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Abstract

The paper describes a method of representing an n-dimensional array of ra-
tional expressions as an (n + 1)-dimensional array of scalars and shows how this
representation readily supports the implementation of various common array op-
erations. A feature of the representation is that it can take advantage of memory-
saving schemes for encoding large, sparse scalar arrays using multi-terminal binary
decision diagrams (MTBDDs). The representation involves taking partial fraction
expansions of the entries of the array; refining the factorizations of the denomina-
tor polynomials as required rather than presupposing the existence of a complete
factorization at the outset.

1 Introduction
A rational expression over a coefficient field K is an element of the field of fractions
of the ring of polynomials over K. More concretely, a rational expression is an equiv-
alence class pp/qq of formal quotients p/q of polynomials, with q 6= 0, under the
equivalence relation that relates p/q and p′/q′ whenever pq′ = qp′. Computing with
rational expressions can be accomplished [Hor72, Col75] by using as canonical repre-
sentations the formal quotients p/q such that q is monic and p and q are coprime. These
representations are manipulated using the familiar rules for fractions.

If it is desired to compute with arrays (vectors, matrices, 3D-arrays, etc.) of rational
expressions, then this can be done using standard array storage techniques with ratio-
nal expressions as the elements of the arrays. Just as for arrays of ordinary numeric
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values, either “dense” representations, in which every element is represented explic-
itly, or “sparse” representations, in which zero elements are left implicit, are possible.
However, for some applications there are drawbacks inherent in this way of represent-
ing arrays of rational expressions. For example, consider what has to be done in order
to compute the sum of two n-element vectors R and R′ of rational expressions. For
each i with 1 ≤ i ≤ n we must compute the sum of the ith elements Ri = ppi/qiq
and R′

i = pp′i/q′iq . This calculation could be done, say, by finding a common multiple
mi = qiq

′
i of qi and q′i, computing the sum ri = piq

′
i + p′iqi, and then cancelling com-

mon factors to obtain a canonical representation for the rational expression pri/miq .
In case many entries of R and R′ have the same denominators, similar calculations
would have to be repeated many times. One way of avoiding some of this repeated
work would be to represent a vector R of rational expressions as a pair (P, q), where
P is a vector of the numerator polynomials and q is a single denominator polynomial
common to all the entries. In this case, to add (P, q) and (P ′, q′) we need only com-
pute the common denominator qq′ once. This possibly saves some work, but it is of
course still necessary to multiply each element of P by q′ to obtain Pq′, multiply each
element of P ′ by q to obtain P ′q, form the sum Pq′ + P ′q, and then cancel common
factors from Pq′ + P ′q and qq′ to obtain the result. In addition, placing all entries
of a large vector over a single common denominator would tend to produce numerator
polynomials with large coefficients and unnecessarily high degrees.

Another disadvantage of using a standard array representation with rational ex-
pressions as elements is that this approach cannot take full advantage of some of the
techniques that have been developed for obtaining and manipulating highly compact
representations for huge arrays having either highly sparse or repetitive structure. For
example, such arrays can arise when a large system (e.g. a Markov chain represented
by its transition matrix) is specified as a composition of loosely interacting component
subsystems. In this case, composing the transition matrices of the components to ob-
tain the transition matrix for the large system is an operation that can be described in
terms of the Kronecker (tensor) product of matrices. In practice, this often results in
a transition matrix for the composite system that, although huge in dimension (the di-
mensions of the matrices for the component subsystems combine multiplicatively), has
a highly repetitive structure due to the loose interaction between the components. Also,
if there is just one initial state of interest, then often many of the states of the composite
system are unreachable, which leads to a highly sparse system representation once the
irrelevant entries have been zeroed.

Multiterminal binary decision diagrams (MTBDDs, also known as algebraic bi-
nary decision diagrams or ABDDs) [BFG+93, CFM+97], are data structures that have
been exploited, for example, to obtain highly compact representations of huge tran-
sition matrices obtained from system descriptions. An MTBDD is a decision graph
whose nodes represent functions f : {0, 1}d → V taking sequences of boolean values
to elements of an arbitrary set V of data values. The graph is organized into levels that
correspond to the length d of the argument sequences for the functions represented. For
example, if d = 0 (i.e. the function f takes no arguments and is simply an element v of
V ), then the corresponding node in the graph is a leaf node (at level 0) which is labeled
by v. If d > 0, then the node for f , which occurs at level d of the graph, has two
outgoing edges (labeled by 0 and 1) leading to child nodes at level d − 1. These child



3

nodes represent the functions f0 : {0, 1}d−1 → V and f1 : {0, 1}d−1 → V obtained,
respectively, from f by fixing the first element of the argument sequence:

f0(σ) = f(0, σ) f1(σ) = f(1, σ).

MTBDDs are are maintained in reduced form, which means that there is at most one
node in a graph representing any particular function f . This leads to the possibility
of structure sharing between the various descendants of of a node, which makes it
possible for a function f to have a very compact representation in some cases. In
particular, this can happen if the values of f occur in some sort of regular pattern
and the number of distinct values taken on by f is small compared to the size 2d of
its domain. Manipulations of MTBDDs are programmed in a recursive style, in which
operations on higher-level nodes are reduced to the computation of the same operations
on lower-level nodes, and in which caching (which exploits reduceness in an essential
way) is used to avoid exponential explosion that would otherwise result due to repeated
treatment of nodes accessible via multiple paths in the diagram.

MTBDDs can provide a compact representation for sparse and regularly structured
arrays, by regarding an array containing 2d elements drawn from V as a function f :
{0, 1}d → V . Many important operations on arrays can then be programmed in the re-
cursive style required for efficient manipulation of MTBDDs. In fact, this type of repre-
sentation has been exploited very successfully by tools [HMKS99, KNP02a, KNP02b]
that can build representations for transition matrices of huge Markov chains and to
solve the associated systems of linear equations that define such quantities as steady-
state probabilities. The Kronecker product of arrays having dimensions that are powers
of two can be performed highly efficiently on MTBDD representations, by a construc-
tion that essentially amounts to concatenation of decision diagrams. Matrix/vector
and matrix/matrix multiplication can also be performed on MTBDD representations,
in time quadratic in the number of nodes of the argument diagrams (assuming an un-
bounded cache in which to store already-computed results). Matrix/vector multipli-
cation, in particular, is the main operation needed in order to solve systems of linear
equations using iterative methods.

In this paper, we describe a technique that permits an array of rational expres-
sions to be represented using a scalar array having one additional dimension. That
is, a one-dimensional array (i.e. a vector) of rational expressions would be repre-
sented using a matrix of scalars, a two-dimensional array (i.e. a matrix) would be
represented using a three-dimensional array of scalars, and so on. In brief, the ra-
tional expressions making up the original array are represented as linear combinations∑m

i=1

∑di−1
j=1 ai,jppi,j/qiq , of basis expressions ppi,j/qiq , where 〈q1, q2, . . . , qm〉 is a

pairwise coprime sequence of denominator polynomials with deg(qi) = di, and for
each i the sequence 〈pi,1, pi,2, . . . , pi,di〉 is a linearly independent set of numerator
polynomials. For each element of the original array, the corresponding coefficient vec-
tor 〈ai,j : 1 ≤ i ≤ m, 1 ≤ j ≤ di〉 is stored using the additional dimension. The
coefficients themselves are obtained by partial fraction expansion of the original array
elements. The idea of using partial fraction expansion as a representation for ratio-
nal expressions has been proposed recently by Fateman [Fat06], however he assumes
the use of a complete expansion with irreducible denominator polynomials. Here, we
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do not make any explicit effort to maintain the entries in fully expanded form, which
would require factoring completely the denominator of each array entry. Instead, what
we do is to take a “lazy” approach in which additional factorizations are discovered
and introduced as needed during operations such as addition, when two matrices to be
added must be “transformed to a common basis” before the result can be computed.

Besides making it possible to employ existing compact storage representations such
as MTBDDs, the representation we describe permits some operations that would other-
wise require expensive element-by-element processing of an array to be performed just
on the basis elements ppi,j/qiq . For example, multiplying each element of an array by
a scalar c can be performed simply by replacing each pi,j by cpi,j . Another example
is translation by a scalar c, which replaces each element r of an array by the rational
expression r(x+ c) obtained by substituting x+ c for the indeterminate x. This opera-
tion preserves partial fraction expansions and can be performed simply by applying the
translation operation to each basis element ppi,j/qiq . If the number of basis elements
is small compared to the total number of entries in the array, then a significant savings
in time is realized.

The techniques in this paper were developed for use in manipulating systems de-
scriptions represented using the probabilistic input/output automaton (PIOA) model
[WSS97, SS98], and implemented in the context of the “PIOATool” [ZCS03] system.
In the PIOA model, transition matrices whose entries are rational expressions rather
than scalars arise in the representation of “open” systems, which are those whose en-
vironments have not yet been completely specified. The operation of composing addi-
tional components with an open system involves: (1) applying translation operations
to the transition matrix of the system; and (2) forming the Kronecker product of the
resulting translated matrices with scalar matrices describing the new component. In
PIOATool, the matrices of rational expressions are represented, and the required opera-
tions on matrices implemented, using an underlying MTBDD-based representation for
scalar arrays.

The remainder of this paper is organized as follows. In Section 2 we recall some
necessary concepts and notation. In Section 3 we introduce the idea of a “basis of
formal quotients” (BFQ), which is a sequence of rational expressions having certain
independence properties. The set of all linear combinations of the elements of a BFQ
is a finite-dimensional subspace of the space of all rational expressions, and once a
BFQ has been specified each element of this subspace can be specified by giving a
corresponding coordinate vector. In Section 4 we show how to represent an array of
rational expressions as an array of coordinate vectors with respect to a specified BFQ,
and in Section 5 we discuss how to carry out various common operations in terms of
this representation.

2 Preliminaries
Polynomials Let K be a field. A polynomial p over K is a finite formal sum

p = anxn + an−1x
n−1 + . . . + a1x + a0,
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where the coefficients ai are elements of K and the xi are formal powers of the “inde-
terminate” x. The degree of a nonzero polynomial p is the largest value i for which the
coefficient ai of xi is nonzero. By convention, we define the degree of the zero poly-
nomial to be 0. We use deg(p) to denote the degree of polynomial p. A polynomial p
of degree n is monic if the coefficient of xn is 1.

Polynomials over K form a commutative ring, which we denote by K[X], under
the usual definitions for the arithmetic operations. We say that polynomial q divides
polynomial p, and we write q|p, if there exists a polynomial r such that qr = p. In
this case, q and r are called factors of p. The nontrivial factors of q are those other
than 1 and q. A polynomial is irreducible if it is not equal to 1 and it has no nontrivial
factors. The set of irreducible factors of q is the set of all irreducible polynomials that
divide q. We write p . q if every irreducible factor of p is also an irreducible factor of
q (though not necessarily with any particular relationship between the multiplicities),
and we write p ∼ q if p . q and q . p; that is, when p and q have the same sets of
irreducible factors. Polynomials p and q are coprime if they are not equal and have no
nontrivial common factors. The commutative ring K[X] is a Euclidean domain, which
entails a number of properties we shall use:

• Every polynomial other than 0 or 1 can be expressed uniquely as a product of
powers of its irreducible factors.

• Every two polynomials have a greatest common divisor (GCD), which can be
computed by the Euclidean algorithm, as well as a least common multiple (LCM).
A GCD of two polynomials is unique up to scaling by element of K; thus if we
impose the requirement that a GCD be monic, then the GCD is uniquely deter-
mined. The same holds for the LCM.

• The Bézout lemma holds: If q and q′ are coprime then there exist polynomials p
and p′ such that p′q + pq′ = 1.

We use K<n[X] to denote the set of polynomials of degree strictly less than n. Note
that, besides being a commutative ring, K[X] has the structure of a K-vector space,
with each K<n[X] as an n-dimensional subspace. A basis for K<n[X] is, as usual, a
subset B of K<n[X] that is linearly independent and spans K<n[X]. The natural basis
for K<n[X] is the sequence consisting of the n powers:

〈xn−1, xn−2, . . . , x2, x, 1〉

of the indeterminate x, listed in decreasing order of their exponents.

Rational Expressions As stated at the outset, a rational expression over K is an
element of the field K[[X]] of fractions over K[X]. Each rational expression is an
equivalence class pp/qq of formal quotients p′/q′ of polynomials, with q′ 6= 0, under
the equivalence relation that relates p/q and p′/q′ whenever pq′ = qp′. Clearly, if
r 6= 0 then pp/qq = ppr/qrq , hence rational expressions are preserved by the usual op-
erations of “introduction or cancellation of nonzero common factors”. It follows from
this and the existence of GCDs that each rational expression has a unique canonical
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representation as a formal quotient p/q, where q is nonzero and monic and p and q are
coprime. If p/q is any formal quotient, then we refer to p as the numerator and q as the
denominator. The numerator and denominator of a rational expression pp/qq are the
numerator and denominator of its canonical representative.

In this paper, we shall for the most part only consider proper rational expressions,
which are those rational expressions pp/qq that satisfy deg(p) < deg(q). This is not
a significant limitation, because an arbitrary rational expression can always be repre-
sented as the sum of a polynomial and a proper rational expression. In the sequel the
term “rational expression” shall be used to mean “proper rational expression” without
further comment. The degree of a proper rational expression pp/qq is defined to be the
degree of the polynomial q. Let K<n[[X]] denote the subset of K[[X]] consisting of all
rational expressions of degree strictly less than n. Besides being a field, the set K[[X]]
has the structure of a K-vector space and K<n[[X]] is an n-dimensional subspace of
K[[X]].

3 Bases of Formal Quotients
Suppose, for 1 ≤ i ≤ m, that pi and qi are nonzero polynomials, such that qi is
monic and deg(pi) < deg(qi) for 1 ≤ i ≤ m. Then each formal quotient pi/qi

represents a nonzero proper rational expression ppi/qiq for 1 ≤ i ≤ m. We will
call such a sequence S = 〈p1/q1, p2/q2, . . . , pm/qm〉 a sequence of formal quotients
(SFQ, for short). If S is a SFQ, then we write |S| to denote the length m of the
sequence S, and we write span(S) to denote the subspace of K[[X]] spanned by the
corresponding sequence of rational expressions 〈pp1/q1q , pp2/q2q , . . . ppm/qmq 〉. A
coordinate vector with respect to S for a rational expression e ∈ span(S) is a sequence
〈a1, a2, . . . , am〉 of elements of K, such that e =

∑m
i=1 ai ppi/qiq . If the sequence

〈pp1/q1q , pp2/q2q , . . . ppm/qmq 〉 of rational expressions is linearly independent (hence
forms a basis for span(S)), then we will call S a basis of formal quotients (BFQ, for
short). If S is a BFQ, then clearly every rational expression e ∈ span(S) has a unique
coordinate vector 〈a1, a2, . . . , am〉 with respect to S.

Call a SFQ S = 〈p1/q1, p2/q2, . . . , pm/qm〉 homogeneous if all the polynomials
qi are identical. For an arbitrary SFQ S and polynomial q, we use S(q) to denote the
homogenous subsequence of S that consists of all the pi/qi in S for which qi = q. We
call S segregated (resp. strongly segregated) if it has the following property:

• If p/q and p′/q′ are any two elements of S, then either q and q′ are coprime or
else q ∼ q′ (resp. q = q′).

Clearly, if e is an arbitrary rational expression, and if p/q is an arbitrary representa-
tive of e with a ∈ K the leading coefficient of q, then the singleton sequence S =
{(a−1p)/(a−1q)} is a homogeneous, strongly segregated SFQ such that e ∈ span(S).
So it is always possible to view individual rational expressions as elements of span(S)
for some strongly segregated SFQ S.

The following result is the main tool underlying our representation for arrays of
rational expressions. It enables us to take an arbitrary SFQ S and obtain a strongly
segregated SFQ S′ whose span includes the span of S.
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Theorem 1. Suppose S is a SFQ. Then there exists a strongly segregated SFQ S′ such
that span(S) ⊆ span(S′). Moreover, there is an algorithm that, given S, computes
S′ and in addition computes the matrix M of a linear transformation that takes each
coordinate vector of a rational expression e with respect to S to a coordinate vector of
that same rational expression e with respect to S′.

Proof. The proof proceeds in two steps:

1. First, we show how to compute from S a segregated SFQ S′′ such that span(S) ⊆
span(S′′). The computation proceeds by repeatedly applying a segregation pro-
cedure to eliminate instances of formal quotients pi/qi and pj/qj where qi and
qj are neither coprime nor have the same sets of irreducible factors. The segre-
gation procedure is described in Section 3.1 below.

2. Second, we show how to compute from S′′ a strongly segregated SFQ S′ such
that span(S′) = span(S′′). This computation proceeds by applying a homoge-
nization procedure, to replace pairs of formal quotients pi/qi and pj/qj , where
qi ∼ qj , by new pairs p′i/q and p′j/q, where q′i ∼ q ∼ q′j . The homogenization
procedure is described in Section 3.2 below.

We now turn to a detailed description of the segregation and homogenization pro-
cedures.

3.1 Segregation
In this section we show that, given a SFQ S, there exists a segregated SFQ S′ such that
span(S) ⊆ span(S′). The main result is Lemma 2, which gives a segregation proce-
dure that, if applied repeatedly to a SFQ, will eventually bring about the segregation
property. The segregation procedure makes use of partial fraction expansion, which
we discuss first.

Lemma 1 (Partial Fraction Expansion). Suppose r is a rational expression, represented
by the formal quotient p/q. Suppose further that we have a nontrivial factorization
q = q1q2, where q1 and q2 are coprime. Then there exist polynomials p1 and p2 such
that

pp/qq = pp1/q1q + pp2/q2q .

Proof. If q1 and q2 are coprime, then by the Bézout lemma, there exist polynomials
p′1 and p′2 such that 1 = p′2q1 + p′1q2. Then taking p1 = pp′1 and p2 = pp′2 gives
p = p2q1 + p1q2. It follows that pp/qq = pp1/q1q + pp2/q2q , as asserted.

Lemma 2. Suppose S is a SFQ. Then there exists a segregated SFQ S′ such that
span(S) ⊆ span(S′).

Proof. Suppose S = 〈p1/q1, p2/q2, . . . , pm/qm〉. If S is segregated, then there is
nothing to prove. Otherwise, there exist i and j such that qi and qj are neither coprime
nor do we have qi . qj . Then qi and qj have some irreducible factor in common,
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but qi also has an irreducible factor that is not a factor of qj . We may therefore write
qi = rs, where r is a product of powers of those irreducible factors that qi and qj have
in common, and s is a product of powers of those irreducible factors of qi that are not
also factors of qj . Clearly r and s are coprime, and we may arrange that both r and s
are monic. By Lemma 1, we have a partial fraction expansion

ppi/qiq = ppr/rq + pps/sq .

Let S′ be obtained from S by replacing the formal quotient pi/qi by the two-element
sequence pr/r, ps/s. Clearly span(S) ⊆ span(S′). This procedure is repeated until it
is no longer possible to perform it, at which point a segregated SFQ is obtained.

To see that the above procedure must eventually terminate, we associate with each
SFQ 〈p1/q1, p2/q2, . . . , pm/qm〉 the finite multiset of nonnegative integers

{deg(q1),deg(q2), . . . ,deg(qm)}.

Define a lexicographic ordering that compares two such multisets by first comparing
the multiplicities of the largest value occuring in either of the two multisets, then com-
paring the multiplicities of the second-largest value, and so on. Each iteration of the
segregation procedure replaces a formal quotient pi/qi, by two new formal quotients
pr/r and ps/s, where deg(r) < deg(qi) and deg(s) < deg(qi), hence produces a
strict decrease with respect to the lexicographic ordering. Since the ordering is clearly
well-founded, termination is ensured.

As an example of the segregation procedure, consider the SFQ S = 〈p1/q1, p2/q2〉,
where

p1

q1
=

1
x3 − 5x2 + 8x− 4

p2

q2
=

1
x2 − 5x + 6

Now q1 and q2 have the common factor x−2, which induces the nontrivial factorization
q1 = (x− 1)(x− 2)2. Applying partial fraction expansion to pp1/q1q , we obtain

pp1/q1q = pp3/q3q + pp4/q4q

where
p3

q3
=

1
x− 1

p4

q4
=

−x + 3
(x− 2)2

.

We replace p1/q1 by p3/q3, p4/q4. Next, q2 and q4 have the common factor x − 2,
which yields the nontrivial factorization q2 = (x−2)(x−3). Applying partial fraction
expansion to pp2/q2q gives

pp2/q2q = pp5/q5q + pp6/q6q ,

where
p5

q5
=

−1
x− 2

p6

q6
=

1
x− 3

.

so we replace p1/q2 by p5/q5, p6/q6, resulting in the SFQ

S′ = 〈 1
x− 1

,
−x + 3
(x− 2)2

,
−1

x− 2
,

1
x− 3

〉.
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Since all pairs (q, q′) of denominators are either coprime or satisfy q ∼ q′, the SFQ S′

is segregated and the procedure terminates.
The procedure given in the proof of Lemma 2 requires that we be able to obtain

a nontrivial factorization qi = rs, where r has only irreducible factors of qi that also
occur in qj and s has only irreducible factors of qi that do not also occur in qj . Although
this could be accomplished by completely factoring qi and qj into irreducible factors
(actually, only a squarefree factorization would be required), this is unnecessary, as the
next results show.

Lemma 3. Let p and q be nonzero polynomials, with p monic. Then the following are
equivalent:

1. gcd(p, qk) = p for some k > 0.

2. p|qk for some k > 0.

3. p . q.

Proof.
(1) implies (2). Obvious.
(2) implies (3). If p|qk, then every irreducible factor of p is also a factor of q, hence

p . q.
(3) implies (1). If p . q, then every irreducible factor of p is also a factor of q,

hence taking k to be the greatest multiplicity of any of the irreducible factors of p and
using the assumption that p is monic gives gcd(p, qk) = p.

Lemma 4. Let p and q be arbitrary nonzero polynomials. Then there exists k > 0 such
that gcd(p, qk+1) = gcd(p, qk).

Proof. It suffices to take k to be the greatest multiplicity of any of the irreducible
factors of of p.

The preceding lemmas show that we can carry out the segregation procedure in the
proof of Lemma 2 as follows: At each iteration, we search systematically through all
pairs (i, j) with 1 ≤ i, j ≤ m and i 6= j, looking for a pair for which gcd(qi, qj) 6= 1. If
there are no such pairs, all qi and qj are coprime for i 6= j and the algorithm terminates.
If (i, j) is such a pair, we next obtain a positive integer k such that gcd(qi, q

k+1
j ) =

gcd(qi, q
k
j ). Lemma 4 shows that such a k always exists, hence we can find one by

searching the positive integers in increasing order. Let g = gcd(qi, q
k
j ). There are now

two possibilities:

1. g = qi. In this case, qi . qj by Lemma 3, so we go on to the next pair (i, j).

2. g 6= qi. In this case, qi has some irreducible factor that does not also divide qj .
Since we have already ensured that g 6= 1, we obtain a nontrivial factorization
qi = g(qi/g), as required by the segregation procedure.
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In our example, when considering p1/q1 and p2/q2, we first compute gcd(q1, q2) =
x − 2, then gcd(q1, (q2)2) = (x − 2)2, and then gcd(q1, (q3)3) = (x − 2)2 =
gcd(q1, (q2)2), so we take g = (x − 2)2 and obtain the factorization q1 = (q1/g)g =
(x− 1)(x− 2)2.

It is also possible, at each application of the segregation procedure, to compute a
corresponding change of coordinates matrix. In particular, suppose S′ is obtained from
S by replacing the formal quotient pi/qi by the sequence pr/r, ps/s as in the proof of
Lemma 2. Let M be the (|S| × |S′|)-dimensional matrix having the following block
form:

M =

 Ii−1 0 0 0
0 1 1 0
0 0 0 Im−i


where Ii−1 is the (i−1)-dimensional identity matrix, Im−i is the (m− i)-dimensional
identity matrix, and the zeroes denote zero matrices of suitable dimensions. Clearly,
M is the matrix of a change of coordinates (applied on the right of row vectors) from
S to S′. Such matrices arising in each iteration of the algorithm can be composed by
multiplication to obtain a final overall change of coordinates matrix.

In our example, the overall change of coordinates matrix is computed as follows:

(
1 1 0
0 0 1

)  1 0 0 0
0 1 0 0
0 0 1 1

 =
(

1 1 0 0
0 0 1 1

)
.

To make the segregation procedure completely algorithmic, it remains to be shown
how, given p and the factorization q = rs, to compute the polynomials pr and ps

in the partial fraction expansion pp/qq = ppr/rq + pps/sq . Although more efficient
algorithms for doing this are known (e.g. [Xin04]) for concreteness we show how, with
one matrix inversion, to obtain matrices M ′

r and M ′
s that can be used to obtain the

coefficients of pr and ps, respectively from the coefficients of p. Thus, once matrices
M ′

r and M ′
s have been computed for a particular factorization q = rs, we can use these

same matrices to obtain partial fraction expansions for all pk/qk with qk = q. The
following result makes this precise.

Lemma 5. Suppose q = rs, where r and s are monic and coprime. Let

Tr : K<deg(s)[X] → K<deg(q)[X] and Ts : K<deg(r)[X] → K<deg(q)[X]

be the linear transformations “multiply by r” and “multiply by s”, respectively. Then
the linear transformation:

T : K<deg(r)[X]⊕K<deg(s)[X] → K<deg(q)[X],

defined by T (pr⊕ps) = prs+psr, is nonsingular. It therefore has an inverse T ′, which
can be expressed as the direct sum T ′

s ⊕ T ′
r of transformations T ′

r and T ′
s that satisfy

p = (T ′
rp)s + (T ′

sp)r, hence pp/qq = p(T ′
rp)/rq + p(T ′

sp)/sq for any polynomial p ∈
K<deg(q)[X]. Moreover, there is an algorithm for computing the matrices of T ′

r and T ′
s

with respect to the natural bases for K<deg(q)[X], K<deg(r)[X], and K<deg(s)[X],



11

Proof. Let dr = deg(r), ds = deg(s), and dq = deg(q) = deg(r) + deg(s). Since
r and s are coprime, by the Bézout lemma, there exist polynomials r′ and s′ such that
1 = rs′+sr′. Thus, for any polynomial p ∈ K<dq [X] we have p = r(s′p)+s(r′p). In
other words, for any polynomial p ∈ K<dq [X] there exist polynomials ps and pr such
that p = rps +prs. Since rps +spr = r(ps−ts)+(pr +rt)s for any polynomial t, we
may always arrange that pr ∈ K<dr [X] by choosing t so that rt cancels the coefficients
of degree dr or higher in pr. Moreover, pr and ps are uniquely determined by p if we
require that pr ∈ K<dr [X] (and necessarily also ps ∈ K<ds [X]). For, suppose we
have rps + spr = p = rp′s + sp′r, where pr, p

′
r ∈ K<dr [X] and ps, p

′
s ∈ K<ds [X].

Then r(ps−p′s) = (p′r−pr)s, hence r|(p′r−pr). But since 0 is the only polynomial of
degree strictly less than dr that r divides, it must be that p′r − pr = 0; in other words,
p′r = pr. Once we know p′r = pr, it follows immediately that ps = p′s.

From the reasoning of the preceding paragraph, we may conclude that the linear
transformation T is a bijection. It is therefore nonsingular, and when expressed in the
form T ′

r ⊕ T ′
s, the inverse transformation T ′ satisfies p = (T ′

rp)s + (T ′
sp)r for all

p ∈ K<dq
[X].

We turn now to the computation of the matrices of the transformations T ′
r and T ′

s.
Suppose r = adr

xdr +adr−1x
dr−1 + . . .+a1x+a0. With respect to the natural bases

for K<ds [X] and K<dq [X], the matrix of Tr (acting on the right of row vectors) is the
(ds × (dr + ds))-dimensional matrix Mr whose k-th row (starting from 1) is obtained
by taking the taking the (dr + ds)-dimensional row vector

(adr adr−1 . . . a1 a0 0 0 . . . 0)

and shifting it to the right by k − 1 columns, filling with zeroes at the left. The ma-
trix of Ts is a (dr × (dr + ds))-dimensional matrix Ms constructed similarly. The
transformation T is represented by the block matrix (known as the Sylvester Matrix)(

Mr

Ms

)
.

Inverting this matrix yields the matrix of T ′, which can be written in the form(
M ′

s M ′
r

)
.

to obtain the matrices M ′
s and M ′

r of the transformations T ′
s and T ′

r, respectively. Thus,
given the coefficient vector of p with respect to the natural basis for K<deg(q)[X], we
can obtain the coefficient vectors of pr and ps simply by multiplying by M ′

r and M ′
s,

respectively.

In our running example, to compute the partial fraction expansion

p1/(x− 1)(x− 2)2q = ppr/(x− 1)q − pps/(x− 2)2q

we form the matrices

Mr =
(

1 −1 0
0 1 −1

)
Ms =

(
1 −4 4

)
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and

T =

 1 −1 0
0 1 −1
0 −4 4


whose inverse is

T ′ =

 0 4 1
−1 4 1
−1 3 1


giving

M ′
s =

 0 4
−1 4
−1 3

 M ′
r =

 1
1
1


so that the coefficient vector of pr is (0 0 1)M ′

r or (1) (i.e. pr = 1) and the coefficient
vector of ps is (0 0 1)M ′

s or (−1 3) (i.e. ps = −x + 3).

3.2 Homogenization
In this section, we show how, given a segregated SFQ S, to obtain a strongly seg-
regated SFQ S′ such that span(S′) = span(S). The main result is Lemma 6, which
gives a homogenization procedure which if applied repeatedly to a segregated SFQ will
eventually bring about the strong segregation property.

Lemma 6. Suppose S is a segregated SFQ. Then there exists a strongly segregated
SFQ S′ such that span(S′) = span(S).

Proof. Suppose S = 〈p1/q1, p2/q2, . . . , pm/qm〉. If S is strongly segregated, then
there is nothing to prove. Otherwise, there exist i and j such that qi ∼ qj but qi 6= qj .
Let l = lcm(qi, qj), let p′i = pi(l/qi) and p′j = pj(l/qj). Let S′ be obtained from S by
replacing the formal quotients pi/qi and pj/qj by the formal quotients p′i/l and p′j/l,
respectively. Now, pp′i/lq = ppi(l/qi)/lq = ppi/qiq and pp′j/lq = ppj(l/qj)/qjq =
ppj/qjq . Thus, S′ represents the same sequence of rational expressions as does S, so
that span(S′) = span(S). Moreover, since qi ∼ qj , and hence l has the same set of
irreducible factors as qi and qj , it follows that for all k, if qk and l have a nontrivial
common factor, then qk and qi also have a nontrivial common factor. Thus qk ∼ qi

by the assumption that S is segregated, and hence qk ∼ l as well. Since this holds for
all k, it follows that S′ is again segregated. The above procedure is repeated until it is
no longer possible to do so, at which point a strongly segregated SFQ S′ is obtained.
Note that each iteration results in a strict reduction in the number of pairs i, j, such that
qi ∼ qj but qi 6= qj , so termination is guaranteed.

In our example, starting with the segregated SFQ

S = 〈p3

q3
,
p4

q4
,
p5

q5
,
p6

q6
〉 = 〈 1

x− 1
,
−x + 3
(x− 2)2

,
−1

x− 2
,

1
x− 3

〉



13

we observe that q4 ∼ q5, so we replace p5/q5 by p5(x− 2)/q4, resulting in the strongly
segregated SFQ

S = 〈 1
x− 1

,
−x + 3
(x− 2)2

,
−x + 2
(x− 2)2

,
1

x− 3
〉.

Note that the homogenization procedure does not change the sequence of rational
expressions determined by the SFQ, hence the overall change of coordinates matrix
associated with the procedure is the identity matrix.

3.3 Obtaining a BFQ
Once we have used the segregation procedure to produce a strongly segregated SFQ
S, a BFQ S′ can be obtained by applying a change of coordinates that transforms the
numerators of each homogeneous subsequence S(q) into elements of the natural basis.
The following lemmas show precisely how to do this.

Lemma 7. Suppose S = 〈p1/q1, p2/q2, . . . , pm/qm〉 is a strongly segregated SFQ.
Then S is a BFQ if and only if for each i with 1 ≤ i ≤ m the homogeneous subsequence
S(qi) is a BFQ.

Proof. It is clear that if S is a BFQ then each homogeneous subsequence S(qi) is also
a BFQ. Conversely, suppose each S(qi) is a BFQ. We claim that if S(qi) 6= S(qi′) for
some i and i′, then no nonzero rational expression can at once be a linear combination
of the rational expressions represented by S(qi) and a linear combination of the rational
expressions represented by S(qi′). In other words, qi 6= qi′ implies span(S(qi)) ∩
span(S(qi′)) = {0} for all i, i′. But then it is immediate that the sequence of rational
expressions represented by the elements of S is linearly independent if and only if the
sequence of rational expressions represented by each homogeneous subsequence S(qi)
is linearly independent; that is, if and only if each S(qi) is a BFQ.

To prove the claim, suppose S(qi) 6= S(qi′). Since S is strongly segregated by
hypothesis, we have that qi and qi′ are coprime. Now, any nontrivial linear combination
of rational expressions ppi,j/qiq , where pi,j/qi ∈ S(qi), is equal to pp/qiq for the same
linear combination p of the polynomials pi,j . Moreover, since deg(pi,j) < deg(qi)
holds for each formal quotient pi,j/qi ∈ S(qi), it follows that deg(p) < deg(qi) as
well. Therefore, qi must have some irreducible factor that is not also a factor of p.
Similarly, any nontrivial linear combination of rational expressions ppi′,j′/qi′q , where
ppi′,j′/qi′q ∈ S(qi′), has the property that there is some irreducible factor of qi′ that
is not also a factor of p′. Since qi and qi′ are coprime, they have disjoint sets of
irreducible factors, hence it is impossible to have pqi′ = p′qi unless p and p′ are both
zero. Consequently, the rational expressions pp/qiq and pp′/qi′q can only be equal if
they are both zero.

Lemma 8. Suppose S = 〈(p1, q), (p2, q), . . . , (pm, q)〉 is a homogeneous SFQ. Define

S′ = 〈(xd−1, q), (xd−2, q), . . . , (1, q)〉,

where d = deg(q). Then S′ is a BFQ such that span(S) ⊆ span(S′). Moreover, the
matrix having the coefficient vectors of the pj as its rows is the matrix of a transforma-
tion of coordinates from S to S′.
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Proof. Obvious.

In our example, we have

S = 〈 1
x− 1

,
−x + 3
(x− 2)2

,
−x + 2
(x− 2)2

,
1

x− 3
〉.

The homogeneous subsequences S(x− 1) and S(x− 3) already have elements of the
natural basis for their numerators. Consider now the homogeneous subsequence

S((x− 2)2) = 〈 −x + 3
(x− 2)2

,
−x + 2
(x− 2)2

〉.

The matrix

M =
(
−1 3
−1 2

)
.

is the matrix of a change of coordinates from S((x− 2)2) to the BFQ

〈 x

(x− 2)2
,

1
(x− 2)2

〉.

The overall change of coordinates is from the SFQ S to the BFQ

S′ = 〈 1
x− 1

,
x

(x− 2)2
,

1
(x− 2)2

,
1

x− 3
〉

and it is given by the matrix

M =


1 0 0 0
0 −1 3 0
0 −1 2 0
0 0 0 1

 .

4 Representing Arrays
We now consider how to apply the results of the preceding section to obtain a repre-
sentation for arrays of rational expressions.

Suppose we wish to represent an n-dimensional array E of rational expressions.
The representation comprises:

1. A sequence Q = 〈q1, q2, . . . , qm〉 of pairwise coprime nonzero polynomials.

2. An (n + 1)-dimensional array A of scalars that stores, for each element of the
original array E, the coordinate vector of that element with respect to the BFQ

〈 xd1−1/q1, . . . , 1/q1,
xd2−1/q2, . . . , 1/q2,
. . . ,
xdm−1/qm, . . . , 1/qm 〉.

If di = deg(qi) for 1 ≤ i ≤ m then each coordinate vector will contain d1 +
d2 + . . . + dm coefficients.
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This representation has the advantage that the numerator polynomials do not need to
be stored or explicitly manipulated, and that having the natural basis polynomials as
the implied numerators automatically guarantees independence.

The issue of course arises as to how to initially construct an array representation
of the above form given a list of n rational expressions that are to be the array el-
ements. This can be done in a recursive fashion; at each stage dividing the given
sequence in half, forming the array representation of each of the two subsequences,
and then combining the two representations into a single representation for the whole
sequence. For the base case of the recursion, we need to be able to construct an ar-
ray representation from a single element list 〈p/q〉. Let d = deg(q) and suppose
p = ad−1xd−1 + ad−2xd−2 + . . . + 1. Since the sequence

xd−1/q, xd−2/q, . . . 1/q

is obviously a BFQ, we may represent the 1-element array 〈pp/qq 〉 as the one-element
sequence of polynomials 〈q〉 together with an array A whose single element is the
vector (ad−1, ad−2, . . . , a0) of coefficients of the polynomial p.

In the general case, we recursively construct array representations (Q1, A1) and
(Q2, A2), which we then wish to combine into a single representation (Q,A). In order
to do this, it is necessary to amalgamate the BFQs defined by the sequences Q1 and
Q2 into a single BFQ defined by the sequence of polynomials Q. The following result
describes formally how this can be done.

Lemma 9. Suppose Q1 = 〈q1,1, q1,2, . . . , q1,m1〉 and Q2 = 〈q2,1, q2,2, . . . , q2,m2〉 are
sequences of pairwise coprime nonzero polynomials that represent BFQs S1 and S2,
respectively. Then we can compute a sequence 〈q1, q2, . . . , qm〉, representing a BFQ S,
such that span(S1) ⊆ span(S) and span(S2) ⊆ span(S). Moreover, we can compute
matrices M1 and M2 of a change of coordinates from S1 and S2, respectively, to S.

Proof. Concatenate BFQs S1 and S2 to obtain SFQ S′. The change of coordinates
from S1 and S2 to S′ are given, respectively, by matrices M ′

1 and M ′
2 with the block

forms:
M ′

1 =
(

I 0
)

M ′
2 =

(
0 I

)
.

Apply Lemma 2 to S′ to obtain a segregated SFQ S′′ such that span(S′) ⊆ span(S′′),
together with an associated change of coordinates matrix from S′ to span(S′′). Ap-
ply Lemma 6 to S′′ to obtain a strongly segregated SFQ S′′′ such that span(S′′) =
span(S′′′), together with an associated change of coordinates matrix from S′′ to S′′′.
Finally, apply Lemma 8 to S′′′ to obtain a BFQ S such that span(S′′′) ⊆ span(S),
together with an associated change of coordinates matrix from S′′′ to S. Multiply ma-
trices M ′

1 and M ′
2 by the change of coordinates matrices from each of the subsequent

steps to obtain overall change of coordinates matrices M1 and M2 from S1 and S2,
respectively, to S.

For example, suppose we wish to create a two-element vector from the list:

〈 1
x3 − 5x2 + 8x− 4

,
1

x2 − 5x + 6
〉.
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We recursively create one-element vectors from the lists:

〈 1
x3 − 5x2 + 8x− 4

〉 〈 1
x2 − 5x + 6

〉.

The first of these is represented by (Q1, A1), where Q1 is 〈x3 − 5x2 + 8x − 4〉 and
A1 is 〈(0 0 1)〉. The second is represented by (Q2, A2), where Q2 is 〈x2 − 5x + 6〉
and A2 is 〈(0 1)〉. Next, we amalgamate the sequences Q1 and Q2. This produces the
pairwise coprime sequence

Q = 〈x− 1, (x− 2)2, x− 3〉

corresponding to the BFQ

S = 〈 1
x− 1

,
x

(x− 2)2
,

1
(x− 2)2

,
1

x− 3
〉

and the change of coordinates matrices

M1 =

 1 0 4 0
1 −1 4 0
1 −1 3 0


and

M2 =
(

0 −2 4 3
0 −1 2 1

)
.

So the array A is
〈
(

1 −1 3 0
)
,
(

0 −1 2 1
)
〉

corresponding to the expansions

1
x3 − 5x2 + 8x− 4

=
1

x− 1
+

−x

(x− 2)2
+

3
(x− 2)2

and
1

x2 − 5x + 6
=

−x

(x− 2)2
+

2
(x− 2)2

+
1

x− 3
.

Note that the amalgamation operation is performed just once on Q1 and Q2 each time
two representations (Q1, A1) and (Q2, A2) are combined. Once this has been done
and we have obtained Q and the corresponding change of coordinates matrices M1 and
M2, the coordinate vectors that are the entries of the result array A are obtained by
multiplying each entry of A1 by M1 and each entry of A2 by M2. If A1 and A2 are
regarded as matrices having these coordinate vectors as their rows, then this calculation
amounts to constructing the block matrix

A =
(

A1M1

A2M2

)
,

where A1M1 and A2M2 are matrix products.
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5 Operations on Arrays
We now consider various operations that can be performed on arrays of rational ex-
pressions represented as described in the preceding section.

5.1 Structural Operations
Arrays that have special structure, such as identity matrices or arrays that are constant
along one or more of their dimensions, can be constructed by building scalar arrays
with a related structure. For example, an n-vector of rational expressions, all of which
are zero, can be represented as (〈1〉, A), where A is an (n×0)-matrix of scalars (i.e. all
the rows are empty coordinate vectors). A constant n-vector having rational expression
e = pp/qq in all its entries can be represented as (〈q〉, A) where A is a (n × deg(q))-
matrix, each row of which contains the coefficients of the polynomial p. Similarly, an
n-vector having a single nonzero entry e = p/q can be represented as (〈q〉, A), where
A is an (n×deg(q))-matrix having a single nonzero row containing the coefficients of
p. Compact representations of arrays of all these forms are readily constructed using
MTBDD-based scalar arrays as the underlying data structure.

Because an array E of rational expressions is represented in terms of a scalar array
A having one additional dimension, structural operations on arrays of rational expres-
sions are easily implemented in terms of corresponding operations on scalar arrays.
For example, if E is a 2-dimensional array of rational expressions (i.e. a matrix), then
extracting a row or column of E amounts to extracting a 2-dimensional slice of the un-
derlying 3-dimensional scalar array A. Similarly, small arrays can be pasted together
horizontally or vertically to form larger arrays by first applying amalgamation and then
performing a corresponding pasting operation on scalar arrays. These operations can
be efficiently implemented using MTBDDs for arrays whose size in each dimension is
a power of 2. This restriction does not typically pose any hardship in practice, because
the “wasted space” incurred by rounding the sizes of arrays up to the next higher power
of two only costs a few additional nodes in an MTBDD representation.

5.2 Scaling
If array E of rational expressions is represented by (Q,A), and if c ∈ K is a scalar,
then the scaled array cE is represented by (Q, cA). Although this appears to imply
the need to scale each element of A individually, this can be avoided if the underlying
matrix representation maintains a scale factor separately from the matrix elements.
Some kinds of BDD-based matrix representations (e.g. [CT96]) naturally support this.

Alternatively, we can avoid operating on every entry of A if we generalize the
(Q,A) representation slightly so that we can scale the underlying BFQ. For example, if
we permit Q to contain non-monic polynomials and make the appropriate adjustments
to accomodate this generalization, then we could represent the array cE by (c−1Q,A)
for c nonzero. The case c = 0 would then be handled as a special case that returns the
representation of an identically zero array.
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5.3 Addition and Subtraction
Suppose arrays E1 and E2 (of the same dimension) are represented by (Q1, A1) and
(Q2, A2), respectively, where Q1 represents the BFQ S1 and Q2 represents the BFQ
S2. In order to compute the sum E1 + E2 or difference E1 −E2, first amalgamate Q1

and Q2 to obtain Q, together with change of coordinates matrices M1 and M2. The
sum E1 + E2 is now represented by (Q,A1M1 + A2M2) and the difference E1 − E2

by (Q,A1M1 −A2M2).

5.4 Zero and Equality Testing
If array E of rational expressions is represented by (Q,A), then E is identically zero
if and only if A is an identically zero array of scalars. So zero-testing for arrays of ra-
tional expressions reduces to zero-testing for scalar arrays. Testing whether two arrays
of rational expressions E1 and E2 are equal can be accomplished by computing the
difference E1 − E2 and testing whether it is identically zero.

5.5 Translation
If e = pp/qq is a rational expression, and a ∈ K, then the translation of e by a is the
rational expression e{x + a} = pp{x + a}/q{x + a}q , where p{x + a} and q{x + a}
denote the result of substituting x + a for the indeterminate x in the polynomials p and
q, respectively. The fact that partial fraction expansions are preserved by translation
makes it possible to efficiently perform translation on representations (Q,A), as we
now show.

Lemma 10. If polynomial q is irreducible, then so is q{x + a}, for any a ∈ K.

Proof. Suppose q{x+a} has a nontrivial factorization rs. Then q = q{x+a}{x−a} =
(rs){x − a} = (r{x − a})(s{x − a}), yielding a factorization of q that is nontrivial
because translation preserves degree. Thus, reducibility of q{x+a} implies reducibility
of q, or equivalently, irreducibility of q implies irreducibility of q{x + a}.

Lemma 11. If q1 and q2 are coprime, then so are q1{x + a} and q2{x + a}, for any
a ∈ K.

Proof. If r is a nontrivial common factor of both q1{x + a} and q2{x + a}, then
r{x − a} is a nontrivial common factor of both q1 = q1{x + a}{x − a} and q2 =
q2{x + a}{x − a}. Thus, if q1 and q2 have no nontrivial common factors, neither do
q1{x + a} and q2{x + a}.

Corollary 12. If S = 〈p1/q1, p2/q2, . . . , pm/qn〉 is a strongly segregated BFQ, then
so is

S{x + a} = 〈p1{x + a}/q1{x + a}, . . . , pm{x + a}/qm{x + a}〉.

Moreover, if rational expression e has coordinate vector 〈a1, a2, . . . , am〉 with respect
to S, then e{x + a} has that same coordinate vector with respect to S{x + a}.
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From the above results, if array E of rational expressions is represented by (Q,A),
then the translation E{x + a} of E is represented by (Q{x + a}, A). That is, transla-
tion of a vector of rational expressions can be accomplished simply by translating the
denominator polynomials of the underlying BFQ, without having to treat each entry of
the array individually.

5.6 Evaluation
If e = pp/qq is a rational expression, and a ∈ K is such that the value q(a) of
polynomial q at a is nonzero, then the value e(a) of e at a is given by the quotient
p(a)/q(a) ∈ K. The value E(a) at a of an array E of rational expressions is the scalar
array whose entries are the values at a of the corresponding entries of E. If array E of
rational expressions is represented by (Q,A), where Q = 〈q1, q2, . . . , qm〉, and a ∈ K
is such that qi(a) 6= 0 for all 1 ≤ i ≤ m, then the value E(a) of E at a is given by the
product:

A · 〈q1(a)−1, q2(a)−1, . . . , qm(a)−1〉t.

Actually, the requirement that qi(a) 6= 0 for all 1 ≤ i ≤ m is too strong, and it can be
weakened to the following: qi(a) 6= 0 for all 1 ≤ i ≤ m for which the corresponding
slice Ai is nonzero. (The slice Ai is the scalar array consisting of the ith coordinates
of each entry of A.) This is an important consideration, because as operations are
performed on arrays of rational expressions there can tend to accumulate in Q polyno-
mials qi that are unnecessary because the corresponding slices Ai are identically zero.
“Garbage collection” of these unnecessary elements of Q from time to time may be
useful in reducing time and space requirements.

5.7 Contraction
If E is an array of rational expressions, represented by (Q,A), then the sum of all the
entries of E is the rational expression whose coordinate vector with respect to Q is the
vector obtained by summing all the coordinate vectors that are the entries of A. If an
MTBDD-based representation is used for A, then a recursive algorithm can be used to
compute this coordinate vector efficiently (i.e. in time on the order of the number of
nodes of the MTBDD representation of A, rather than the total number of entries of
A).

5.8 Kronecker Product
The Kronecker (or tensor) product of an m-element array A and an n-element array B
is the mn-element array A⊗B whose entries are all possible products of an entry from
A and an entry from B. If A and B happen to be matrices, then we can think of A⊗B
as a block matrix that consists, for each position (i, j) in A, of a copy of B that has
been scaled by the entry ai,j at that position of A. Kronecker products arise naturally
when forming parallel compositions of various kinds of automata represented in terms
of transition matrices. If (as as can be done with MTBDD-based implementations) the
underlying representation of scalar arrays admits an efficient method for computing
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Kronecker products, then we can take advantage of this to efficiently compute the Kro-
necker product C ⊗ E of a scalar array C and an array E of rational expressions. In
particular, if E is represented by (Q,A), then C ⊗ E is represented by (Q,C ⊗A).

To compute the Kronecker product of two arrays of rational expressions is some-
what more difficult. Suppose E1 and E2 are two arrays of rational expressions, repre-
sented by (Q1, A1) and (Q2, A2), respectively. Let

S1 = 〈p1,1/q1,1, p1,2/q1,2, . . . , p1,m1/q1,m1〉

and
S2 = 〈p2,1/q2,1, p2,2/q2,2, . . . , p2,m2/q2,m2〉

be the BFQs corresponding to Q1 and Q2, respectively. If e1 and e2 are entries of E1

and E2, respectively, then e1 =
∑m1

i=1 a1,ipp1,i/q1,iq and e2 =
∑m2

j=1 a2,jpp2,j/q2,jq .
Thus e1e2, the corresponding entry of E1 ⊗ E2 satisfies

e1e2 =
m1∑
i=1

m2∑
j=1

a1,ia2,jpp1,ip2,j/q1,iq2,jq .

In other words, if V1 and V2 are the coordinate vectors of e1 and e2 with respect to
BFQs S1 and S2, respectively, then V1 ⊗ V2 is a coordinate vector of e1e2 with respect
to the SFQ S1 ⊗ S2.

The above observations lead to the following method for computing E1⊗E2. First,
compute the array A = A1 ⊗A2, organized as an array of coordinate vectors obtained
by taking all possible Kronecker products of an entry of A1 and an entry of A2. Then
the entries of A are coordinate vectors of the entries of E1⊗E2 with respect to the SFQ
S1⊗S2. Next, apply the segregation procedure to S1⊗S2 to obtain a pairwise coprime
sequence of polynomials Q representing a strongly segregated BFQ S, together with
the associated change of coordinates matrix M from S1 ⊗ S2 to S. Finally, compute
AM to obtain the representation (Q,AM) of E1 ⊗ E2. Note that all we really need
is the sequence Q, the array A and the matrix M , and these can be obtained without
explicitly computing either S1 ⊗ S2 or S.

If the sequence Q1 contains polynomials that have irreducible factors that are
mostly distinct from those of Q2, then the resulting sequence Q will tend to be on the
order of the product of the lengths of Q1 and Q2. On the other hand, if the irreducible
factors are mostly the same between the two sequences, then Q will tend to be similar
in length to the lengths of Q1 and Q2. Although the intermediate array A seems rela-
tively “large” in terms of number of entries, in fact in an MTBDD-based representation
it can be arranged (by placing scalar “weights” at the nodes of the decision diagram, so
that the value in each entry of an array is obtained by taking the product of the weights
of each of the nodes along a path to a leaf node in the MTBDD), that the number of
nodes in the representation of A need only be the sum of the number of nodes in A1

and the number of nodes in A2. So if A1 and A2 have compact representations, A will
as well.
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5.9 Hadamard Product
The Hadamard or (entrywise) product of two arrays of the same shape (i.e same num-
ber and sizes of dimensions) is the array obtained by multiplying the corresponding
elements of the given arrays. If E is an array of rational expressions, represented by
(Q,A), and C is an array of scalars of the same shape as E, then the Hadamard prod-
uct C�E is represented by (Q,C�A), assuming we treat A as an array of coordinate
vectors. Alternatively, if we treat A as an array of scalars (with an additional dimension
beyond those of E), then the same result can be computed as C̄�A, where C̄ is the
array of scalars of the same shape as A that is obtained by replicating the entries of C
along the additional dimension. This idea is efficient and simple to implement using
MTBDDs.

The Hadamard product of two arrays of rational expressions can be computed using
ideas similar to those already explained for Kronecker product. Suppose E1 and E2

are two arrays of rational expressions of the same shape, represented by (Q1, A1) and
(Q2, A2), respectively. Let S1 and S2 be the BFQs corresponding to Q1 and Q2,
respectively. To compute E1�E2, first compute the array A whose entries are the
coordinate vectors obtained by taking the Kronecker products of corresponding entries
of A1 and A2. The entries of A are coordinate vectors of E1�E2 with respect to the
SFQ S1 ⊗ S2. Then, compute the sequence Q and change of coordinates matrix M
as was done for Kronecker product, and finally obtain the representation (Q,AM) for
E1�E2.

5.10 Matrix Product
The product of an (m× p)-matrix A and an (p× n)-matrix B can be computed as fol-
lows: First, expand A to an (m×p×n)-array Ā by replicating the existing entries along
the new dimension. Next, expand B to an (m×p×n)-array B̄ in a similar way. Then,
form the Hadamard product C = Ā�B̄. Finally, reduce C to an (m × n)-matrix by
summing along the “middle” dimension. Although this is not the usual way that matrix
product is described, in the context of an MTBDD-based implementation it is a rea-
sonable way to compute it. Note that we need not limit ourselves to (two-dimensional)
matrices; the same scheme serves to describe the product of arrays with arbitrary num-
bers of dimensions, with an arbitrary set of “overlapping” dimensions, save only that
the arrays are conformant in the sense that corresponding overlapping dimensions have
the same size. This basic idea can be applied directly to compute products of various
combinations of arrays of scalars and and arrays of rational expressions, including dot
product, matrix/vector product, and matrix/matrix product.

5.11 Conversion to Traditional Representation
Suppose the n-dimensional array E of rational expressions is represented by the pair
(Q,A), where Q = 〈q1, . . . , qm〉. For 1 ≤ i ≤ m, let di = deg(qi), and let d =
d1 + . . . + dm. Then the array A can be regarded as a sequence of n-dimensional
“slices”:

A1,1, . . . , A1,d1 , A2,1, . . . , A2,d2 , . . . , Am,1, . . . , Am,dm
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so that the array E is given by:

E =
m∑

i=1

di−1∑
j=0

Ai,j
xj

qi
. (1)

To convert from the (Q,A) representation to a traditional matrix representation is sim-
ply a matter of evaluating expression (1) using the traditional representation.

5.12 Improper Rational Expressions
We have assumed up to this point that arrays to be represented contained only proper
rational expressions, for which the degree of the numerator is strictly less than the
degree of the denominator. However, it is not difficult to extend the representation and
algorithms to handle improper rational expressions as well. One easy extension, which
hardly requires any changes, is to allow rational expressions for which the degree of
the numerator is less than or equal to the degree of the denominator. Since every such
rational expression is equivalent to a scalar plus a proper rational expression, all that
needs to be done to handle such expressions is to reserve one entry of the coordinate
vector as the coefficient of x0 (i.e. 1).

More generally, an arbitrary improper rational expression can be expressed as the
sum of an “integral part,” which is a polynomial, and a “fractional part,” which is
a proper rational expression. To handle such expressions we simply need to add to
the representation (Q,A) a nonnegative integer d that gives the degree of the highest
positive power of x, and to reserve d + 1 elements of the coefficient vector for the
coefficients of xd, xd−1, . . . , x1, x0. It is not necessary to represent these polynomials
explicitly, although the computations of the various change of coordinates matrices
have to be modified to take into account the presence of these additional basis elements.

6 Conclusion
We have shown how to represent n-dimensional arrays of rational expressions as (n +
1)-dimensional arrays of scalars, in a way that can take advantage of memory-saving
MTBDD-based representations for large sparse scalar arrays. A variety of common
operations on arrays of rational expressions map efficiently to this representation. The
algorithms described here were implemented by the author in the Standard ML pro-
gramming language, and applied successfully as part of a package [ZCS03] for manip-
ulating representations of large sparse probabilistic systems. In this package, matrices
of rational expressions were used to represent systems that are “open” in the sense of
having environments that are not yet specified. The implementation relied on an un-
derlying MTBDD-based representation for scalar arrays. Three particular operations
on matrices of rational expressions were central to this application, and served as the
motivation for devising the representation described in this paper: (1) translation of the
entries of a matrix of rational expressions by a common scalar, (2) Kronecker product
of a matrix of scalars and a matrix of rational expressions, and (3) Evaluation of the
entries of a matrix of rational expressions on a common argument, to obtain a matrix
of scalars.
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