

> 0); (

P

i2T

pending

i

) #)

This is obviously true, because at most one of the pending

i

can change in a single step of

execution.

To prove condition (3), we must show that

Tree j= (

V

i2T[fextg

RG

i;j

) � R

j

; for all j 2 T:

18

We split the proof into two cases, j = root and j 2 T � root. In case j = root, we must

show

Tree j= (2(owes

nil;root

= 0)

^ owes

root;l(root)

< 0; owes

root;l(root)

"

^ owes

root;r(root)

< 0; owes

root;r(root)

")

�

(owes

nil;root

> 0; owes

nil;root

#

^ owes

root;l(root)

< 0; owes

root;l(root)

"

^ owes

root;r(root)

< 0; owes

root;r(root)

")

This is obviously true.

In case j 2 T � root, we must show

Tree j= (owes

p(j);j

> 0; owes

p(j);j

#

^ owes

j;l(j)

< 0; owes

j;l(j)

"

^ owes

j;r(j)

< 0; owes

j;r(j)

")

�

(owes

p(j);j

> 0; owes

p(j);j

#

^ owes

j;l(j)

< 0; owes

j;l(j)

"

^ owes

j;r(j)

< 0; owes

j;r(j)

");

which is a tautology.

To prove condition (4), we must show that

Tree j= G

i

� (

V

j2T[fextg

RG

i;j

); for all i 2 T:

Using the de�nitions of R

i

and RG

i;j

, this becomes

Tree j= (pending

i

> 0; pending

i

#

^ owes

p(i);i

< 0; owes

p(i);i

"

^ owes

i;l(i)

> 0; owes

i;l(i)

#

^ owes

i;r(i)

> 0; owes

i;r(i)

#)

�

(pending

i

> 0; pending

i

#

^ owes

p(i);i

< 0; owes

p(i);i

"

^ owes

i;l(i)

> 0; owes

i;l(i)

#

^ owes

i;r(i)

> 0; owes

i;r(i)

#);

which is a tautology.

19

Finally, we must show that RG is acyclic for Tree. To do this, it su�ces to show that

Tree j= RG

i;p(i)

_RG

p(i);i

for all i 2 T � root. This is because every cycle

f(i

0

; i

1

); (i

1

; i

2

); . . . ; (i

n�1

; i

n

)g

of T either contains a link (i

k

; i

k+1

) for which RG

i

k

;i

k+1

= true by de�nition, or else contains

both links (i; p(i)) and (p(i); i) for some i 2 T � root.

To show that Tree j= RG

i;p(i)

_ RG

p(i);i

for all i 2 T � root, let i be arbitrarily �xed,

and suppose, to obtain a contradiction, that x is a computation of Tree such that

x j= :RG

i;p(i)

^ :RG

p(i);i

: (4)

From (4) and the de�nition of RG

i;p(i)

we know that

x j= 3(owes

p(i);i

< 0 ^ 2:owes

p(i);i

");

which implies that

x j= 32(owes

p(i);i

< 0):

Similarly, from (4) and the de�nition of RG

p(i);i

we have that

x j= 32(owes

p(i);i

> 0):

These two statements are contradictory, and we conclude that RG is acyclic.

6 Comparison With Other Techniques

To obtain perspective on the rely/guarantee proof method presented here, it is useful to

compare this method with other extant methods. In this section we consider two methods:

the \proof lattice" method of Owicki and Lamport [OL82], and the \well-founded set"

method originally applied by Floyd [Flo67] to termination proofs for sequential programs,

and later adapted by Manna, Pnueli [MP83], and others to prove eventuality properties

expressed in temporal logic. Below we sketch how alternative proofs of the property

Ring j= R � G might be constructed for the distributed synchronization example. The

reader is challenged to produce simple proofs, at an adequate level of rigor, along the lines

sketched. The author's own inability to accomplish this is what led him to devise the

rely/guarantee proof technique.

20

6.1 Proof Lattice Method

The proof lattice method of Owicki and Lamport is designed to permit the proof of tem-

poral implications of the form � ; from simpler implications of the same form, plus

auxiliary invariance properties of the program under consideration. A proof lattice for

the program P j= � ; is a �nite, directed, acyclic graph, whose nodes are labeled by

temporal sentences, with the following properties:

1. There is a single root node, labeled by �.

2. There is a single leaf node, labeled by .

3. If the children of a node labeled by � are labeled by �

1

; �

2

; . . . ; �

n

, then

P j= �; (�

1

_ �

2

_ . . . _ �

n

):

A proof lattice for P j= � ; represents a su�ciently rigorous proof when each node

labeled �, with children labeled �

1

; �

2

; . . . ; �

n

, can be justi�ed by appeal to primitive infer-

ence rules associated with the constructs of the programming language, by appeal to an

auxiliary invariance property, or by appeal to a theorem of temporal logic.

To use the proof lattice technique to prove the statement Ring j= R � G, we might

assume R, (that is, we consider a computation x such that x j=

V

N�1

i=0

critical

i

; :critical

i

),

and attempt to construct a proof lattice for waiting

i

; critical

i

. The informal content

of the argument that would be captured formally by the proof lattice is as follows: We

would show that if waiting

i

holds, then a chain of requests is generated that propagates

around the ring in the reverse direction until a node is reached that has the token. The

token is then forced to propagate in the forward direction around the ring until node i is

reached. Once node i is reached, then depending upon the value of sched

i

, either critical

i

will become true right away, or the token will be passed to node i + 1. In the latter case,

we have to follow another chain of requests and subsequent token passes until the token

again reaches node i.

In the construction of the proof lattice, we would make use of simple eventuality prop-

erties like the following, which can be veri�ed by local reasoning about the control
ow

within the process Node

i

:

Ring j= waiting

i

; critical

i

_ request

i

Ring j= request

i

; token

i

_ request

i�1

Ring j= token

i

^ waiting

i

; critical

i

_ :sched

i

Ring j= waiting

i

^ token

i

^ :sched

i

; critical

i

21

In addition, we would make use of safety properties like the following:

Ring j= waiting

i

latches-until critical

i

Ring j= request

i

latches-until token

i

Ring j= sched

i

latches-until token

i+1

Ring j= :sched

i

latches-until critical

i

Ring j= token

i

latches-until token

i+1

Ring j= 2(request

i

� :token

i

)

Ring j= 2(critical

i

� token

i

);

where � latches-until means, intuitively, \If � ever holds, then � remains true from

then until the next instant at which holds." (See [SM81] for a formal de�nition of this

construct.)

If one actually tries to construct a proof lattice according to the preceding informal

sketch, one is quickly overwhelmed by the number of branches and cases that it is necessary

to consider. Problems are also caused by the fact that the depth of the lattice is dependent

upon the parameter N , which is the size of the ring. This variable parameter necessitates

the use of elipses in the proof lattice.

6.2 Well-Founded Set Method

Another alternative to the rely/guarantee method is to use a method based on well-founded

sets. In this approach, the proof of a statement P j= �; , might proceed by contradic-

tion as follows: Assume x is a computation of P such that x j= 3(� ^ 2:). De�ne a

variant function f that maps the program state into a well-founded set W (typically the

nonnegative integers under the usual ordering), and prove the following properties:

P j= 2((� ^ 2:) � 2:f ")

P j= 2((� ^2:) ; 23f #)

The �rst condition states that, assuming � holds at some instant, and : holds for that

instant and all future instants, then the value of the variant function f does not increase

from that instant on. The second condition states that, under the same assumptions, the

value of f is repeatedly decreased. If P j= 3(�^2:), then we would have a contradiction

with the well-foundedness of W . We conclude that P j= 2(� � 3); that is, P j= �; .

Let us consider how a well-founded set proof of Ring j= R � G might proceed. Suppose,

to obtain a contradiction, that x is a computation of Ring such that x j= R ^ :G. Then

22

for some i with 0 � i � N � 1, we have that x j= 3(waiting

i

^ 2:critical

i

). Making use

of the invariant that states that there is precisely one token in the system at all times, we

know that for each state in x, there is precisely one j for which token

j

is true. We select

a variant function f that maps each program state to a nonnegative integer according to

the following intuition: The value of f on a program state measures a kind of \distance"

between that state and a \desired" state (one for which critical

i

holds). In particular, f

takes into account:

1. The distance around the ring the token has to travel from j to i.

2. The distance around the ring requests have yet to propagate from i to j .

3. The values of the scheduling variables sched

k

for k on the path the token must take

from j to i.

A appropriate f can be de�ned in the form of a polynomial inN , whose coe�cients depend

upon the program variables token

i

, request

i

, and sched

i

.

Having de�ned f , we must prove:

Ring j= 2((waiting

i

^2:critical

i

) � 2:f ")

Ring j= 2((waiting

i

^2:critical

i

); 23f #)

The �rst condition can be proved by a case analysis on all the kinds of steps that the

program Ring might take. The second condition can be proved by showing that it is

invariantly the case that there is an enabled process whose steps must decrease the variant

function (for example, a node that has the token and whose next step must pass it along

the ring closer to node i), and therefore by the fair scheduling assumption must eventually

execute.

Although it seems intuitively clear that such a proof can in principle be carried out,

the problem of doing so in a su�ciently rigorous, perhaps machine-checkable fashion seems

formidable.

7 Discussion

7.1 A Decomposition Principle

In the examples presented in this paper, judicious selection of the local rely and guarantee

conditions R

i

and G

i

, resulted in tautological, or nearly tautological \cut set" conditions,

23

leaving most of the interesting content of the proof to be captured in the \acyclicity" part.

This phenomenon suggests that the rely/guarantee proof technique might be valuable as a

decomposition principle to be used during top-down design. This decomposition principle

can be codi�ed as follows:

To decompose a module M , which is to satisfy the speci�cation R � G,

into a system of submodules fM

i

: i 2 Ig, and to determine the speci�cations

fR

i

� G

i

: i 2 Ig that the submodules must satisfy, one should:

1. By considering what each module M

i

relies on and guarantees to the

external environment and each other module M

j

, determine a collection

of speci�cations RG

i;j

that satis�es the acyclicity condition and cut set

conditions (1) and (2).

2. Use cut set conditions (3) and (4) as de�nitions of the rely and guarantee

conditions R

i

and G

i

for component module i. Since the conditions R

i

and G

i

should be expressed in terms of information local to module i, this

step can actually be used to help determine what variables need to be

accessible to module i.

3. Verify that the resulting component module speci�cations R

i

� G

i

are

reasonable, in the sense of being \consistent" or \implementable." For

example, R

i

� G

i

should not be logically equivalent to false. Consistency

can be checked either by completing the top-down decomposition to the

level of primitive modules, or by performing checks at the abstract level

[Sta84].

7.2 A Formal Logic of Rely/Guarantee Conditions

In this paper, we have stated the rely/guarantee proof rule as a general proof-structuring

technique independent of any particular choice of speci�cation or programming language.

However, an interesting question is how the proof rule might be formalized as a formal rule

of inference in a logic of rely/guarantee conditions. As discussed in Section 2, Hoare-like

logics represent one way to do this for safety properties. Another possibility is suggested

by the method of reasoning employed in the examples presented above. In these examples,

we were concerned with establishing rely/guarantee properties R � G, where R and G

were conjunctions of simple eventuality assertions, each of the form q ; r with q and r

containing no temporal operators. We used the rely/guarantee technique to derive global

24

rely/guarantee properties of a parallel composition of programs from local rely/guarantee

properties of the component programs, plus auxiliary invariants satis�ed by the composite

program.

As an example of how the sort of reasoning used in the examples might be formalized

as a rule for parallel composition of programs, consider a shared variable programming

language like the one used informally in this paper. Correctness assertions for such a

language might take the form:

p : hRiP hGi;

where p is a predicate on states (representing an invariant), and R and G are each con-

junctions of simple eventuality assertions of the form: q ; r. Informally, validity of such

a formula would mean: \For all `environment' programs E, if each step of E preserves

the truth of p, and if EkP j= R holds, then each step of EkP preserves the truth of p,

and EkP j= G holds as well." (We universally quantify over environment programs in the

semantics because of our desire for the validity of an assertion about P to be independent

of any particular context in which P might appear.)

The rely/guarantee proof technique might be incorporated into a formal proof rule for

parallel composition of the following form (for composition of two processes):

p : hRG

ext;1

^RG

2;1

iP

1

hRG

1;ext

^RG

1;2

i;

p : hRG

ext;2

^RG

1;2

iP

2

hRG

2;ext

^RG

2;1

i;

p �

W

k

r

k

p : hRG

ext;1

^RG

ext;2

iP

1

kP

2

hRG

1;ext

^RG

2;ext

i

;

where

W

k

r

k

represents the conjunction of all the right-hand sides of the eventuality formulas

q

k

; r

k

occuring in the assertions RG

1;2

and RG

2;1

. The �rst two hypotheses above

correspond to the cut-set conditions of our proof rule, and the third hypothesis to the

acyclicity condition. We have used the special form of the eventuality assertions to simplify

the acyclicity condition to an implication between predicates on states.

There are signi�cant issues that remain to be examined before a complete proof system

can be obtained along these lines. For example, we require a suitable fairness assumption on

the parallel composition of processes, since in the absence of such an assumption there will

be no interesting valid eventuality properties. Also, a proof of completeness is likely require

an analysis of the notions of \weakest rely-condition," \strongest guarantee-condition," and

the question of their expressibility in the assertion language.

25

8 Conclusion

We have examined a technique by which rely/guarantee statements of the form P j= R � G

can be inferred from a �nite collection of rely/guarantee statements of the form fP j= R

i

�

G

i

: i 2 Ig. The technique involves the discovery of a collection RG = fRG

i;j

: i 2 I [

fextgg of speci�cations that \cut" the interdependence between the rely-conditionsR

i

and

R, and the guarantee-conditionsG

i

andG, in a fashion analogous to the way in which a loop

invariant cuts the dependence of one iteration on the preceding and succeeding iterations.

An \acyclicity" condition must also be proved, to ensure that there are no computations of

P for which the interdependence between the rely and guarantee conditions is degenerate.

The utility of the proof technique was illustrated by two examples, in which the technique

was used to infer \global" liveness properties of a system of concurrent processes from

\local" liveness properties of the individual processes. We expect the inference of global

properties from local ones to be the typical way in which the technique will be useful in

practice. An interesting feature of the proof technique is the way in which it can be applied,

with equal facility, to both ring-structured and tree-structured communication patterns.

In general, the discovery of a cut set RG for a program will require the use of intuition

about why the program works correctly. Since discovery of a collection of loop invariants

in the Floyd/Hoare approach to sequential program correctness can be viewed as a special

case of the problem of �nding a cut set, it will be at least as di�cult in general to discover

cut sets as it is to discover loop invariants. We therefore consider it unlikely that the proof

technique presented here can be fully automated. However, once a human veri�er has

discovered an appropriate cut set for a program, along with necessary global invariants,

it seems quite possible that the checking of the cut set and acyclicity conditions is a task

that is within the capability of an automated veri�cation system.

Acknowledgement

The author wishes to thank Professor Nancy Lynch for her support and guidance during

his thesis research. Gael Buckley, Jieh Hsiang, and Scott Smolka made helpful comments

on drafts of this paper.

References

[BK83] H. Barringer, R. Kuiper, \A Temporal Logic Speci�cation Method Support-

ing Hierarchical Development," Manuscript, University of Manchester De-

26

partment of Computer Science, November, 1983.

[BKP84] H. Barringer, R. Kuiper, A. Pnueli, \Now You May Compose Temporal Logic

Speci�cations," Sixteenth ACM Symposium on Theory of Computing, 1984.

[Dij76] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

[FLG83] M. J. Fischer, N. D. Gri�eth, L. J. Guibas, N. A. Lynch, \Probabilistic Anal-

ysis of a Network Resource Allocation Algorithm," to appear in Information

and Control.

[Flo67] R. W. Floyd, \Assigning Meanings to Programs," in Mathematical Aspects of

Computer Science, American Math. Soc., 1967.

[HO80] B. T. Hailpern, S. S. Owicki, \Verifying Network Protocols Using Temporal

Logic," Technical Report No. 192, Computer Systems Laboratory, Stanford

University, June, 1980.

[Hoa69] C. A. R. Hoare, \An Axiomatic Basis for Computer Programming," Comm.

ACM, Vol. 21, October, 1969.

[Jon81] C. B. Jones, \Development Methods for Computer Programs Including a No-

tion of Interference," Wolfson College, June, 1981.

[Jon83] C. B. Jones, \Speci�cation and Design of (Parallel) Programs," IFIP Confer-

ence, 1983.

[Lam80] L. Lamport, \`Sometime' is Sometimes `Not Never'," Seventh ACM Confer-

ence on Principles of Programming Languages, 1980.

[Lam83] L. Lamport, \Specifying Concurrent Program Modules," ACM Transactions

on Programming Languages and Systems, 5, 2 (April, 1983), 190-222.

[Lis79] B. H. Liskov, \Modular Program Construction Using Abstractions," MIT

Computation Structures Group Memo 184, September, 1979.

[MP83] Z. Manna, A. Pnueli, \Veri�cation of Concurrent Programs: A Temporal

Proof System," Stanford University Report No. STAN-CS-83-967, June, 1983.

[MC81] J. Misra, K. M. Chandy, \Proofs of Networks of Processes," IEEE Trans. on

Software Eng., SE-7, 4, (July, 1981).

27

[MCS82] J. Misra, K. M. Chandy, T. Smith, \Proving Safety and Liveness of Commu-

nicating Processes with Examples," ACM Conf. on Principles of Distributed

Computing, 1982.

[OG76] S. S. Owicki, D. Gries, \Verifying Properties of Parallel Programs: An Ax-

iomatic Approach," Comm. ACM 15, 5 (1976).

[OL82] S. S. Owicki, L. Lamport, \Proving Liveness Properties of Concurrent Pro-

grams," ACM Transactions on Programming Languages and Systems, 4, 3

(July 1982), 455-495.

[Pnu77] A. Pnueli, \The Temporal Logic of Programs," IEEE Symposium on Founda-

tions of Computer Science, 1977.

[SM81] R. L. Schwartz, P. M. Melliar-Smith, \Temporal Logic Speci�cation of Dis-

tributed Systems," Second International Conference on Distributed Systems,

INRIA, France, April, 1981.

[Sta84] E. W. Stark, \Foundations of a Theory of Speci�cation for Distributed Sys-

tems," M.I.T. Laboratory for Computer Science MIT/LCS/TR-342, August,

1984.

[Wir71] N. Wirth, \Program Development by Stepwise Re�nement," Comm. ACM

14, 4 (April, 1971), 221-227.

28

