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Abstract

We consider monotone input/output automata, which

model a usefully large class of data
ow networks of in-

determinate (or nonfunctional) processes. We obtain a

characterization of the relations computable by these

automata, which states that a relation R : X ! 2

Y

(viewed as a \nondeterministic function") is the in-

put/output relation of an automaton i� there exists

a certain kind of Scott domain D, a continuous func-

tion F : X ! [D ! Y ] and a continuous function

G : X ! P(D), such that R(x) = F (x)

y

(G(x)) for all

inputs x 2 X. Here P denotes a certain powerdomain

operator, and y denotes the pointwise extension to the

powerdomain of a function on the underlying domain.

An attractive feature of this result is that it specializes

to two subclasses of automata, determinate automata,

for which G is single-valued, and semi-determinate au-

tomata, for which G is a constant function. A corollary

of the latter result is the impossibility of implementing

\angelic merge" by a network of determinate processes

and \in�nity-fair merge" processes.

1 Introduction

Data
ow networks (see, e.g. [3, 4, 6, 7, 8]) consist of

a collection of concurrently executing sequential pro-

cesses that communicate by transmitting sequences or

\streams" of \value tokens" over FIFO communication

channels. Typically, a network is described as a directed

graph, whose nodes are processes and whose arcs are

communication channels. Each channel serves to con-

nect an \output port" of one process to an \input port"

of another process. \Determinate" (or functional) net-

works were �rst studied by Kahn [7], who gave an ele-

gant �xed-point principle for determining the function

�
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computed by a network from the functions computed by

the components. \Indeterminate" (or non-functional)

networks remain less well understood, despite extensive

study. An interesting class of indeterminate processes

are the \merge" processes, which shu�e together se-

quences of values from two input channels onto a sin-

gle output channel. Fair merge (fmerge) guarantees

that every value arriving on either of the two inputs

will eventually be transmitted to the output. Angelic

merge (amerge) guarantees to transmit all values from

one input channel only in case the sequence of values ar-

riving on the other channel is �nite. In�nity-fair merge

(imerge) guarantees to transmit all values from one in-

put channel only in case the sequence of values arriving

on the other channel is in�nite.

In previous papers [15, 21, 22], we identi�ed the net-

works of \monotone" processes as an interesting and

particularly well-behaved subclass of the class of in-

determinate data
ow networks. The main result of

[15] was that, although such networks can be used

to perform the \unfair" merging operations amerge

and imerge, no such network can implement fmerge.

We obtained this result by showing that every net-

work of monotone processes implements a monotone

input/output relation, that amerge and imerge are

implementable by networks of monotone processes, but

that fmerge is not a monotone relation. Now, it is

not di�cult to see how to use fmerge to implement

imerge, and Panangaden [13] has shown how, using

fmerge, we can implement amerge. Thus the ques-

tions left unanswered in [15] are: (1) Can amerge be

implemented by a network of imerge processes and pro-

cesses with functional behaviors? (2) Can imerge be so

implemented by amerge? Question (1) was answered

in the negative by Panangaden and Shanbhogue [14],

using ad hoc techniques. In this paper, we give an al-

ternative proof by the more general methods of [15].

Contrary to our initial expectations, we have found that

question (2) has an a�rmative answer, and we exhibit a

network with the stated property. This network can be

viewed as a demonstration that there can be no notion

of \�nite indeterminacy" that is preserved by network

construction. The three merge primitives, arranged in
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order of their power to implement relations when used

in combination with functional processes, thus form a

strict hierarchy with imerge the weakest of the three

primitives, amerge strictly stronger, and fmerge the

strongest.

To obtain the negative answer to question (1), we re-

�ne the methods of [15], thereby obtaining a useful char-

acterization of the relations implemented by the class

of \monotone input/output automata." Our character-

ization theorem states that a relation R : X ! 2

Y

(viewed as a \nondeterministic function") is the in-

put/output relation of such an automaton i� there ex-

ists a certain kind of Scott domain D, a continuous

function F : X ! [D ! Y ] and a continuous func-

tion G : X ! P(D), such that R(x) = F (x)

y

(G(x))

for all inputs x 2 X. Here P denotes a certain pow-

erdomain operator, and y denotes the pointwise ex-

tension to the powerdomain of a function on the un-

derlying domain. This characterization also special-

izes nicely to the classes of \determinate" and \semi-

determinate" automata. For determinate automata,

the theorem holds with the restriction that G be single-

valued, and for semi-determinate automata, G is re-

stricted to be a constant function. The latter result

is interesting, since it shows that semi-determinate au-

tomata may be thought of as implementing a collection

of continuous functions, indexed by an \oracle set" (the

constant value of G). Since imerge is representable as

such an oracleized set of functions, but amerge is not,

we conclude that imerge is implementable by a semi-

determinate automaton, but amerge is not. Since the

class of semi-determinate automata is closed under net-

work construction, it follows that amerge cannot be

implemented by a network of imerge and functional

components.

As in [15], our main tool is the notion of permuta-

tion equivalence of computation sequences. Intuitively,

two �nite computation sequences are permutation-

equivalent if one can be transformed into the other by

a �nite sequence of steps in which the order of adja-

cent \concurrent pairs" of transitions is permuted. We

use a result, shown elsewhere [20, 23], that the set of

equivalence classes of computation sequences of an au-

tomaton, under the induced partial order, is a Scott do-

main whose �nite elements are exactly the equivalence

classes of �nite computation sequences, and which has

other useful properties. This result was established in

the previous work by using the auxiliary notion of the

residual of one �nite computation sequence by another,

to obtain an alternative characterization of permutation

equivalence. For this paper, we simply quote the previ-

ous result without proof, and this permits us to prove

our main result without having to develop the algebra

of residuals.

2 Preliminaries

We require some concepts from trace theory [1, 12] and

domain theory [16, 17, 18]. In the sequel, all sets whose

cardinality is left unspeci�ed are assumed to be at most

countable.

2.1 Domains

A (Scott) domain is an !-algebraic, consistently com-

plete cpo. A subdomain of D is a subset U of D, which

is a domain under the the ordering inherited from D,

such that the inclusion of U in D is continuous. A sub-

domain U of D is normal if for every d 2 D, the set

fu 2 U : u v dg is directed. Normal subdomains have

the following property, which we use in the proof of

Lemma 7.

Lemma 1 Suppose U is a normal subdomain of a do-

main D. Then any continuous F : U ! E extends to a

least continuous F

0

: D ! E.

Proof { Take F

0

(d) =

F

fF (u) : u 2 U; u v dg.

An interval in a domainD is a pair [d; d

0

] with d v d

0

.

An interval [d; d

0

] is prime if d

0

covers d; that is, there

does not exist d

00

with d < d

00

< d

0

.

2.2 The Fringe Set Powerdomain

Suppose D is a domain. Let I

D

: D ! 2

D

denote

the map that takes d to fdg. If F : D ! E is any

function, then its pointwise extension is the function

F

y

: 2

D

! 2

E

de�ned by: F

y

(U ) = fF (d) : d 2 Ug.

Call a subset U of D closed if it is downward-closed,

closed under lubs of directed subsets, and also closed

under lubs of pairs of elements that are consistent in D.

The closure U

c

of U is the least closed set containing

U . De�ne a nonempty subset U of D to be a fringe set

if U is precisely the set of all maximal elements of U

c

.

It follows that fringe sets are pairwise inconsistent: if

d; d

0

are two distinct elements of a fringe set U , then the

set fd; d

0

g has no upper bound in D. De�ne a binary

relation v on fringe sets of D by de�ning U v V i�

U

c

� V

c

. An equivalent characterization of v is the

following: U v V i� 8x 2 U 9y 2 V (x v y). It is clear

from this de�nition that v is a preorder, and since U

and V are fringe sets, the relation v is a partial order.

In fact, in view of the bijective correspondence between

fringe sets and their closures, we have the following:

Lemma 2 The set P(D) of all fringe sets of D,

equipped with the ordering v, is a domain.

Indeed, this is nothing more than a slight variant of

the \relational," \lower," or \Hoare" powerdomain of

D [16, 17], whose elements we have chosen to repre-

sent by fringe sets, rather than by closed sets as is per-

haps more usual. The fringe set representation proves
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more convenient for our purposes. Usually, the rela-

tional powerdomain of a domain D is de�ned in terms

of sets that are closed in the Scott topology on D. The

set of maximal elements of a Scott-closed set is pair-

wise incomparable under the ordering on D, but it is

not necessarily pairwise inconsistent. The closed sets

de�ned above are Scott-closed sets with the additional

property of being closed under lubs of consistent pairs.

2.3 Traces

A concurrent alphabet is a set X, equipped with a sym-

metric, irre
exive binary relation k on X, called the

concurrency relation. The direct product of concurrent

alphabets X and Y is the concurrent alphabet X 
 Y

whose set of elements is the disjoint union of X + Y

of X and Y , and whose concurrency relation k

X
Y

is

de�ned to be

k

X
Y

= k

X

[ k

Y

[ (X � Y ) [ (Y �X):

Suppose X is a concurrent alphabet. Let X

�

denote

the free monoid generated by X, then there is a least

congruence � on X

�

such that akb implies ab � ba for

all a; b 2 X. The quotient X

�

=� is the free partially

commutative monoid generated by X, and its elements

are called traces. We use � to denote the identity el-

ement (the empty trace). The monoid X

�

=� is par-

tially ordered, with x v y i� 9z(xz = y). Let

�

X de-

note the domain obtained by ideal completion of this

poset. We call

�

X the trace domain generated by the

concurrent alphabet X. Notice that since the �nite

(=isolated=compact) elements of

�

X are in bijective cor-

respondence with the elements of X

�

=�, they inherit

the monoid operation of X

�

=�, with the bottom ele-

ment of

�

X as the monoid identity. Let

�

X

o

denote the

set of �nite elements of

�

X . In the sequel, we identify

the elements of X

�

=� with the corresponding elements

of

�

X

o

. If Z � X, then the monoid homomorphism from

X

�

to Z

�

that deletes elements of X n Z, respects �,

hence induces a monoid homomorphism from X

�

=� to

Z

�

=� and a continuous map from

�

X to

�

Z. We write

xjZ for the application of this map to a trace x 2

�

X .

Lemma 3 The following are equivalent statements

about a domain D:

1. D is isomorphic, by a map that preserves prime

intervals, to a normal subdomain of

�

X for some

concurrent alphabet X.

2. E is an event domain in the sense of [5, 24].

3. D is isomorphic to the domain of con�gurations

of an event structure (E;`;#), where E is a set

of events, ` is an enabling relation between �nite

subsets of E and elements of E, and # is a binary

con
ict relation on E.

The equivalence of (2) and (3) is a theorem ofWinskel

[5, 24]. The equivalence of (1) and (2) is shown in [20].

We shall see that event domains arise naturally as the

domains of computations of the kind of automata we

consider.

3 Monotone Input/Output Automata

A monotone input/output automaton (henceforth sim-

ply \automaton") is a tuple

A = (E;X; Y;Q; q

i

; T );

where

� E is a concurrent alphabet of actions, and X;Y are

disjoint subsets ofE, called the sets of input actions

and output actions, respectively. The elements of

E n (X [ Y ) are called internal actions.

� Q is a set of states.

� q

i

2 Q is a distinguished initial state.

� T is a function that maps each pair of states q; r 2

Q to a set T (q; r) � E.

These data are required to satisfy the following condi-

tions:

(Disambiguation) r 6= r

0

implies T (q; r) \ T (q; r

0

) =

;.

(Commutativity) For all states q and actions a; b, if

akb, a 2 T (q; r), and b 2 T (q; s), then there exists

a state p such that a 2 T (s; p) and b 2 T (r; p).

(Monotonicity) akb whenever a 2 X and b 2 E nX.

(Receptivity) For all states q and input actions a,

there exists a state r such that a 2 T (q; r).

Intuitively, if a 2 E, then a 2 T (q; r) i� it is possible

for A to take a step from state q in which action a oc-

curs and the state changes to r. Input actions represent

steps in which input is received from the external en-

vironment, and output actions represent steps in which

output is transmitted to the external environment. We

say that action a is enabled in state q if a 2 T (q; r) for

some r. By the disambiguation condition, if a is en-

abled in state q, then there is a unique state r such that

a 2 T (q; r). We sometimes denote this state by qa.

The transitions of an automaton are the triples

(q; a; r) with a 2 T (q; r). We often use the nota-

tion q

a

�!r or a : q ! r to denote the transition

(q; a; r). If t is the transition (q; a; r), then q is called

the domain dom(t) of t and r is called the codomain

cod(t) of t. Transitions t and u are called coinitial if

dom(t) = dom(u).
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Monotone input/output automata are closely related

to the input/output automata de�ned by Lynch and

Tuttle [10, 11]. If we ignore the distinction between

input and output actions, and we delete the mono-

tonicity and receptivity conditions, we obtain automata

similar to those that have been studied by Bednarczyk

[2], Kwiatkowska [9], and Shields [19]. To further mo-

tivate the de�nitions, we describe how monotone in-

put/output automata can be used to model data
ow

networks. For this, we use a restricted class of automata

called \monotone port automata," which are similar to

the monotone port automata de�ned in [15].

Formally, let us �x in advance countably in�nite sets

P of ports and V of values. We call elements of the set

P�V port actions, and if e is the port action (p; v), then

we write port(e) for its port component p, and value(e)

for its value component v. De�ne an automaton A =

(E;X; Y;Q; q

i

; T ) to be a port automaton ifX = P

in

�V

and Y = P

out

� V for some disjoint �nite subsets P

in

and P

out

of P , and for all e; e

0

2 X [ Y we have eke

0

i� port(e) 6= port(e

0

). Such an automaton models a

data
ow process or network with input port set P

in

and output port set P

out

. An input (output) action

(p; v) corresponds to the receipt (transmission) of value

v on port p, and internal actions correspond to internal

computation steps in which communication with the

environment does not take place. It follows from the

de�nition of k that the trace domains

�

X and

�

Y are,

up to isomorphism, domains of \port histories" as in

[15]. That is, the elements of

�

X and

�

Y are functions,

mapping ports to �nite and in�nite sequences of values,

and ordered argumentwise by pre�x.

Notice that, in contrast to more typical models for

data
ow networks, our de�nitions do not specify di-

rectly any particular concrete structure for the state

sets of port automata, such as the existence of a FIFO

\channel bu�ers" for each input or output port. How-

ever, the receptivity, commutativity, and monotonicity

axioms can be interpreted as abstract statements about

the properties of such bu�ers. The receptivity condi-

tion can be interpreted as stating that arriving input

values can always be placed into an input bu�er. The

commutativity condition, together with the de�nition of

the relation k, captures the notion that distinct ports

have separate bu�ers, The monotonicity condition can

be viewed as a restriction on the way input bu�ers can

be accessed: since arriving input cannot disable transi-

tions previously enabled, one can test for the presence

of input in a bu�er, but never for its absence.

4 Computations of Automata

A �nite computation sequence for an automaton is a

�nite sequence 
 of transitions of the form:

q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

:

The number n is called the length j
j of 
. We call

the computation sequence of length 0 from state q the

identity computation sequence, and we denote it by id

q

,

or just id , when q is clear from the context. Also, it will

sometimes be convenient to write id

q

= (q

�

�!q). An

in�nite computation sequence is an in�nite sequence of

transitions:

q

0

e

1

�!q

1

e

2

�! . . . :

A computation sequence that contains only input ac-

tions is called a pure-input computation sequence; one

containing no input actions is called a non-input com-

putation sequence. The trace of 
 is the element tr(
) =

e

1

e

2

. . . of the trace domain

�

E.

We extend notation and terminology for transitions

to computation sequences, so that if 
 is a computa-

tion sequence, then the domain dom(
) of 
 is the state

q

0

, and if 
 is �nite, then the codomain cod (
) of 


is the state q

n

. We write 
 : q ! r to assert that 


is a �nite computation sequence with domain q and

codomain r. A computation sequence 
 is initial if

dom(
) is the distinguished initial state i. If 
 : q ! r

and � : q

0

! r

0

are �nite computation sequences, then


 and � are called composable if q

0

= r, and we then

de�ne their composition to be the �nite computation

sequence 
� : q ! r

0

, obtained by concatenating 
 and

� and identifying cod(
) with dom(�). The operation

of composition of �nite computation sequences is asso-

ciative, and identity computation sequences behave as

units for it. A �nite computation sequence 
 is a pre�x

of a computation sequence �, and we write 
 � �, i�

there exists a computation sequence � with 
� = �.

De�ne permutation equivalence to be the least con-

gruence �, respecting concatenation, on the set of �nite

computation sequences of A such that:

� Computation sequences q

a

�!r

b

�!p and q

b

�!s

a

�!p

are �-related if akb.

Closely related to permutation equivalence is the per-

mutation preorder relation

<

�

on �nite computation se-

quences of A, which is de�ned to be the transitive clo-

sure of � [ �. That is, 


<

�

� i� there is a way to

perform a �nite number of permutations of adjacent

concurrent transitions in �, and obtain a computation

�

0

that has 
 as a pre�x. It is not di�cult to see that


 � � i� 


<

�

� and �

<

�


. Permutation preorder

extends in a straightforward way to in�nite computa-

tion sequences as well: if 


0

and �

0

are coinitial �nite

or in�nite computation sequences, then de�ne 


0

<

�

�

0

to hold i� for every �nite 
 � 


0

there exists a �nite

� � �

0

, such that 


<

�

�. We may then extend permu-

tation equivalence to in�nite computation sequences by

de�ning 


0

� �

0

i� 


0

<

�

�

0

and �

0

<

�




0

.

A computation is a �-equivalence class of compu-

tation sequences. Obviously, all �nite computation

sequences that are representatives of the same �-

equivalence class have the same length, so the notion
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of the length j
j of a �nite computation 
 makes sense.

For each state q, the permutation preorder

<

�

on com-

putation sequences from state q induces a partial order

v on the set of all computations from state q. Coini-

tial computations 
 and 


0

are called consistent if they

have an upper bound with respect to v. For �nite 
,




0

, this is equivalent to the existence of a pair of �nite

computations �, �

0

such that 
�

0

= 


0

�.

The following result, proved in [20], provides a great

deal of information about the structure of the partially

ordered set of computations of an automaton. Our main

theorem is a direct consequence.

Lemma 4 Suppose A is an automaton. For each state

q, the set Comp

q

(A) of computations of A with do-

main q, partially ordered by v, is an event domain

whose �nite elements are exactly the equivalence classes

of �nite computation sequences. Moreover, the map

tr : Comp

q

(A)!

�

E that takes each equivalence class to

the corresponding trace, is a prime-interval-preserving

embedding of Comp

q

(A) as a normal subdomain of

�

E.

Rather than reproving this result here, we merely

comment on the method used. It is fairly obvious

from the de�nitions we have given that the map tr :

Comp

q

(A)!

�

E is a monotone injection that preserves

prime intervals. To show Comp

q

(A) is a domain, it is

necessary to show that all directed subsets have lubs

and that all consistent pairs of computations have lubs.

To show that the map tr is an embedding of a normal

subdomain, we may show that tr is strict, additive, con-

tinuous, and re
ects consistency. To show these facts,

we de�ne the auxiliary notion of the residual of one com-

putation sequence \after" another. Formally, we have

the following: Suppose 
 and 


0

are consistent �nite

computations. Then there exists a unique pair of �nite

computations 
n


0

and 


0

n
 (read \
 after 


0

" and \


0

after 
"), such that 
(


0

n
) = 


0

(
n


0

), and such that

if � and �

0

are any �nite computations with 
�

0

= 


0

�,

then there exists a unique �nite computation � such

that (
n


0

)� = � and (


0

n
)� = �

0

.

We may think of n as a partial binary operation on

coinitial pairs of computations, where 
n� is de�ned ex-

actly when 
 and � are consistent, or when they could

both be part of the \same concurrent computation." In

this case, � may contain some transitions that \overlap"

with 
 and some that are \concurrent" with 
. Then


n� should be thought of as what is \left" of 
 after the

part that overlaps with � has been deleted. The residual


n� is unde�ned exactly when 
 contains some indeter-

minate choice that con
icts with a choice made in �.

A concrete construction of 
n� for arbitrary consistent

�nite computations 
 and � is performed by induction

on their length.

A similar residual operation can be de�ned on �nite

traces (in fact more easily so, since there are no states

to worry about). Formally, if x and x

0

are consistent

traces then the residual of x after x

0

is the unique trace

xnx

0

with the property that x

0

(xnx

0

) = xtx

0

. From this

de�nition, one can easily see that x v y i� xny = �. A

similar relation holds for computations: 
 v � i� 
n� =

id . Thus, the partial ordering on computations has an

equivalent characterization in terms of residuals. Using

this observation, Lemma 4 may then be proved by using

residuals to perform an inductive construction of lubs

of directed collections of computations and of consistent

pairs, and also to show that the map tr : Comp

q

(A)!

�

E preserves residuals (hence is continuous) and re
ects

consistency.

We conclude this section with some additional facts

about the computations of monotone input/output au-

tomata. We do not use these facts explicitly in this

paper, but they are helpful in understanding the be-

havior of these automata. Proofs can be found (in a

somewhat more abstract setting) in [21, 22].

Proposition 5 A monotone automaton A has the fol-

lowing properties:

1. For every state q and input trace x, there exists a

unique computation �

x

(q) with dom(�

x

(q)) = q and

tr(�

x

) = x. Moreover, the map � :

�

X ! Comp

q

(A)

that takes x 2

�

X to �

x

2 Comp

q

(A), is a prime-

interval-preserving embedding of

�

X as a normal

subdomain of Comp

q

(A).

2. Suppose 
 is a computation with dom(
) = q, and

x is an input trace that is consistent with tr(
)jX.

Then 
 and �

x

(q) are consistent.

3. Every �nite computation 
 factors uniquely as 
 =

��, where � is a pure-input computation and � is

a non-input computation. We call the pair (�; �) a

pure-input/non-input factorization of 
.

4. For every computation 
, there exists a computa-

tion � that is v-maximal among all computations




0

such that 
 v 


0

and tr(
)jX = tr(


0

)jX.

5 Relations Computed by Automata

A computation is called completed if it is v-maximal

among all computations having the same input trace.

In [15] it was shown that this notion coincides with an

appropriate notion of \fairness" for monotone automata

that are constructed as the parallel composition of a col-

lection of \single-process" components. Speci�cally, a

computation is \fair" if every component process having

an enabled non-input action eventually performs some

non-input action. Here, we consider a more general

situation in which automata need not be networks of

single-process components. Although fairness does not

generalize directly to this situation, the notion \com-

pleted" does, and we therefore adopt it as the appro-

priate generalization of fairness.
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The input/output relation of an automaton A is the

function R :

�

X ! 2

�

Y

that maps each x 2

�

X to the

set of all y 2

�

Y , such that for some some completed

initial computation 
 of A, we have x = tr(
)jX and

y = tr(
)jY .

We can now state our main result:

Theorem 1 A map R :

�

X ! 2

�

Y

is the input/output

relation of a monotone input/output automaton i� there

exists an event domain D, a continuous function F :

�

X ! [D !

�

Y ], and a continuous function G :

�

X !

P(D), such that R(x) = F (x)

y

(G(x)) for all x 2

�

X .

Proof { Follows from Lemmas 6 and 7 below.

Before proceeding to the proof, we give the de�ni-

tions of fmerge, amerge, and imerge, and mention

the implications of Theorem 1 for these. Intuitively,

each of these relations takes as input �nite or in�nite

sequences of values on two input ports, and produces a

�nite or in�nite sequence of values on one output port.

To formalize this, let p

0

and p

1

stand for the two input

ports, and let p

2

stand for the single output port. Let

V be a countably in�nite set of values. Form a concur-

rent alphabet X = fp

0

; p

1

g � V with (p; v)k(p

0

; v

0

) i�

p 6= p

0

, and a concurrent alphabet Y = fp

2

g � V with

k = ;. Then the trace domain

�

X is isomorphic to the

domain of functions mapping fp

0

; p

1

g to �nite or in�-

nite sequences of values with the pre�x order; similarly,

�

Y is isomorphic to the domain of functions from fp

2

g

to value sequences. It will be convenient notationally

to regard x 2

�

X as a function on fp

0

; p

1

g, and similarly

y 2

�

Y as a function on fp

2

g.

The three relations are de�ned as follows:

� fmerge is the set of all (x; y) 2

�

X �

�

Y such that

y(p

2

) is a shu�e of x(p

0

) and x(p

1

).

� amerge is the set of all (x; y) 2

�

X �

�

Y such that

y(p

2

) is a shu�e of a pre�x x

0

of x(p

0

) and a pre�x

x

1

of x(p

1

), such that

1. If x(p

0

) is �nite, then x

1

= x(p

1

).

2. If x(p

1

) is �nite, then x

0

= x(p

0

).

3. If both x(p

0

) and x(p

1

) are in�nite, then ei-

ther x

0

= x(p

0

) or x

1

= x(p

1

).

� imerge is the set of all (x; y) 2

�

X �

�

Y such that

y(p

2

) is a shu�e of a pre�x x

0

of x(p

0

) and a pre�x

x

1

of x(p

1

), such that

1. If x(p

0

) is in�nite then x

1

= x(p

1

).

2. If x(p

1

) is in�nite, then x

0

= x(p

0

).

3. If one of x(p

0

) and x(p

1

) is �nite, then both

x

0

and x

1

are �nite, and either x

0

= x(p

0

) or

else x

1

= x(p

1

).

As a consequence of Theorem 1, if R is the in-

put/output relation of an automaton, then R has the

following monotonicity property: If y 2 R(x), and

x v x

0

, then there exists y

0

2 R(x

0

) with y v y

0

. The

relation fmerge is not monotone (consider x(p

0

) = �,

x(p

1

) = 555 . . ., y(p

2

) = 555 . . ., x

0

(p

0

) = 7 and

x

0

(p

1

) = 555 . . .), hence is not the input/output relation

of an automaton. In contrast, amerge can be expressed

in the form of Theorem 1: assuming that the set of val-

ues that arrive on port p

0

is disjoint from those that

arrive on p

1

, we may take D =

�

Y , take G = amerge,

and take F (x)(y) = y for all x 2

�

X and y 2

�

Y . (If

the value sets are not disjoint, then we may use a slight

modi�cation of this construction, in which we take D

to be a \tagged" version of

�

Y , and the function F (x)

removes the tags.) Hence amerge is the input/output

relation of an automaton. It is slightly more compli-

cated to express imerge in the required form, and we

postpone this to Section 6.2 below. The results of [15]

are therefore a corollary of Theorem 1.

Lemma 6 Suppose A is an automaton with in-

put/output relation R :

�

X ! 2

�

Y

. Then there exists

an event domain D, a continuous function F :

�

X !

[D !

�

Y ], and a continuous function G :

�

X ! P(D),

such that R(x) = F (x)

y

(G(x)) for all x 2

�

X .

Proof { Let D = Comp

q

i

(A), then D is an event

domain by Lemma 4. De�ne F :

�

X ! [D!

�

Y ] by:

F (x)(
) =

G

ftr(�)jY : � v 
; tr(�)jX v xg:

That is, F (x)(
) is the maximum output that can be

produced in a \pre�x up to permutation" � of 
, when

the input is constrained to be less than x. It is straight-

forward to check that F is well-de�ned and continuous.

De�ne G :

�

X ! 2

D

to map each x 2

�

X to the set of

all completed initial computations with input history x.

By construction, R(x) = F (x)

y

(G(x)) for all x 2

�

X . It

remains to be shown that G :

�

X ! P(D) and that G is

continuous.

We �rst claim that G(x) is a fringe set for all x 2

�

X .

But this is clear from the fact that the set �(x) of all

initial computations 
 with tr(
)jX v x is closed, and

G(x) is the set of its maximal elements. Next, we show

that G is monotone. This is immediate from the fact

that if x v x

0

, then �(x) � �(x

0

). Finally, we show that

G is continuous. Given a directed collection fx

i

: i 2 Ig

of inputs, with supremum x, let � =

S

�(x

i

), and note

that � = �(x). Thus, G(x) =

F

fG(x

i

) : i 2 Ig.

Lemma 7 Let R :

�

X ! 2

�

Y

and suppose there exists

an event domain D, a continuous function F :

�

X !

[D !

�

Y ], and a continuous function G :

�

X ! P(D),

such that R(x) = F (x)

y

(G(x)) for all x 2

�

X . Then R

is the input/output relation of a monotone automaton.
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Proof { Since D is an event domain, by Lemma 4 it is

isomorphic via a prime-interval-preserving map � to a

normal subdomain of

�

Z, for some concurrent alphabet

Z. De�ne C(x) = �(G(x)

c

). Let F

0

:

�

X ! [

�

Z !

�

Y ] be

de�ned so that for each x 2

�

X , the map F

0

(x) :

�

Z !

�

Y

is the least continuous function (which exists by Lemma

1) with the property that F (x) = F

0

(x) � �.

Next, we construct an automaton

A = (E;X; Y;Q; q

i

; T )

as follows:

� Let E = X 
 Y 
 Z.

� Let Q =

�

X

o

�

�

Y

o

�

�

Z

o

, with q

i

= (�; �; �).

� The map T is de�ned as follows:

1. If a 2 X, then a 2 T ((x; y; z); (x

0

; y

0

; z

0

)) i�

x

0

= xa, y

0

= y, and z

0

= z.

2. If b 2 Y , then b 2 T ((x; y; z); (x

0

; y

0

; z

0

)) i�

x

0

= x, y

0

= yb, z

0

= z, and y

0

v F

0

(x)(z).

3. If c 2 Z, then c 2 T ((x; y; z); (x

0

; y

0

; z

0

)) i�

x

0

= x, y

0

= y, z

0

= zc 2 C(x).

Intuitively, the �rst component of the state will is used

to keep track of the �nite input received so far in a

computation, the second component keeps track of the

�nite output issued so far, and the third keeps track

of the history of how indeterminate choices have been

resolved so far.

It is straightforward to check that the de�nition of A

satis�es the requirements for a monotone input/output

automaton. The commutativity property of A follows

from the fact that G(x), hence C(x), is closed under

lubs of consistent pairs of elements. We also observe,

by a straightforward induction, that if 
 is any �nite

initial computation sequence for A, then tr(
)jY v

F

0

(tr(
)jX)(tr(
)jZ)) and tr(
)jZ 2 C(tr(
)jX). By

continuity, these relationships extend also to in�nite 
.

We claim that the automaton A has R as its in-

put/output relation. There are two parts to the proof:

(1) show that if y 2 R(x), then there exists a completed

initial computation sequence 
 with x = tr(
)jX and

y = tr(
)jY ; (2) show that if 
 is a completed initial

computation sequence, then tr(
)jY 2 R(tr(
)jX).

(1) Suppose y 2 R(x). Then by hypothesis, there ex-

ists z 2

�

Z such that z 2 �(G(x)) and y = F

0

(x)(z).

Choose sequences a

1

; a

2

; . . . 2 X [ f�g, b

1

; b

2

; . . . 2

Y [f�g, and c

1

; c

2

; . . . 2 Z[f�g, such that x = a

1

a

2

. . .,

y = b

1

b

2

. . ., and z = c

1

c

2

. . .. These sequences exist

by the fact that trace domains are !-algebraic and �ni-

tary (there are at most �nitely many pre�xes of any

�nite trace). Also, because the map � : D !

�

Z pre-

serves prime intervals, we may choose c

1

; c

2

; . . . so that

c

1

c

2

. . .c

k

2 C(x) for all k.

Next, we use these sequences in a \scheduling argu-

ment" to construct a sequence d

1

; d

2

; . . . 2 E[f�g such

that if w = d

1

d

2

. . ., then x = wjX, y = wjY , and

z = wjZ. We do this as follows: Suppose we have de-

�ned d

1

; d

2

; . . . ; d

k

, for some k � 0. Suppose further

that

x

k

= a

1

a

2

. . .a

l

= (d

1

d

2

. . .d

k

)jX;

y

k

= b

1

b

2

. . .b

m

= (d

1

d

2

. . .d

k

)jY;

z

k

= c

1

c

2

. . .c

n

= (d

1

d

2

. . .d

k

)jZ:

De�ne d

k+1

as follows:

� Suppose k mod 3 = 0. Then let d

k+1

= a

l+1

.

� Suppose k mod 3 = 1. If y

k

b

m+1

v F

0

(x

k

)(z

k

),

then let d

k+1

= b

m+1

, otherwise let d

k+1

= �.

� Suppose k mod 3 = 2. If z

k

c

n+1

2 C(x

k

), then let

d

k+1

= c

n+1

, otherwise let d

k+1

= �.

It is clear from the construction that wjX = x, wjY v

y, and wjZ v z. Moreover, since the domain

�

Z is al-

gebraic, and the function G is continuous, given any

�nite z

0

v z, there exists K such that z

0

2 C(x

k

) for

all k � K, thus z

0

v z

k

for su�ciently large k. Since

z

0

may be arbitrary, we conclude wjZ = z. Similar

reasoning shows that wjY = y.

Now, it follows from the de�nition of A and the con-

struction of the sequence d

1

; d

2

; . . ., that there exist

states q

i

= q

0

; q

1

; . . ., such that for each k � 0 we have

q

k

d

k+1

�!q

k+1

, and thus


 = q

0

d

1

�!q

1

d

2

�! . . .

is an initial computation for A. We claim that 
 is

completed. For if not, then there would exist � with


 v � but 
 6= �, such that tr(�)jX = x = tr(
)jX. By

the injectiveness of the map tr, we would have either

tr(
)jZ < tr(�)jZ or else tr(
)jY < tr(�)jY . The former

is impossible because z = tr(
)jZ is maximal in C(x) =

�(G(x)

c

), and then the latter is also impossible because

tr(�)jY is functionally determined (via F

0

) by tr(�)jX =

x and tr(�)jZ = z.

(2) Suppose 
 is a completed initial computation.

Let x = tr(
)jX, y = tr(
)jY , and z = tr(
)jZ. As

previously observed, we know that y v F

0

(x)(z) and

z 2 C(x). We claim that in fact y = F

0

(x)(z) and

z 2 �(G(x)). First, suppose y < F

0

(x)(z). Then there

is some �nite y

00

v F

0

(x)(z), such that y

00

6v y. Assume

y

00

is chosen to be of minimal length, then y

00

= y

0

b

where y

0

v y and b is an output action. Using the al-

gebraicity of

�

Y and the continuity of F

0

, we can obtain

�nite x

0

v x and z

0

v z such that y

0

b v F

0

(x

0

)(z

0

).

Choose a �nite pre�x 


0

of 
 such that x

0

v tr(


0

)jX,

y

0

v tr(


0

)jY , and z

0

v tr(


0

)jZ. By the de�nition of

A, and the monotonicity of F

0

, we must have b enabled

in state cod (


0

). If r = cod(


0

) and t is the transition

Page 7



r

b

�!rb, then tr(
) and tr(


0

t) are consistent, hence 


and 


0

t are consistent, and they have a v-upper bound

� 6= 
. Since this contradicts the assumption that 
 is

completed, we conclude that y = F

0

(x)(z).

Finally, suppose z 62 �(G(x)). Because z 2 C(x) =

�(G(x)

c

), we have z < �(d) for some d 2 G(x). There-

fore, there must exist some �nite z

00

2 C(x), such that

z

00

6v z, but with z and z

00

consistent and zt z

00

v �(d).

The argument then proceeds for z

00

similarly to the

above for y

00

, contradicting the assumption that 
 is

completed, and concluding that z 2 �(G(x)).

6 Specializations of the Main Result

Our result specializes to two interesting subclasses

of automata: \determinate" automata and \semi-

determinate" automata. In the case of determinate au-

tomata, we restrict G to be single-valued in Theorem

1. The theorem then becomes the statement that the

determinate automata compute exactly the class of con-

tinuous functions from input to output. Although this

result has perhaps been known in various forms for a

long time, the interesting point here is how we obtain

it as a specialization of a general result. In the case of

semi-determinate automata, we restrict G to be a con-

stant function in Theorem 1. The theorem then states

that semi-determinate automata compute exactly those

relations R such that R(x) = fF

i

(x) : i 2 G(�)g, where

the F

i

are continuous and G(�) may be thought of as

an \oracle set."

An interesting consequence of the latter result is

that there are relations (e.g. amerge) that are im-

plementable by monotone automata, but cannot be

represented in oracleized form as above, hence cannot

be implemented by semi-determinate automata. Since

imerge can be implemented by a semi-determinate au-

tomaton, this gives us a separation in expressive power

between amerge and imerge.

6.1 Determinate Automata

An automaton is determinate if it satis�es the following

condition:

(Determinacy) Suppose b : q ! r and b

0

: q ! r

0

,

where b and b

0

are distinct non-input actions. Then

bkb

0

.

Intuitively, a determinate automaton exhibits no \inter-

nal nondeterminism"|the only possible nondetermin-

istic choices are those that occur between input tran-

sitions. The determinacy property may also be seen

as a kind of Church-Rosser or \diamond" property for

non-input actions.

Call coinitial computations 
 and � input-consistent

if their input traces tr(
)jX and tr(�)jX are consistent.

The following lemma gives the characteristic property

of determinate automata:

Lemma 8 Suppose A is a determinate automaton.

Then two coinitial computations 
 and � of A are con-

sistent i� they are input-consistent.

Proof { The proof may be accomplished by an induc-

tive argument in which residuals are used to construct

the lub of two coinitial input-consistent computations


 and �. (See [21].)

Theorem 2 For determinate automata, Theorem 1

holds if we restrict G to be single-valued.

Proof { Suppose R(x) = F (x)

y

(G(x)) for all x 2

�

X ,

where G is single-valued and F and G are as in Theo-

rem 1. It is straightforward to check that application

of the construction in the proof of Lemma 7 yields a

determinate automaton.

Conversely, suppose A is a determinate automaton

with input/output relation R. Lemma 4 and Lemma

8, together with an application of Zorn's Lemma, show

that for each x 2

�

X , there is a unique completed compu-

tation 


x

with tr(


x

)jX = x. Hence G is single-valued.

Corollary 9 Suppose R :

�

X ! 2

�

Y

. Then R is the

input/output relation of a determinate automaton i�

R = I

Y

�H, where H :

�

X !

�

Y is continuous.

Proof { Given H, we may take D to be a one-element

domain, and G to be the identically ? function, which

is clearly single-valued.

Since there exist nonfunctional relations (e.g. imerge

and amerge) that are computable by monotone au-

tomata, it follows from the previous theorem that the

class of determinate automata is strictly weaker in ex-

pressive power than the class of all monotone automata.

6.2 Semi-Determinate Automata

An automaton A is semi-determinate if it satis�es the

following condition:

(Semi-Determinacy) There exists a collection C �

E n (X [ Y ) of choice actions, such that:

1. Whenever q

a

�!r and r

c

�!s, where c 2 C and

a 62 C, then akc and c is enabled in state q.

2. The automaton, formed from A by deleting

all elements of C from each set T (q; r), is de-

terminate.

It is not di�cult to see from this de�nition that if there

exists a set C with these properties, then there is a

unique largest such set. When we speak of the set C
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of choice actions for a particular semi-determinate au-

tomaton, we refer to the largest such set. A pure-choice

computation will be a computation in which only choice

actions occur.

Lemma 10 Suppose A is semi-determinate. Then ev-

ery �nite computation 
 of A can be factored uniquely

as 
 = 


0




00

, where 


0

contains only choice actions, and




00

contains no choice actions. Moreover, if 
 = 


0




00

and � = �

0

�

00

are two such factorizations, where 
 and

� are input-consistent, then 
 and � are consistent i�




0

and �

0

are consistent.

Proof { The required factorization is obtained by us-

ing property (1) in the de�nition of semi-determinacy,

and the commutativity property in the de�nition of au-

tomata, to \permute all choice actions to the front."

The consistency assertion then follows using property

(2) in the de�nition of semi-determinacy. A formal

proof may be carried out by induction on the length

of a computation sequence.

Theorem 3 For semi-determinate automata, Theorem

1 holds if we restrict G to be a constant function.

Proof { Given D, F , and constant function G, let A

be constructed as in the proof of Lemma 7. Because the

enabling of actions in Z depends only on the

�

Z

o

compo-

nent of the state, it follows that A is semi-determinate

with C = Z.

Conversely, given A, we use a slight modi�cation of

the construction in the proof of Lemma 6. Let D be the

domain of all initial pure-choice computations. For each

x 2

�

X , let G(x) be the set of all maximal initial pure-

choice computations. Then G(x) is obviously a fringe

set, and G is constant, hence continuous. Now, the

fact that deleting the choice transitions from A yields

a determinate automaton implies that for each x 2

�

X

and for each initial pure-choice computation �, there

exists a unique completed initial computation 


x;�

of A

such that tr(


x;�

)jX = x and such that � is the great-

est pure-choice computation with � v 


x;�

. Let F (x)

be the function that takes each � 2 D to the trace

tr(


x;�

)jY . It is straightforward to see from this de�ni-

tion that F (x) is continuous for each x 2

�

X , and that F

itself is continuous as a function of x. Finally, observe

that R(x) = F (x)

y

(G(x)) for all x 2

�

X.

Corollary 11 The relation imerge is the input/output

relation of a semi-determinate automaton, but amerge

is not.

Proof { We may express imerge = F (x)

y

(G(x)),

where D is the domain of �nite and in�nite sequences

of natural numbers with the pre�x order, G(x) is the

set of all in�nite sequences, and F (x) uses its argument

as an oracle to schedule the selection of values from the

two input ports. More formally, let X

0

be the subset

of X consisting of the actions (p

0

;m), and similarly for

X

1

. De�ne recursively,

F (x)(�) = �

F (x)(nd) = H

0

(xjX

0

; xjX

1

; n+ 1; d)

H

0

(x; x

0

; 0; �) = �

H

0

(x; x

0

; 0; nd) = H

1

(x; x

0

; n+ 1; d)

H

0

(�; x

0

; k + 1; d) = �

H

0

((p

0

;m)x; x

0

; k + 1; d) = (p

2

;m)H

0

(x; x

0

; k; d)

H

1

(x; x

0

; 0; �) = �

H

1

(x; x

0

; 0; nd) = H

0

(x; x

0

; n+ 1; d)

H

1

(x; �; k+ 1; d) = �

H

1

(x; (p

1

;m)x

0

; k + 1; d) = (p

2

;m)H

1

(x; x

0

; k; d):

In contrast, if we could express amerge in a sim-

ilar form, then for any given d 2 D, the function

F

d

de�ned by F

d

(x) = F (x)(d) would be a monotone

function with the property F

d

(x) 2 amerge(x) for all

x 2

�

X . However, no such function can exist. To see

this, observe that we must have F

d

((p

0

; 5)) = (p

2

; 5) and

F

d

((p

1

; 7)) = (p

2

; 7), so there is no possible value for

F ((p

0

; 5)(p

1

; 7)) that will make F

d

monotone. Hence,

amerge is not the input/output relation of a semi-

determinate automaton.

7 Networks of Automata

So far, we have avoided entirely the issue of how au-

tomata may be composed into networks of communi-

cating, concurrently executing components. What we

have established so far is the existence of a hierarchy of

monotone input/output automata, consisting of the de-

terminate automata, the semi-determinate automata,

and all the monotone automata, and we have estab-

lished some separation results for this hierarchy. The

results so far may be summarized by saying that semi-

determinate automata compute a strictly larger class of

input/output relations than do determinate automata,

and compute a strictly smaller class of input/output

relations than do arbitrary monotone input/output au-

tomata. However, we would like to say more. We would

like our results to imply something about the \imple-

mentability" of various relations in terms of networks

of \primitive components." To do this, we need to de-

�ne an operation of parallel composition, by which a

collection of automata is combined into a network, and

we must show that the various classes of automata are

closed under this operation.

7.1 Parallel Composition

Although it would be possible to de�ne parallel com-

position on collections of unrestricted monotone in-
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put/output automata, the de�nitions are more trans-

parent if we restrict our attention to \monotone port

automata," which we de�ned in Section 3.

Formally, suppose A = fA

i

: i 2 Ig is a collection of

port automata, where A

i

= (E

i

; X

i

; Y

i

; Q

i

; q

i

i

; T

i

). We

say that A is compatible if for all i; j 2 I, if i 6= j then

E

i

\ (E

j

nX

j

) � X

i

\ Y

j

.

If A is compatible, then its parallel composition is the

automaton

Q

A

i

= (E;X; Y;Q; q

i

; T ), where

� E =

S

E

i

, with akb i� ak

i

b for all i 2 I such that

both a and b are in E

i

.

� Y =

S

Y

i

and X = (

S

X

i

) n Y .

� Q =

Q

i2I

Q

i

,

� q

i

= (q

i

i

: i 2 I),

� e 2 T ((q

i

: i 2 I); (r

i

: i 2 I)) i� for all i 2 I, either

e 62 E

i

and r

i

= q

i

, or else e 2 E

i

and e 2 T

i

(q

i

; r

i

).

Intuitively, component automata in a network com-

municate by transmitting values on shared ports. The

outputting of a value v on port p by one component

automaton occurs simultaneously with the inputting of

value v from port p by all other automata that share

port p. The compatibility condition states that only

input or output actions may be shared between com-

ponents, and that each shared action (port) may be an

output action (port) for at most one component au-

tomaton in a network. It is not our purpose here to

further justify this particular de�nition of parallel com-

position. The reader may refer to the papers [10, 11, 15]

for additional motivation and discussion. Here we wish

merely to observe the following:

Theorem 4 The parallel composition of a compatible

collection of port automata is a port automaton. More-

over, the classes of determinate port automata and

semi-determinate port automata are closed under par-

allel composition of compatible collections.

Proof { The disambiguation, receptivity, and commu-

tativity properties are immediate from the de�nition

and the corresponding properties of the A

i

. To show

monotonicity, suppose a 2 X and b 2 Y . Then a and

b are both port actions, and port(a) 6= port(b). Hence

whenever both a; b 2 E

i

, we have ak

i

b, so akb.

Now, assume the A

i

are determinate, and suppose

a; b 2 E nX are both enabled in state q. If both a; b 2

E

i

, then there are four cases:

1. If both a; b 2 E

i

nX

i

, then ak

i

b by the determinacy

of A

i

.

2. If a 2 X

i

and b 2 E

i

nX

i

, then ak

i

b by monotonicity

of A

i

.

3. If a 2 E

i

nX

i

and b 2 X

i

, then ak

i

b by monotonicity

of A

i

.

4. If both a; b 2 X

i

, then port(a) 6= port(b). This

is because if port(a) = port(b), then for some j 2

I we would have both a; b 2 E

j

n X

j

, hence not

ak

j

b, contradicting the determinacy of A

j

. Since

port(a) 6= port(b), we have ak

i

b.

Since ak

i

b in all four cases, we conclude that akb and

Q

A

i

is determinate.

Finally, assume the A

i

are semi-determinate, and let

C

i

be the largest set of choice actions for A

i

. We claim

that

Q

A

i

is semi-determinate, with C =

S

C

i

as a

set of choice actions. For each i 2 I, let A

0

i

be the

determinate automaton obtained from A

i

by deleting

all elements of C

i

from each T (q; r). Similarly, let A

0

be the automaton from

Q

A

i

obtained by deleting all

elements of C from each T (q; r). Then A

0

=

Q

A

0

i

, so

A

0

is determinate. Now suppose

(q

i

: i 2 I)

a

�!(r

i

: i 2 I)

c

�!(s

i

: i 2 I);

where a 2 E n C and c 2 C. Since each C

i

is a set

of internal actions, by compatibility we have c 2 C

i

for precisely one i 2 I. There are two cases: either

a 2 E

i

n C

i

or else a 62 E

i

. If a 2 E

i

n C

i

, then since

A

i

is semi-determinate we know that ak

i

c and that c

is enabled for A

i

in state q

i

. Since c 62 C

j

for j 6= i

it follows that akc and that c is enabled for A in state

(q

i

: i 2 I). If a 62 E

i

, then akc by de�nition of k. Since

q

i

= r

i

we know that c is enabled for A

i

in state q

i

.

Then c is also enabled for A in state (q

i

: i 2 I).

Now, we can interpret our results as saying some-

thing about the implementability of relations in terms

of networks of \primitives." For each continuous in-

put/output function, let us choose a \standard" deter-

minate port automaton that computes that function.

For example, we may choose the automata that re-

sult from the construction of Lemma 7. Similarly, we

may choose a particular semi-determinate port automa-

ton that computes imerge, and a port automaton that

computes amerge. Then our results imply:

1. the impossibility of implementing fmerge by any

network of our standard primitives.

2. the impossibility of implementing amerge by any

network of our standard functional primitives and

our standard imerge automaton.

3. the impossibility of implementing imerge or

amerge by any network of our standard functional

primitives.

7.2 Finite Indeterminacy

We have not yet answered the question of whether

imerge can be implemented in terms of our standard

functional primitives and our standard amerge au-

tomaton. Although the answer to this question is \yes,"
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trig

amerge

amerge

incr

switch
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restore

6 6
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6

66

6

6

?

6

(output)

Figure 1: Implementation of Iterated Unbounded

Choice by amerge.

for a long time it seemed likely to the author that one

could prove the opposite by trying to de�ne a class

of automata with a property of \�nite indeterminacy,"

and showing that no such automaton could compute

imerge. This was to be accomplished by proving a

version of Theorem 1 for automata with �nite indeter-

minacy in which the sets G(x) were required to have

a topological compactness property. After a number of

failed attempts, the author realized that it is possible

to construct a �nite network of standard functional and

amerge processes that computes imerge. One way to

interpret this result is that there is can be no de�nition

of \�nite indeterminacy" that is satis�ed by some stan-

dard automaton that computes amerge, is not satis�ed

by any automaton that computes imerge, and that is

preserved under parallel composition.

Figure 1 shows how amerge can be used together

with functional processes to construct a network that

outputs an arbitrary in�nite sequence of nonnegative

integers. Once one has such a network, it is straight-

forward to use it as an \oracle" (as suggested by the

proof of Corollary 11) to construct an implementation

of imerge.

We give only an informal description of the opera-

tion of the network, rather than a formal de�nition

and correctness proof. All processes other than the

amerge processes are functional. All tokens that tra-

verse the channels contain either numeric values or a

special \trigger" value, used by the node switch. The

process trig generates an in�nite sequence of trigger

values. The process incr repeatedly reads numeric val-

ues from its input, increments them and then issues the

incremented values at the output. The process switch

reads numeric values and outputs them to the right-

hand output until a trigger value is read. Once this has

happened, the next numeric value is output to the left,

and the cycle repeats. Multiple trigger values arriving

in succession at the input are treated identically to a

single trigger value. The process restore initially out-

puts a zero on its right-hand output and a one on its

left-hand output. Once this is done, it repeats the fol-

lowing forever: Read a numeric value from the input; if

the value read is zero, output a zero on the right-hand

output, otherwise output a one on the left-hand output.

The network operates as follows: Initially, the

restore process supplies a zero token at one input of the

top amerge and a one token to the bottom amerge,

which injects it into the loop. The nonzero token cy-

cles an indeterminate number of times (possibly for-

ever) around the loop, getting its value incremented

each time. If a trigger token ever makes it through the

middle amerge to the switch, then the loop will be

terminated, however we can't guarantee that this will

ever happen. What we do know, though, is that either

the zero token will make it through the top amerge, or

a nonzero token will exit the loop and pass through the

top amerge. Thus, eventually a token will pop out the

top, and it is easy to see that any nonnegative integer

value is possible.

Once a token has been output, it is the function of

the restore process to reinitialize the network. If a zero

was output, then the restore process supplies another

zero token to the top amerge. If a nonzero value was

output, then the restore process injects another \one"

token into the loop via the bottom amerge. Note that

it is not necessary (and it is in fact impossible) to re-

move the token still circulating around the loop in the

case that a zero was output. Since the circulating token

might have any value, simply restoring a zero token to

the top amerge is su�cient to reinitialize the network.

8 Conclusion

We have de�ned a class of concurrent automata that

can be used to model indeterminate data
ow networks,

we have de�ned two subclasses of automata in terms of

their transition structure, and we have obtained a char-

acterization of the input/output relations computed by

each class. We have also de�ned an operation of par-

allel composition, and observed that each of the three

classes of automata is closed under this operation. The

three classes (determinate, semi-determinate, and unre-

stricted) automata form a strict hierarchy with respect

to their power to compute relations.

An interesting direction for future research would be

to obtain a version of Theorem 1 that characterizes the

relations that are computable by automata that are par-

allel compositions of single-process components. For-

mally, we may de�ne an automaton to be single-process

if it satis�es the following condition:
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(Single-Process) Suppose b : q ! r and b

0

: q ! r

0

,

where b and b

0

are distinct non-input actions. Then

not bkb

0

.

De�ne a network automaton to be an automaton of the

form

Q

A

i

, where fA

i

: i 2 Ig is a compatible collec-

tion of single-process automata. The problem is then

to �nd conditions under which we can \decompose" an

automaton into a network of single-process automata,

and to relate these conditions to the structure of the

domain of computations. One condition that does per-

mit us to perform such a decomposition is the to require

that the complement # of the concurrency relation k on

actions be an equivalence relation. We can then recover

the \processes" as the equivalence classes of #. At the

moment, though, it is not clear how this equivalence

relation condition on an automaton is re
ected in the

structure of its domain of computations.
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