
Fully Distributed, AND/OR Parallel Execution

of Logic Programs

Prabhakaran Raman Eugene W. Stark

�

TR-88/02

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

E-mail : raman@sbcs.sunysb.edu

February 13, 1988

Abstract

We consider a distributed model for the execution of logic programs, in which a process is as-

signed to each node of the AND/OR tree for a program, and in which each process communicates

directly only with its immediate neighbors in the tree. We derive an interpreter, or execution

method, for this model, in which each node process maintains in its state a set of substitutions

that represents a current local approximation to the set of answer substitutions. Execution con-

sists of each process repeatedly sending its current state to its neighbors, and updating its state

using information it receives. Eventually, \exact" answer substitutions accumulate at the root

node, and are output. The interpreter supports both AND- and OR-parallelism in a completely

unrestricted fashion. In particular, bidirectional communication can occur between two children

of the same AND-node, a feature not present in previous work. We prove that our interpreter

is sound and complete. The proof, which is nontrivial, hinges on an interesting property of

information
ow in the AND/OR-tree.

�

This research was supported in part by NSF Grant CCR-8702247.

1

1 Introduction

A logic program consists of a �nite, nonempty set of de�nite Horn clauses, which are closed formulas

of �rst-order logic of the form 8x

1

; . . .x

m

(g

1

^ . . .^ g

n

� h), where g

1

; . . . ; g

n

and h are literals, or

atomic formulas. It is customary, in the logic programming literature, to write such a formula as

h g

1

; . . . ; g

n

, and to read it as \h if g

1

and . . . and g

n

." The literal h is called the head of the

clause, and the sequence of literals g

1

; . . .g

n

is called its body.

Execution of a logic program begins when an input literal g, called the goal, has been speci�ed.

The objective of an interpreter, or execution method, is to solve the goal g. That is, the interpreter

searches for an assignment of terms to the variables of g, such that if g

0

is the instance of g

obtained by substituting each occurrence of a variable by the corresponding term, then g

0

is a logical

consequence of the set of program clauses. Such an assignment is called an answer substitution.

In general, there will be more than one, and possibly in�nitely many, answer substitutions for a

given program and goal, so the output of the interpreter will be a �nite or in�nite sequence of

substitutions. An interpreter is sound if it only outputs answer substitutions, and complete if every

ground answer substitution is an instance of some output substitution.

The operation of an interpreter presented with a logic program P and a goal g is conveniently

described in terms of the AND/OR-tree [Kow79] for P and g. This (potentially in�nite) tree

contains two kinds of nodes, OR-nodes, which are labeled by literals, and AND-nodes, which are

labeled by program clauses

1

. The root of the tree is an OR-node, which is labeled by g. Each OR-

node in the tree has one AND-node child for each program clause, a variant (renamed version) of

which is used to label the child. Each AND-node in the tree, labeled by a clause h g

1

; . . . ; g

k

, has

k OR-node children, which are labeled by variants of g

1

; . . . ; g

k

, respectively. Variants are selected

so that the labels of distinct nodes in the tree have no variables in common. With each edge in the

AND/OR-tree between a parent node m and a child node n we associate an edge equation, de�ned

as follows: If m is an AND-node labeled by a clause h g

1

; . . . ; g

k

and n is the ith OR-node child

of m, labeled by a variant g of g

i

, then the edge equation is g

i

= g. If m is an OR-node labeled

by a literal g, and n is the AND-node child of m labeled by a clause h g

1

; . . . ; g

k

, then the edge

equation is g = h.

It is a consequence of the completeness of the resolution inference rule for �rst-order logic in

clausal form, that if an instance g

0

of a goal g is a logical consequence of the clauses of program P ,

then there exists a proof of g

0

from P whose representation in tree form is isomorphic to a subgraph

of the AND/OR-tree for P and g. The subgraphs that correspond to proof trees are those �nite

subgraphs of the AND/OR-tree that are connected, conjunctive in the sense that each OR-node in

the subgraph has exactly one child in the subgraph, and maximal in the sense that they are not

properly contained in any other connected, conjunctive subgraph. We use the term neighborhood to

refer to a connected subgraph of an AND/OR-tree, and we call maximal conjunctive neighborhoods

prime. A prime neighborhood determines a proof tree once we have speci�ed a substitution � that

solves the neighborhood, which means that it solves (uni�es) the equation associated with each of

the edges in the neighborhood.

The task of an interpreter presented with a logic program P and goal g can therefore be thought

of as a search for substitutions that solve �nite prime neighborhoods of the AND/OR-tree for P

and g. Sequential interpreters for logic programs use a deterministic strategy to enumerate and

1

Authors di�er on which nodes are called \AND-nodes," and which are called \OR-nodes." Our usage agrees with

[CK85] and is the opposite of [LM86].

2

solve �nite prime neighborhoods. For example, the Prolog interpreter traverses the AND/OR-tree

in a depth-�rst fashion. At each OR-node, one child is chosen for search, and the choice is recorded

on stack. No choice is made at AND-nodes; rather, all children are searched in sequence. The

choice information on the stack at any time determines a �nite, conjunctive neighborhood of the

AND/OR-tree. Also computed by the interpreter is a substitution that solves this neighborhood.

This substitution is updated incrementally as the neighborhood is extended by the search procedure.

Extension of the current conjunctive neighborhood can be interrupted in two ways: either the

neighborhood is maximal, or else the addition of a new edge to the neighborhood results in a

neighborhood having no solution. In the �rst case, the search is said to succeed, the neighborhood

that has been searched is prime, and the substitution that has been computed is output as an

answer. In the second case, the search is said to fail, and no answer is produced. In either case, the

interpreter then backtracks to the most recent choice point (if any) on the stack, and restarts the

search with the next untried choice. Such an interpreter, though sound, is obviously not complete

since the presence of in�nite branches in the AND/OR-tree can prevent some prime neighborhoods

from being discovered.

The AND/OR-tree paradigm also suggests methods for exploiting parallelism in the execution

of logic programs. For example, a Prolog-like interpreter may search all children of an OR-node

in parallel, rather than choosing one and recording the choice for later backtracking. This kind of

parallelism, called OR-parallelism, is particularly easy to exploit, since the search of each child of

an OR-node can be carried out completely independently of the others, and the answers produced

by all of them simply collected together. In AND-parallelism, the search of the children of an

AND-node is carried out in parallel. This kind of parallelism is more di�cult to exploit, since the

presence of variables shared between the literals in the body of a clause implies that the answers

produced by the searches of each of the children cannot merely be collected together, but must

be merged in such a way that the semantics of shared variables is respected. The merging can

be done either after the answers are produced, or it can be done during the search by having the

child processes communicate with each other. The latter approach is attractive, since information

provided by one child of an AND-node can be used to prune the search space of another, resulting

in increased e�ciency.

In this paper, we consider a model for parallel execution of logic programs in which a process

is assigned to each node of the AND/OR-tree. Each process in our model executes asynchronously

and independently of the others; thus the model supports unrestricted AND- and OR-parallelism.

Processes obey a simple program, in which they repeatedly transmit their current state to their

neighbors in the tree, and incorporate state information received from neighbors into their own

state. Processes communicate directly only with their neighbors in the tree. From time to time,

answer substitutions are output by the root process.

We consider the question of whether there exists a sound and complete interpreter for logic

programs, based on this model, in which each node process maintains in its state a certain set of

substitutions. Roughly, we would like this set of substitutions to represent an approximation to

the set of answer substitutions for the subtree rooted at that node, based on information collected

from other processes so far during execution. We would like processes to retain only substitutions

that are in some sense relevant to the computation of answer substitutions at the root. Information

arriving during execution could then be used to prune irrelevant substitutions. Also, we would

like the substitutions maintained by a process to include only information about the bindings of

variables that are \local" to the corresponding node, in the sense that they occur in the literal or

3

clause labeling that node.

We show that such an interpreter does exist. Our interpreter has the following characteristics:

� The interpreter is fully distributed and asynchronous. No restriction is placed on the pattern

of communication between nodes, except that a minimal \bottom-up fairness" assumption

must be satis�ed.

� The interpreter supports both AND- and OR-parallelism. In particular, information arriving

from one child of an AND-node can propagate to another child, causing pruning of the search

space for the latter. This bidirectional communication between AND-parallel processes is a

feature not present in previous work.

� State information at a node is completely local to that node. In particular, no system-wide

unique variable names are required.

� The interpreter is provably sound and complete.

The soundness and completeness proof, which is nontrivial, involves establishing an invariant

relationship, between the state of a given node at any point during execution, and the \neighbor-

hood" of all nodes from which the given node has received information so far. The proof hinges on

an interesting property of information
ow in the AND/OR-tree, which says that if m and n are

adjacent nodes in the tree, then m always \knows more" than n about the state of the tree in the

direction away from n.

In the form presented here, our interpreter is not suitable for direct implementation, since we

ignore a number of issues of practical importance. For example, we assume that all processes

(potentially in�nitely many of them) exist from the start of execution, and do not consider how a

practical interpreter would construct the AND/OR tree and allocate processes to its nodes. We

also make no attempt to minimize communication costs between processes or to show how a process

can e�ciently update its state with information received in a message. Nevertheless, we feel the

interpreter has great potential for the incorporation of various performance-improving optimizations

and heuristics, which would ultimately lead to a practical algorithm. We are currently investigating

possibilities here, some of which are sketched at the end of the paper.

Irrespective of the practical potential of our interpreter, we feel that its derivation and cor-

rectness proof represents an interesting exercise in distributing an algorithm over a number of

processors. It should be pointed out that we did not originally discover the algorithm in the �nal

form presented here, and subsequently prove its correctness. Rather, we began by looking for algo-

rithms of the same general form, and then were guided to the �nal algorithm by solving problems

that arose in the correctness proof. Although the idea underlying the the algorithm is not partic-

ularly di�cult, to see why it works, and to deal correctly with the various special cases that arise,

demands the construction of a careful correctness argument.

1.1 Informal Description of the Interpreter

To motivate the subsequent formal development, we give here a slightly more detailed description

of our interpreter.

As mentioned above, our interpreter assigns a process to each node of the AND/OR tree. Each

process maintains in its state a �nite set of substitutions, which we call alternatives. At any point

4

during execution, the set of alternatives for node n represents an approximation, based on the

information received so far at node n, to a set of answer substitutions for the subtree rooted at n.

Not all substitutions that are answers for the subtree rooted at n are necessarily covered by the

set of alternatives. Rather, only those that are relevant to the computation of answers at the root

need be retained. Processes re�ne their approximations by exchanging state information with their

neighbors in the tree. Eventually, \exact" approximations accumulate at the root, where they are

output.

Various complications arise when one attempts to elaborate the above ideas into an algorithm.

First, we �nd it necessary to maintain slightly di�erent state information at OR-nodes than at AND-

nodes. The state of an AND-node contains a �nite set of alternatives as described above. However,

the state of an OR-node contains not just a single set of alternatives, but rather a vector of such

sets, with one component for each of its children in the tree. Second, we must make sure that the

state of each node contains information about which alternatives represent exact approximations.

Ultimately, this information would be used by the root process to determine whether an alternative

can be output as an answer.

The third di�culty we face is to discover the proper \update functions" which a node uses

to incorporate information about its neighbors' states into its own. We did not �nd the solution

particularly obvious. In the end, there are four di�erent kinds of update functions, to cover the

four cases de�ned by whether an AND- or an OR-node is receiving state information from a parent

or child. To give an idea of how the update functions work, we consider the case in which an

AND-node n receives state information from its OR-node parent m. The other cases use similar

ideas. Let g be the literal labeling the OR-node, and let h be the head of the clause labeling the

AND-node. To compute its new set of approximate answer substitutions, the AND-node takes the

vector of sets maintained by its parent OR-node, and selects out the component corresponding to

itself. Call the old set of approximations for the AND-node � and the selected component of the

state of the OR-node �

n

. The AND-node then proceeds as follows: For each substitution � in

� and � in �

n

, renamings are applied to obtain variants �

0

and �

0

having no range variables in

common. Then �

0

is applied to g to obtain g�

0

, and �

0

is applied to h to obtain h�

0

. A most general

uni�er � (if it exists) of g�

0

and h�

0

is computed, and is composed with �

0

to obtain a substitution

� = �

0

�. The set of all � obtained in this way from substitutions in � and �

n

is collected, and

subsumption is applied to reduce its size. The resulting set is the new set of alternatives for the

AND-node.

1.2 Related Work

We classify previous work in parallel interpreters for logic programs on the basis of the AND-

parallelism each supports. In [CK85, LM86, Kal86] AND-parallelism is restricted to independent

goals (those that do not share variables). In [Wis86, KL87] AND-goals are evaluated bottom-up

without any exchange of information between the AND-parallel goals. The \committed choice" lan-

guages of [CG86, Sha83] evaluate AND-goals in parallel with bidirectional exchange of information

through shared variables, but eliminate OR-parallelism by having each OR-node \commit" to only

one child. There are several proposals for purely OR-parallel interpreters that evaluate AND-goals

sequentially. We note that no previous interpreters feature the full OR-parallelism coupled with

bidirectional communication between AND-processes, which ours supports.

The AND/OR process model of Conery [CK83, CK85], was one of the �rst suggested models for

5

parallel evaluation of logic programs. In this message-passingmodel, the AND/OR tree is developed

dynamically, and processes are assigned to each node. Each OR-node develops all its children

in parallel, thus the method supports OR-parallelism. However, AND-parallelism is restricted

to independent goals. Independence is ensured by dynamically maintaining a dependency graph

between literals in the body of a clause, and solving literals in parallel only when they can be

determined to be independent. The method of [CK85] produces only one answer at a time, with

alternative answers produced on demand by backtracking. Distributed backtracking is complex

and expensive, and in [LM86] it is eliminated in favor of a multiple-answer data-driven model in

which solutions to literals in the body of a clause are piped between AND-parallel processes in

accordance with the dependency graph. Kale [Kal87] has pointed out that both methods [CK85]

and [LM86] are incomplete, the authors' claims to the contrary notwithstanding. In [Kal86], Kale

has given a modi�ed version, which is apparently complete. In [CDD85, Her86] it is shown how

the expense of maintaining the dependency graphs can be reduced by compile-time preprocessing.

In [Wis86] and [KL87], AND-parallelism is supported by computing answers in a bottom-up

fashion, and merging answer sets for separate conjuncts to resolve con
icting bindings for shared

variables. Whereas [KL87] merges the answers incrementally, [Wis86] does not merge the answers

until one of the conjuncts has produced all answers, and his method fails to be complete for this

reason [Kal87]. In both methods, the bottom-up approach means that it is impossible for the

answers produced by one conjunct to a�ect the computation of answers by a parallel conjunct.

The \committed-choice" languages of [CG86] and [Sha83] evaluate AND-goals in parallel with

bidirectional exchange of information through shared variables. However, OR-parallelism is elim-

inated by \committing" to only one child of each OR-node. At the other extreme are the fully

OR-parallel interpreters [YN84, UT83, WADK84, CH83, GTM84, LP84] which evaluate AND-goals

sequentially. Other approaches are taken by Pollard [Pol81], who proposes a rather complex shared-

memory AND/OR parallel model, and in [CJ87], where we �nd a theorem-proving-style model that

does not attempt to use AND- or OR-parallelism but rather distributes work between processors

based on locality of data.

1.3 Outline of the Paper

The remainder of the paper is organized as follows: In Section 2, we introduce some preliminaryma-

terial, leading up to a formal de�nition of an \interpreter." In Section 3 we present our interpreter,

which we call the \basis sets interpreter." In Section 4 we prove that the basis sets interpreter is

correct. The proof is accomplished by using \simulations" to compare the basis sets interpreter to

an abstract interpreter whose correctness is obvious. Finally, in Section 5, we summarize what has

been achieved and point out possibilities for future work.

2 Logic Programs and Interpreters

Let a countably in�nite set V of variables be �xed. If S is a �rst-order signature, then let T

S

, A

S

and C

S

denote, respectively, the set of all terms, literals (atomic formulas), and clauses constructed

from variables in V and symbols in S. We write vars(e) to denote the set of all variables occurring

in an expression (term, literal, or clause) e.

A logic program P is a pair (S;C), where S is a �rst-order signature, and C � C

S

is a nonempty,

�nite set of de�nite Horn clauses. We use the customary notation h g

1

; . . . ; g

k

to denote a clause

6

in C.

2.1 Substitutions

Since our results depend heavily on properties of substitutions, we require a careful development

of the pertinent de�nitions. We shall always speak of substitutions under the assumption that a

�rst-order signature S has been speci�ed in advance.

A substitution is a function � : V ! T

S

, where V is a subset of V , called the domain of �

and denoted dom(�). The set fv 2 dom(�) : �(v) 6= vg is called the support of � and is denoted

supp(�). The range variables rvars(�) of � is the set

S

fvars(�(v)) : v 2 dom(�)g. We say that � is

ground if rvars(�) = ;. Substitutions � and �

0

are called range-disjoint if rvars(�) \ rvars(�

0

) = ;.

If e is an expression, and � is a substitution with vars(e) � dom(�), then de�ne the application of

� to e to be the result of replacing each occurrence of a variable v in e by the term �(v), in the

usual way. We write e� to denote the application of � to e.

We distinguish two special kinds of substitutions, \global" and \local." A substitution � is called

global if dom(�) = V and local if dom(�) is a �nite subset of V . If � is a substitution, and � is a global

substitution, then the composition of � and � is the substitution �� , with dom(��) = dom(�), such

that x(��) = (x�)� for all x 2 dom(�). Note that �� is de�ned when, and only when, � is global.

In particular, the composition of arbitrary global substitutions is de�ned.

If � is a substitution and V � V , then the restriction of � to V is the substitution ��V such

that dom(��V) = dom(�) \ V , and (��V)(v) = �(v) for all v 2 dom(�) \ V . Note that for all

substitutions �, all global substitutions �, and all sets of variables V , we have (��)�V = (��V)�. If

supp(�)\ supp(�) = ;, then the union of � and � is the substitution � [� such that dom(� [�) =

dom(�) [dom(�) and

v(� [�) =

8

>

<

>

:

v�; if v 2 supp(�);

v�; if v 2 supp(�);

v; for all other v 2 dom(�) [dom(�):

A renaming is a global substitution that is an injection from V to V . A particularly important

renaming is the identity global substitution id. An expression e

0

is a variant of e i� e

0

= e� for

some renaming �. Similarly, a substitution �

0

is a variant of � if �

0

= �� for some renaming �. We

shall need to obtain variants of expressions and substitutions in a standardized fashion. Therefore,

let us �x a range-disjoint pair of renamings ! and !

0

(such a pair exists because V is in�nite).

A substitution � subsumes a substitution � , and we write �

@

�

� , if there exists a global

substitution � such that � = ��. The relation

@

�

is easily seen to be re
exive and transitive,

moreover if �

@

�

� and �

@

�

�, then � is a variant of �.

Expressions e and e

0

are are called uni�able if there exists a global substitution � , called a

uni�er, such that e� = e

0

� . Similarly, substitutions � and �

0

are uni�able if there exists a global

substitution � such that �� = �

0

� . A uni�er � of a pair of expressions or substitutions is called

most general if �

@

�

� for any other uni�er � of that pair of expressions or substitutions. We have

the following standard result:

Proposition 2.1 (Uni�cation Theorem) If a pair of expressions or local substitutions has a

uni�er, then it has a most general uni�er.

Let mgu denote a function that maps each uni�able pair of expression or local substitutions to

a most general uni�er.

7

2.2 AND/OR Trees

Suppose P = (S;C) is a logic program, and g is a literal, which we call the goal. An AND/OR tree

for P and g is a (potentially in�nite) node-labeled, bipartite tree T = (A;O; r;E; L), where

� A [O is the set of nodes, with A the set of AND nodes and O the set of OR nodes,

� r 2 O is the root node,

� E � (A� O) [(O �A) is the set of directed edges,

� L is the labeling map, which assigns a literal to each OR node, and a clause from C to each

AND node,

such that the following conditions hold:

1. L(r) = g.

2. For each OR node o, there is exactly one child a of o for each clause h g

1

; . . . ; g

k

in C, and

L(a) is a variant of that clause.

3. For each AND node a, if L(a) = h g

1

; . . . ; g

k

, then a has exactly k children, o

1

; . . . ; o

k

, and

L(o

i

) is a variant of g

i

, for 1 � i � k.

4. If m and n are distinct nodes, then L(m) and L(n) have no variables in common.

It follows from these conditions that two AND/OR trees for P and g are variants of each other

in the sense that the underlying trees are isomorphic, and corresponding node labels are variants.

Since nothing we shall say depends in any way on a particular choice of variables in the node labels,

we shall henceforth speak of the AND/OR tree for P and g as if it were unique.

When considering an AND/OR tree T , we write m � n or m = parent(n) if node m is the

parent of node n, m �

�

n if m is an ancestor of n, and m ^ n for the least common ancestor of m

and n. We write LV

n

for the set of local variables of node n; that is, for the set vars(L(n)). We

write LV for

S

n2A[O

LV

n

.

A set U of nodes of T is conjunctive if for each m;n 2 U , either m^ n is an AND node, or else

one of m;n is an ancestor of the other. We say that nodes m;n are conjunctive if the set fm;ng

is conjunctive, and that node m is conjunctive with a set of nodes U if fmg [U is conjunctive. A

connected set U of nodes of T is called a neighborhood in T . If U is a neighborhood, and n 2 U

then U is called a neighborhood of n. A neighborhood is prime if it is maximal conjunctive; that

is, if it is conjunctive and is not a proper subset of any conjunctive neighborhood. Clearly, every

conjunctive neighborhood (in particular, a neighborhood consisting of a single node) is contained

in a prime neighborhood.

To each pair of nodes (m;n) in T , with m � n, we de�ne the associated edge equation to be the

pair of literals (l; l

0

) de�ned as follows:

� If m 2 A, L(m) = h g

1

; . . . ; g

k

, node n 2 O is the child of m corresponding to g

i

, and

L(n) = g, then l = g

i

and l

0

= g.

� If m 2 O, L(m) = g, and L(n) = h g

1

; . . . ; g

k

, then l = g and l

0

= h.

8

A substitution � solves neighborhood U if LV

n

� dom(�) for all n 2 U and if for all edges (m;n) in

U , with associated edge equation (l; l

0

), we have l� = l

0

�. We say � solves edge (m;n) if � solves the

neighborhood fm;ng. Clearly, if � solves some �nite prime neighborhood P (of r) in the AND/OR

tree for P and g, then application of � to P yields a proof tree for g� from axioms C. Conversely, if

an instance g

0

of g is provable from axioms C, then there exists a substitution � and a �nite prime

neighborhood P in the AND/OR tree for P and g, such that � solves P and such that g

0

= g� .

Thus, we say that a substitution � is an answer for program P and goal g if � = ��LV

r

, where �

solves some �nite prime neighborhood P (of r) in the AND/OR tree for P and g.

2.3 Interpreters

In general, an \interpreter" for logic programs is an algorithm, which accepts as input a logic

program P and a goal g, and produces as output a (possibly in�nite) sequence of substitutions

�

0

; �

1

; . . . with common domain LV

r

. An interpreter is \sound" if each �

i

is an answer for P and

g, and \complete" if whenever � is a ground answer for P and g, then �

i

@

�

� for some i � 0.

In this paper, we are concerned with interpreters of a speci�c form: namely, those in which a

program P with goal g is executed by a distributed algorithm in which one process is assigned to

each node of the AND/OR tree for P and g. Each process executes a simple program, in which it

repeatedly transmits its entire current state to its neighbors in the tree, and incorporates into its

state the information it receives from its neighbors.

Formally, we de�ne an interpreter to be a function I that takes an AND/OR tree, and annotates

it with the following information:

� To each node n is assigned:

{ A set Q

I

n

of states.

{ A distinguished element �

I

n

2 Q

I

n

, called the initial state.

� To the root r is assigned an output function O

I

that maps Q

I

r

to sets of substitutions with

domain LV

r

.

� To each directed edge (m;n), with m � n, is assigned a pair of update functions:

�

I

mn

: Q

I

m

�Q

I

n

! Q

I

n

; �

I

nm

: Q

I

n

�Q

I

m

! Q

I

m

:

The update function �

I

mn

(�

I

nm

) is used by node n (node m) to compute its new state after

receiving a message from node m (node n).

If T is an AND/OR tree and I is an interpreter, then I(T) denotes the annotated tree obtained by

applying I to T .

A global state for an annotated tree is a vector �q = (q

n

: n 2 A [O), where q

n

2 Q

n

for all

n 2 A[O. We write �q

n

to denote the component q

n

of �q. A transition is an expression of the form

�q

mn

�!�r, where �q, �r are global states and m;n are adjacent nodes, such that for all p 2 A [O,

�r

p

=

(

�

mn

(�q

m

; �q

n

); if p = n;

�q

p

; otherwise:

9

A schedule for an annotated tree is an in�nite sequence of ordered pairs

(m

0

; n

0

); (m

1

; n

1

); . . . ;

where for each i � 0, the nodes m

i

and n

i

are adjacent. A schedule is bottom-up-fair if it contains

as a subsequence a bottom-up traversal of a neighborhood P , whenever P is �nite and prime. For

example, every schedule that contains in�nitely often each edge (n;m) with m � n, is bottom-

up-fair. Each schedule for an annotated tree determines a corresponding computation, which is a

sequence of transitions of the form:

�q

0

m

0

n

0

�! �q

1

m

1

n

1

�! . . . ;

where �q

0

= (�

n

: n 2 A [O) is the initial global state.

A global state �q is reachable if it appears in some computation. A property of global states is

called invariant if it holds for all reachable global states, and inevitable if it holds for some state

in every computation corresponding to a bottom-up-fair schedule. A property P of global states is

inductive if P holds of the initial global state, and whenever �q

mn

�!�r, if P holds of �q, then P holds

of �r.

Proposition 2.2 (Computational Induction) If a property of global states is inductive, then it

is invariant.

An interpreter I is sound if for every AND/OR tree T corresponding to a logic program P and

goal g, it is invariant for global states �q of the annotated tree I, that every element of O(�q

r

) is an

answer for P and g. An interpreter I is complete if for every AND/OR tree T corresponding to P

and g, and every ground answer � for P and g, it is inevitable for global states �q of I(T) that there

exists � 2 O(�q

r

) with �

@

�

�. We say that an interpreter is correct if it is both sound and complete.

3 The Basis Sets Interpreter

In this section we de�ne our interpreter, which we call the basis sets interpreter. Each process

in the basis sets interpreter maintains in its state a �nite set of substitutions, which we shall

call alternatives. At any time during execution, the set of alternatives at node n represents an

approximation, based on the information received so far at node n, to a set of answer substitutions

for the subtree rooted at n. The state of each node must also contain information about which

alternatives represent exact approximations. Ultimately, this information is used by the root process

to determine which alternatives can be output as answers. Thus, nodes actually maintain two sets

of alternatives, \upper bound" alternatives, which approximate all possible answers, and \lower

bound" alternatives, which are those approximations that are known to be exact.

3.1 Preliminary De�nitions

Suppose an AND/OR tree T has been given and n is a non-root node in T . We �rst de�ne operations

(

n

and)

n

on sets of substitutions. Suppose m � n in T , and (l; l

0

) is the equation associated with

the edge (m;n). Suppose � and �

0

are substitutions, with LV

m

� dom(�) and LV

n

� dom(�

0

).

Recall that we had �xed a range-disjoint pair of renamings ! and !

0

. If l�! and l

0

�

0

!

0

are uni�able,

with � = mgu(l�!; l

0

�

0

!

0

), then de�ne

� (

n

�

0

= (�!�)�LV

m

; �)

n

�

0

= (�

0

!

0

�)�LV

n

:

10

Extend this de�nition to sets of substitutions �, �

0

as follows:

�(

n

�

0

= f� (

n

�

0

: � 2 �; �

0

2 �

0

; l�! and l

0

�

0

!

0

are uni�ableg

�)

n

�

0

= f�)

n

�

0

: � 2 �; �

0

2 �

0

; l�! and l

0

�

0

!

0

are uni�ableg:

Next, we de�ne operations

W

and

V

on sets of substitutions. If � is a set of substitutions, then

de�ne the span [�] of � to be the set of all � such that �

@

�

� for some � 2 �. We say that a

set of substitutions � is independent if it is pairwise incomparable under

@

�

. A basis for � is an

independent subset � of � such that [�] = [�]. Since the strict part of

@

�

is well-founded on local

substitutions, every set of such substitutions � contains a basis, and it is not di�cult to see that

two bases for the same set di�er only up to renamings applied to their elements. De�ne a join of

a collection f�

i

: i 2 Ig of sets of local substitutions to be a basis for the set

S

i2I

[�

i

]. Similarly,

if I is nonempty, then de�ne a meet of f�

i

: i 2 Ig to be a basis for the set

T

i2I

[�

i

]. Let

W

be an

arbitrary function that maps each collection of local substitutions f�

i

: i 2 Ig to a join

W

i2I

�

i

,

and let

V

map each nonempty collection of local substitutions f�

i

: i 2 Ig to a meet

V

i2I

�

i

.

Lemma 3.1 Suppose f�

i

: i 2 Ig is a �nite collection of sets of local substitutions, where each �

i

has a �nite basis. Then

1.

W

i2I

�

i

is �nite.

2.

V

i2I

�

i

is �nite, if I is nonempty.

Proof { For each i 2 I , let �

i

be a �nite basis for �

i

.

(1) It su�ces to show that there is a �nite set � such that [�] =

S

i2I

[�

i

]. Clearly, � =

S

i2I

�

i

is such a set.

(2) It su�ces to show that there is a �nite set � such that [�] =

T

i2I

[�

i

]. We construct � by

induction on the number of elements jI j of I . If jI j = 1, let i be the single element of I , then clearly

� = �

i

has the required properties. If jI j = n + 1, then I = fig [I

0

, where I

0

has n elements. Let

�

0

=

V

i2I

0

�

i

, which is �nite by induction hypothesis. De�ne

� = f�!� : � 2 �

0

; � 2 �

i

; � = mgu(�!; �!

0

)g:

Clearly, � is �nite. That [�] =

T

i2I

[�

i

] follows easily by the properties of most general uni�ers.

We note in passing that the proof of Lemma 3.1 can be re�ned to give an algorithm for computing

W

i2I

�

i

and

V

i2I

�

i

, when I and each �

i

are �nite.

Finally, some vector notation will signi�cantly shorten our de�nitions. If n is a node, then we

write (

�

�

p

: n � p), (or just

�

� when n is clear) to denote a vector of sets of substitutions, one for

each child p of node n. The notation

W

�

� abbreviates

W

n�p

�

�

p

. The notation

V

�

� is used similarly,

when n is not a leaf. The notation

�

�fp=�g stands for the vector

�

� with its pth component replaced

by �. We write �)

n

�

� as an abbreviation for (�)

n

�

�

p

: n � p), and similarly for (

n

.

3.2 The Interpreter

For the basis sets interpreter B,

� The state sets are de�ned as follows:

11

1. If n is an AND-node, then the set Q

B

n

consists of all pairs (�;

�

�), where � is a �nite

set of substitutions with domain LV

n

, and

�

� = (

�

�

p

: n � p) is a vector of �nite sets of

substitutions with domain LV

n

.

2. If n is an OR-node, then the set Q

B

n

consists of all pairs (

�

�;

�

�), where

�

� = (

�

�

p

: n � p)

and

�

� = (

�

�

p

: n � p) are vectors of �nite sets of substitutions with domain LV

n

.

The �rst (i.e. �) component of the state of a node represents the \upper bound" information,

and the second (i.e. �) component represents \lower bound" information.

� The initial states are de�ned as follows:

1. If n is an AND-node, then �

B

n

= (fid�LV

n

g; (fg : n � p)).

2. If n is an OR-node, then �

B

n

= ((fid�LV

n

g : n � p); (fg : n � p)).

The symbol \id" denotes the identity global substitution.

� The output function O

B

maps a state (

�

�;

�

�) 2 Q

B

r

to the set

W

�

�.

� The update functions for edge (m;n), with m � n, are de�ned as follows:

1. If m is an AND-node and n is an OR-node,

�

B

mn

((�

m

;

�

�

m

); (

�

�

n

;

�

�

n

)) = (�

m

)

n

�

�

n

; �

m

)

n

�

�

n

)

�

B

nm

((

�

�

n

;

�

�

n

); (�

m

;

�

�

m

)) = (�

m

(

n

W

�

�

n

; (

�

�

m

(

n

W

�

�

n

)fn=�

m

(

n

W

�

�

n

g):

2. If m is an OR-node and n is an AND-node,

�

B

mn

((

�

�

m

;

�

�

m

); (�

n

;

�

�

n

)) = (

�

�

n

m

)

n

�

n

;

�

�

n

m

)

n

�

�

n

)

�

B

nm

((�

n

;

�

�

n

); (

�

�

m

;

�

�

m

))

=

(

(

�

�

m

fn=

�

�

n

m

(

n

�

n

g;

�

�

m

fn=

�

�

n

m

(

n

V

�

�

n

g); if n is not a leaf;

(

�

�

m

fn=

�

�

n

m

(

n

�

n

g;

�

�

m

fn=

�

�

n

m

(

n

�

n

g); if n is a leaf:

4 Correctness Proof

In this section, we prove the correctness of the basis sets interpreter. The technique we use is

to relate this interpreter to a known correct interpreter through the use of \simulations," which

are mappings between interpreters that preserve and re
ect correctness. To get started with this

proof technique, we introduce the \neighborhoods interpreter," in which the state of a process at

any time is simply the neighborhood in the tree from which information has been received so far.

Although the neighborhoods interpreter would not be useful in practice, it has the advantage of

being obviously correct. Next, we re�ne this interpreter to obtain the \solution sets interpreter,"

in which each process maintains sets of substitutions called \solution sets." At any time during

execution, the solution set maintained by node n is the set of all substitutions that are restrictions,

to the local variables for node n, of solutions to intersections of prime neighborhoods with the

neighborhood from which information has been received so far. We prove the correctness of the

solution sets interpreter by exhibiting a simulation to it from the neighborhoods interpreter.

12

The solution sets interpreter has the same form as the basis sets interpreter, except that solution

sets are in�nite, whereas basis sets are �nite. In fact, at any time during execution, the in�nite

solution set maintained by a process in the solution sets interpreter is the set of all instances of

substitutions in the set maintained by the corresponding process in the basis sets interpreter. We use

this fact to exhibit a simulation from the basis sets interpreter to the solution sets interpreter. Since

simulations preserve and re
ect correctness, the correctness of the basis sets interpreter follows.

4.1 Simulations

Suppose I and J are interpreters. If T = (A;O; r; E;L) is an AND/OR tree, then a simulation

from I(T) to J (T) is a pair (R;F), where R is a property of global states of I(T) and F = fF

n

:

n 2 A [Og is a collection of functions with F

n

: Q

I

n

! Q

J

n

, such that

1. R is inductive for I(T).

2. F(�

I

n

) = �

J

n

for all n 2 A [O.

3. F

n

(�

I

mn

(�q

m

; �q

n

)) = �

J

mn

(F

m

(�q

m

);F

n

(�q

n

)) for all adjacent nodes m;n 2 A [O and all global

states �q for I(T) that satisfy R.

4. O

J

(F

r

(�q

r

)) = O

I

(�q

r

) for all global states �q for I(T) that satisfy R.

Lemma 4.1 Suppose I and J are interpreters, such that for all AND/OR trees T , there exists a

simulation from I(T) to J (T). Then I is correct i� J is correct.

Proof { The conditions in the de�nition of a simulation imply that, if a computation of I(T) and

a computation of J (T) are determined by the same schedule, then each state in the computation of

J (T) is the image under the simulation mapping of the corresponding state in the computation of

I(T). Moreover, the output maps of I(T) and J (T) yield identical values on corresponding states.

Since correctness is a property only of the set of output sequences of bottom-up-fair computations,

it follows that I is correct i� J is correct.

4.2 The Neighborhoods Interpreter

The neighborhoods interpreter N is de�ned as follows: Given an AND/OR tree T ,

� For each node n,

{ The state set Q

N

n

is the set of all �nite neighborhoods of n.

{ The initial state �

N

n

is the singleton neighborhood fng.

� The output map O

N

takes a �nite neighborhood U of r to the set of all ��LV

r

, where � solves

some prime neighborhood of r contained in U .

� For all edges (m;n), with m � n, and all states q

m

2 Q

N

m

, q

n

2 Q

N

n

,

�

mn

(q

m

; q

n

) = �

nm

(q

n

; q

m

) = q

m

[q

n

:

13

It is easily checked that if m and n are adjacent nodes, q

m

is a �nite neighborhood of m, and q

n

is

a �nite neighborhood of n, then q

m

[q

n

is a �nite neighborhood of both m and n; thus the update

functions are well-de�ned.

Theorem 1 The neighborhoods interpreter N is correct.

Proof { Soundness is a direct consequence of the de�nition of the output function. To show

completeness, suppose � is an answer for T . Then � = ��LV

r

, where � solves some �nite prime

neighborhood P of the root. By de�nition, every bottom-up-fair schedule for T embeds a bottom-

up traversal of P , and in any state subsequent to the completion of such a traversal, the set P is a

subset of the state of the root. Thus, it is inevitably the case that � is an output.

We now present an important property of information
ow between nodes, upon which all our

subsequent results depend. Intuitively, this property says that if m and n are adjacent nodes in

the tree, then m always \knows more" than n about the state of the tree in the direction towards

m. To state this formally, we need some additional notation.

If U is a neighborhood, and n is a node, then de�ne

U # n = fm 2 U :m ^ n = ng; U " n = fm 2 U :m ^ n 6= ng

The expressions U # n and U " n are read as \U below n," and \U above n," respectively.

If n is a node, and U; U

0

are neighborhoods, then de�ne INC

n

(U; U

0

) to be true exactly when n

is not the root node, U is a �nite neighborhood of parent(n), U

0

is a �nite neighborhood of n, and

the following inclusions hold:

U " n � U

0

" n; U # n � U

0

n:

Lemma 4.2 Suppose T is an AND/OR tree. Let INC be the property of global states �q of N (T)

which is true i� INC

n

(�q

m

; �q

n

) holds for all nodes m;n with m � n. Then INC is inductive.

Proof { Straightforward.

4.3 The Solution Sets Interpreter

In this section, we re�ne the neighborhoods interpreter to obtain the solution sets interpreter. This

is done in several steps: First, we de�ne functions primes

n

and cprimes

n

that map a neighborhood

U of node n to certain \relatively prime" sub-neighborhoods of U . We then establish some homo-

morphic properties of these functions with respect to the operation [on sets, used in the de�nition

of the update functions for the neighborhoods interpreter. In particular, we show that under condi-

tions that are invariant for the neighborhoods interpreter, the maps primes

n

and cprimes

n

translate

[to an operation 1

n

on neighborhoods.

Second, we de�ne a map solns, which takes a set of neighborhoods to the set of all substitutions

that solve one of its elements. We show that, under certain conditions, the map solns is homomor-

phic with respect to 1

n

and that it translates this operation to a related operation, which we also

denote by 1

n

, on sets of substitutions.

Third, we show that restriction of substitutions to variables local to a node is homomorphic with

respect to 1

n

on sets of substitutions, and that restriction translates 1

n

into one of two operations,

which we denote

n

and !

n

, on sets of substitutions. Finally, we combine all our results and obtain

both the de�nition of the solution sets interpreter and a proof of its correctness.

14

4.3.1 Prime Neighborhoods

Suppose n is a node. For neighborhoods V and V

0

, and sets of neighborhoods � and �

0

, de�ne

V 1

n

V

0

= (V " n) [(V

0

n); � 1

n

�

0

= fV 1

n

V

0

: V 2 �; V

0

2 �

0

g:

The importance of 1

n

is established by the following result.

Lemma 4.3 Suppose n is a node, and P; P

0

are prime neighborhoods of n. Then P 1

n

P

0

is also a

prime neighborhood of n.

Proof { To show that P 1

n

P

0

is conjunctive, suppose m;m

0

2 P 1

n

P

0

. Then either both m andm

0

are in P " n, or both m and m

0

are in P

0

n, or one of m, m

0

is in P " n and the other is in P

0

n.

In the �rst two cases, m and m

0

are conjunctive because P and P

0

are conjunctive. For the third

case, suppose without loss of generality that m 2 P " n and m

0

2 P

0

n. Then m ^m

0

= m ^ n,

which is either m or an AND node, by the fact that P is conjunctive and n 2 P . Finally, suppose

P 1

n

P

0

were not prime. There there would exist m, conjunctive with P 1

n

P

0

, but not in P 1

n

P

0

.

There are two cases, either m ^ n = n or m ^ n 6= n. If m ^ n = n, then m would be conjunctive

with P

0

but not in P

0

, a contradiction with the fact that P

0

is prime. Similarly, if m ^ n 6= n, then

m would be conjunctive with P but not in P , contradicting the fact that P is prime.

Lemma 4.4 Suppose INC

n

(U; U

0

). Then for all neighborhoods V; V

0

(V \ U) 1

n

(V

0

\ U

0

) = (V 1

n

V

0

) \ (U [U

0

):

Proof {

(V 1

n

V

0

) \ (U [U

0

) = (V " n [V

0

n) \ (U [U

0

)

= (V \ U) " n [(V \ U

0

) " n [(V

0

\ U) # n [(V

0

\ U

0

) # n

= (V \ U) " n [(V

0

\ U

0

) # n

= (V \ U) 1

n

(V

0

\ U

0

):

where the third equality uses the hypothesized inclusions.

Suppose n is a node and U is a �nite neighborhood. De�ne primes

n

(U), the set of prime

neighborhoods of n, relative to U , by

primes

n

(U) = fP \ U : P prime; n 2 Pg:

De�ne cprimes

n

(U), the set of complete prime neighborhoods of n, relative to U , by

cprimes

n

(U) = fP \ U : P prime; n 2 P; P # n � Ug:

Intuitively, if the process for node n has heard from nodes in a neighborhood U , then primes

n

(U)

represents what node n knows about the prime neighborhoods in the AND/OR tree, and cprimes

n

(U)

consists of those elements of primes

n

(U), which are \complete" in the sense that they correspond

to proof trees rooted at n.

15

Lemma 4.5 Suppose n is a node and U is a �nite neighborhood of n.

1. If n is an AND-node, then

(a) primes

n

(U) = primes

p

(U), if n � p.

(b) cprimes

n

(U) =

(

T

n�p

cprimes

p

(U); if n is not a leaf;

primes

n

(U); if n is a leaf:

2. If n is an OR-node, then

(a) primes

n

(U) =

S

n�p

primes

p

(U).

(b) cprimes

n

(U) =

S

n�p

cprimes

p

(U).

Proof { Obvious.

Lemma 4.6 Suppose INC

n

(U; U

0

) and n �

�

p. Then for all neighborhoods V � U [U

0

, the

following are equivalent:

1. V 2 primes

p

(U [U

0

).

2. V \ U 2 primes

n

(U) and V \ U

0

2 primes

p

(U

0

).

3. V = W 1

n

W

0

for some W 2 primes

n

(U) and W

0

2 primes

p

(U

0

).

Proof { (1) implies (2): Suppose V 2 primes

p

(U [U

0

). Then there exists a prime neighborhood

P of p, such that V = P \ (U [U

0

). Since n �

�

p, we know that P is also a prime neighborhood of

n. Then V \U = P \U , and V \U

0

= P \U

0

, hence V \U 2 primes

n

(U) and V \U

0

2 primes

p

(U

0

).

(2) implies (3): Suppose V \ U 2 primes

n

(U) and V \ U

0

2 primes

p

(U

0

). Let W = V \ U and

W

0

= V \U

0

. Then W 1

n

W

0

= ((V \U) " n)[((V \U

0

) # n), which by the hypothesized inclusions

is just (V \ U) [(V \ U

0

) = V .

(3) implies (1): Suppose W 2 primes

n

(U) and W

0

2 primes

p

(U

0

) are such that V = W 1

n

W

0

. Then there exist a prime neighborhood P of n and a prime neighborhood P

0

of p such that

W = P \ U and W

0

= P

0

\ U

0

. Let R = P 1

n

P

0

, then clearly we have p 2 R. By Lemma 4.4,

R \ (U [U

0

) = V . By Lemma 4.3, R is prime, thus showing that V 2 primes

p

(U [U

0

).

Lemma 4.7 Suppose INC

n

(U; U

0

) and n �

�

p. Then for all neighborhoods V � U [U

0

, the

following are equivalent:

1. V 2 cprimes

p

(U [U

0

).

2. V \ U 2 primes

n

(U) and V \ U

0

2 cprimes

p

(U

0

).

3. V = W 1

n

W

0

for some W 2 primes

n

(U) and W

0

2 cprimes

p

(U

0

).

Proof { Similar to Lemma 4.6.

Lemma 4.8 Suppose n is an OR-node and INC

n

(U; U

0

) holds. If m � n and m � l 6= n, then the

following are equivalent :

16

1. V 2 cprimes

l

(U [U

0

).

2. V \ U 2 cprimes

l

(U) and V \ U

0

2 primes

n

(U

0

).

3. V = W 1

n

W

0

for some W 2 cprimes

l

(U) and W

0

2 primes

n

(U

0

).

Proof { Similar to Lemma 4.6.

Lemma 4.9 Suppose INC

n

(U; U

0

), m � n �

�

p and m � l 6= n. Then

1. primes

p

(U [U

0

) = primes

n

(U) 1

n

primes

p

(U

0

).

2. cprimes

p

(U [U

0

) = primes

n

(U) 1

n

cprimes

p

(U

0

).

3. cprimes

l

(U [U

0

) = cprimes

l

(U) 1

n

primes

n

(U

0

), if n is an OR-node.

Proof { Immediate from Lemma 4.6, 4.7, 4.8.

The following is the main technical lemma upon which our correctness proof is based. It shows

how information about prime sets relative to U [U

0

can be characterized in terms of information

about prime sets relative to U and U

0

separately.

Lemma 4.10 Suppose INC

n

(U; U

0

) and m � n.

1. If m is an AND-node and n is an OR-node, then

(a) For all p with n � p,

i. primes

p

(U [U

0

) = primes

m

(U) 1

n

primes

p

(U

0

).

ii. cprimes

p

(U [U

0

) = primes

m

(U) 1

n

cprimes

p

(U

0

).

(b) For all l with m � l,

i. primes

m

(U [U

0

) = primes

m

(U) 1

n

S

n�p

primes

p

(U

0

).

ii. cprimes

l

(U [U

0

) =

(

primes

m

(U) 1

n

S

n�p

cprimes

p

(U

0

); if l = n;

cprimes

l

(U) 1

n

S

n�p

primes

p

(U

0

); if l 6= n:

2. If m is an OR-node and n is an AND-node, then

(a) For all p with n � p,

i. primes

n

(U [U

0

) = primes

n

(U) 1

n

primes

n

(U

0

).

ii. cprimes

p

(U [U

0

) = primes

n

(U) 1

n

cprimes

p

(U

0

).

(b) For all l with m � l,

i. primes

l

(U [U

0

) =

(

primes

n

(U) 1

n

primes

n

(U

0

); if l = n;

primes

l

(U); if l 6= n:

ii. cprimes

l

(U [U

0

) =

8

>

<

>

:

primes

n

(U) 1

n

T

n�p

cprimes

p

(U

0

); if l = n; n not a leaf;

primes

n

(U) 1

n

primes

n

(U

0

); if l = n; n a leaf;

cprimes

l

(U); if l 6= n:

17

Proof { All cases except (2bi) and (2bii) for l 6= n are proved by straightforward applications of

Lemma 4.9, and applying Lemma 4.5 to make use of the assumptions about m and n. We now

argue the remaining cases.

(2bi) If l 6= n, then primes

l

(U [U

0

) = primes

l

(U) holds because the fact that m is an OR node

and l 6= n means that if P is a prime neighborhood of l, then P # n = ;, hence P \(U [U

0

) = P \U

by INC

n

(U; U

0

).

(2bii) Same argument as (2bi).

Suppose � and �

0

are sets of neighborhoods. We say that � 1

n

�

0

is union-representable if each

V 2 � 1

n

�

0

is W [W

0

for some W 2 � and W

0

2 �

0

. The next technical property is required as a

hypothesis by Lemma 4.12.

Lemma 4.11 Suppose INC

n

(U; U

0

). Then each set de�ned by 1

n

in Lemma 4.10 is union-repre-

sentable.

Proof { It su�ces to show that the following three sets are union-representable. Then each of the

sets de�ned by 1

n

in Lemma 4.10 can be shown to be union-representable by making use of Lemma

4.5.

If m � n �

�

p and m � l 6= n. Then the following sets are union-representable :

1. primes

n

(U) 1

n

primes

p

(U

0

).

2. primes

n

(U) 1

n

cprimes

p

(U

0

).

3. cprimes

l

(U) 1

n

primes

n

(U

0

), if n is an OR-node.

The proof of (1), (2), and (3) are immediate from Lemma 4.6, 4.7, and 4.8 respectively.

4.3.2 Solution Sets

If U is a neighborhood and n is a node, then the solution set solns(U) of U is the set of all

substitutions �, with dom(�) = LV, such that � solves U . We extend this de�nition to sets � of

neighborhoods by: solns(�) =

S

fsolns(U) : U 2 �g.

If � is a substitution and n is a node, then de�ne

� " n = ��(LV " n); � # n = ��(LV # n)

where

LV " n =

[

fLV

m

:m 2 (A [O) " ng; LV # n =

[

fLV

m

:m 2 (A [O) # ng:

Suppose m � n, and (l; l

0

) is the equation associated with the edge (m;n). Suppose � and �

0

are substitutions, with LV

m

� dom(�) and LV

n

� dom(�

0

). If � is a uni�er of l� and l

0

�

0

, then

de�ne

�

�

1

n

�

0

= (�� " n) [(�

0

� # n):

If n is a node and �;�

0

are sets of substitutions, such that LV

m

� dom(�) for each � 2 � and

LV

n

� dom(�

0

) for each �

0

2 �

0

, then de�ne

� 1

n

�

0

= f�

�

1

n

�

0

: � 2 �; �

0

2 �

0

; � is a uni�er of l�; l

0

�

0

g:

18

Lemma 4.12 Suppose m � n, � is a set of neighborhoods of m, and �

0

is a set of neighborhoods

of n, such that � 1

n

�

0

is union-representable. Then

solns(� 1

n

�

0

) = solns(�) 1

n

solns(�

0

):

Proof { Suppose � 2 solns(� 1

n

�

0

). Then � solves some V 2 � 1

n

�

0

, so by hypothesis there exist

W 2 � and W

0

2 �

0

with V = W [W

0

. Now, if � solves V , then it solves W;W

0

and edge (m;n).

Thus, � = �

�

1

n

� 2 solns(�) 1

n

solns(�

0

), where � = id.

Conversely, suppose � 2 solns(�) 1

n

solns(�

0

). Then � = �

�

1

n

�

0

, where � 2 solns(�) and

�

0

2 solns(�

0

). Thus, there exist W 2 � and W

0

2 �

0

such that � solves W and �

0

solves W

0

. Now,

� solves W 1

n

W

0

, because � " n = �� " n and � solves W , � # n = �

0

� # n and �

0

solves W

0

, and

l� = l�� = l

0

�

0

� = l

0

�. Hence � 2 solns(� 1

n

�

0

).

4.3.3 Local Variables

Suppose m � n, and (l; l

0

) is the equation associated with the edge (m;n). Suppose � and �

0

are

substitutions, with LV

m

� dom(�) and LV

n

� dom(�

0

). If � is a uni�er of l� and l

0

�

0

, then de�ne

�

�

n

�

0

= ���LV

m

; �

�

!

n

�

0

= �

0

��LV

n

:

If n is a node and �;�

0

are sets of substitutions, such that LV

m

� dom(�) for all � 2 � and

LV

n

� dom(�

0

) for all �

0

2 �

0

, then de�ne

�

n

�

0

= f�

�

n

�

0

: � 2 �; �

0

2 �

0

; � is a uni�er of l� and l

0

�

0

g

�!

n

�

0

= f�

�

!

n

�

0

: � 2 �; �

0

2 �

0

; � is a uni�er of l� and l

0

�

0

g:

Lemma 4.13 Suppose m � n, and �;�

0

are sets of substitutions, such that LV

m

� dom(�) for all

� 2 � and LV

n

� dom(�

0

) for all �

0

2 �

0

. Then

(� 1

n

�

0

)�LV

m

= (��LV

m

)

n

(�

0

�LV

n

); (� 1

n

�

0

)�LV

n

= (��LV

m

)!

n

(�

0

�LV

n

)

Proof { We consider only the �rst equality, the other is similar. Let (l; l

0

) be the equation

associated with the edge (m;n). First note that if � and �

0

are substitutions, then a substitution

� is a uni�er of l� and l

0

�

0

i� it is a uni�er of l(��LV

m

) and l

0

(�

0

�LV

n

). Moreover, if � is a uni�er

of l� and l

0

�

0

, then

(�

�

1

n

�

0

)�LV

m

= ((�� " n) [(�

0

� # n))�LV

m

; by de�nition

= ���LV

m

; LV

m

� LV " n

= (��LV

m

)��LV

m

; property of restriction

= (��LV

m

)

�

n

(�

0

�LV

n

); by de�nition:

The asserted equality now follows easily from this fact and the pointwise de�nitions of 1

n

and

n

on sets of substitutions.

19

4.3.4 The Solution Sets Interpreter

We now de�ne the solution sets interpreter S. The interpreter has the same form as the basis sets

interpreter, except that solutions sets are in�nite whereas basis sets are �nite. It will be clear in

Section 4.4 that the solution set maintained by a process in this interpreter is the set of all instances

of substitutions in the set maintained by the corresponding process in the basis sets interpreter.

� The state sets are de�ned as follows:

1. If n is an AND-node, then the set Q

S

n

consists of all pairs (�;

�

�), where � is a set of

substitutions with domain LV

n

, and

�

� = (

�

�

p

: n � p) is a vector of sets of substitutions

with domain LV

n

.

2. If n is an OR-node, then the set Q

S

n

consists of all pairs (

�

�;

�

�), where

�

� = (

�

�

p

: n � p)

and

�

� = (

�

�

p

: n � p) are vectors of sets of substitutions with domain LV

n

.

� The initial states are de�ned as follows:

1. If n is an AND-node, then �

S

n

= (Sub(LV

n

); (fg : n � p)).

2. If n is an OR-node, then �

S

n

= ((Sub(LV

n

) : n � p); (fg : n � p)).

Here Sub(LV

n

) denotes the set of all substitutions with domain LV

n

.

� The update functions for edge (m;n), with m � n, are de�ned as follows:

1. If m is an AND-node and n is an OR-node,

�

S

mn

((�

m

;

�

�

m

); (

�

�

n

;

�

�

n

)) = (�

m

!

n

�

�

n

; �

m

!

n

�

�

n

)

�

S

nm

((

�

�

n

;

�

�

n

); (�

m

;

�

�

m

)) = (�

m

n

S

�

�

n

; (

�

�

m

n

S

�

�

n

)fn=�

m

n

S

�

�

n

g)

2. If m is an OR-node and n is an AND-node,

�

S

mn

((

�

�

m

;

�

�

m

); (�

n

;

�

�

m

)) = (

�

�

n

m

!

n

�

n

;

�

�

n

m

!

n

�

�

n

)

�

S

nm

((�

n

;

�

�

n

); (

�

�

m

;

�

�

m

))

=

(

(

�

�

m

fn=

�

�

n

m

n

�

n

g;

�

�

m

fn=

�

�

n

m

n

T

�

�

n

g); n not a leaf;

(

�

�

m

fn=

�

�

n

m

n

�

n

g;

�

�

m

fn=

�

�

n

m

n

�

n

g); n a leaf:

In the above de�nitions we have used several abbreviations similar to those in the de�nition

of the basis sets interpreter (see Section 3.1).

� The output function O

S

maps a state (

�

�;

�

�) 2 Q

S

r

to the set

S

�

�.

4.3.5 Correctness of the Interpreter

If n is a node and U is a �nite neighborhood, then de�ne

solns

n

(U) = solns(primes

n

(U)); csolns

n

(U) = solns(cprimes

n

(U)):

Lemma 4.14 Suppose m � n and INC

n

(U; U

0

).

20

1. If m is an AND-node and n is an OR-node, then

(a) For all p with n � p,

i. solns

p

(U [U

0

)�LV

n

= solns

m

(U)�LV

m

!

n

solns

p

(U

0

)�LV

n

.

ii. csolns

p

(U [U

0

)�LV

n

= solns

m

(U)�LV

m

!

n

csolns

p

(U

0

)�LV

n

.

(b) For all l with m � l,

i. solns

m

(U [U

0

)�LV

m

= solns

m

(U)�LV

m

n

S

n�p

solns

p

(U

0

)�LV

n

.

ii. csolns

l

(U [U

0

)�LV

m

=

(

solns

m

(U)�LV

m

n

S

n�p

csolns

p

(U

0

)�LV

n

; if l = n;

csolns

l

(U)�LV

m

n

S

n�p

solns

p

(U

0

)�LV

n

; if l 6= n:

2. If m is an OR-node and n is an AND-node, then

(a) For all p with n � p,

i. solns

n

(U [U

0

)�LV

n

= solns

n

(U)�LV

m

!

n

solns

n

(U

0

)�LV

n

.

ii. csolns

p

(U [U

0

)�LV

n

= solns

n

(U)�LV

m

!

n

csolns

p

(U

0

)�LV

n

.

(b) For all l with m � l,

i. solns

l

(U [U

0

)�LV

m

=

(

solns

n

(U)�LV

m

n

solns

n

(U

0

)�LV

n

; if l = n;

solns

l

(U)�LV

m

; if l 6= n:

ii. csolns

l

(U [U

0

)�LV

m

=

8

>

<

>

:

solns

n

(U)�LV

m

n

T

n�p

csolns

p

(U

0

)�LV

n

; if l = n; n not a leaf;

solns

n

(U)�LV

m

n

solns

n

(U

0

)�LV

n

; if l = n; n a leaf;

csolns

l

(U)�LV

m

; if l 6= n:

Proof { The result follows immediately from Lemmas 4.10, 4.11, 4.12, and 4.13.

Theorem 2 Suppose T is an AND/OR tree. For each node n in T , de�ne a map NS

n

: Q

N

n

! Q

S

n

as follows:

1. If n is an AND-node, then de�ne NS

n

(U) = (solns

n

(U)�LV

n

; (csolns

p

(U)�LV

n

: n � p)).

2. If n is an OR-node, then de�ne

NS

n

(U) = ((solns

p

(U)�LV

n

: n � p); (csolns

p

(U)�LV

n

: n � p)):

Then the pair (INC;NS) is a simulation from N (T) to S(T).

Proof { We must verify the conditions in the de�nition of a simulation. The output function

condition is obvious. The initial state conditions follow directly from the fact that primes

n

(fng) =

ffngg, and if n � p, then primes

p

(fng) = ffngg and cprimes

p

(fng) = fg.

To verify the update function conditions, we use Lemma 4.14. There are two cases, each with

two subcases:

1. If m is an AND-node, n is an OR-node, and INC

n

(U

m

; U

n

) holds, then

(a) NS(�

N

mn

(U

m

; U

n

)) = �

S

mn

(NS(U

m

);NS(U

n

)).

21

(b) NS(�

N

nm

(U

n

; U

m

)) = �

S

nm

(NS(U

n

);NS(U

m

)).

2. If m is an OR-node and n is an AND-node, and INC

n

(U

m

; U

n

) holds, then

(a) NS(�

N

mn

(U

m

; U

n

)) = �

S

mn

(NS(U

m

);NS(U

n

)).

(b) NS(�

N

nm

(U

n

; U

m

)) = �

S

nm

(NS(U

n

);NS(U

m

)).

Each subcase is established by using the de�nitions of NS, �

P

mn

, and �

S

mn

, and then applying the

corresponding part of Lemma 4.14. The details are straightforward, and are omitted.

Corollary 4.15 The solution sets interpreter is correct.

4.4 Correctness of Basis Sets Interpreter

We now establish the correctness of the basis sets interpreter by exhibiting a simulation from it to

the solution sets interpreter. The simulation mapping is in fact the span mapping that was de�ned

in Section 3.1. We use the following \lifting lemma" to show that span has the required properties.

Lemma 4.16 (Lifting Lemma) Suppose � and �

0

are range-disjoint substitutions. Suppose sub-

stitutions � and �

0

are such that �

@

�

� and �

0

@

�

�

0

. Let l; l

0

be literals with vars(l) � dom(�) and

vars(l

0

) � dom(�

0

). If l� and l

0

�

0

have a uni�er �, then l� and l

0

�

0

are uni�able. Moreover, if

� = mgu(l�; l

0

�

0

), then there exists � such that ��� = �� and �

0

�� = �

0

�.

Proof { Since �; �

0

are range-disjoint, we may choose �; �

0

, with disjoint supports, such that

�� = � and �

0

�

0

= �

0

. Let the substitution � be de�ned as follows:

�(v) =

8

>

<

>

:

v��; if v 2 supp(�);

v�

0

�; if v 2 supp(�

0

);

v�; otherwise:

Now, � is a uni�er of l� and l�

0

, so � is a uni�er of l� and l

0

�

0

. Let � = mgu(l�; l

0

�

0

), then �

@

�

�,

so there exists � such that �� = �. Then ��� = �� = �� and �

0

�� = �

0

� = �

0

�.

Lemma 4.17 Suppose m � n, and �, �

0

are sets of substitutions, such that LV

m

� dom(�) for

all � 2 � and LV

n

� dom(�

0

) for all �

0

2 �

0

. Then

[�)

n

�

0

] = [�]!

n

[�

0

]; [�(

n

�

0

] = [�]

n

[�

0

]:

Proof { (1) and (2) are similar; we prove only (1).

Suppose � 2 [�)

n

�

0

]. Then there exists � 2 � and �

0

2 �

0

such that l�! and l

0

�

0

!

0

are uni�able,

and if � = mgu(l�!; l

0

�

0

!

0

), then there exists � such that � = (�

0

!

0

��)�LV

n

. Let � = �!�� and

�

0

= �

0

!

0

��, then � = �

�

!

n

�

0

, where � = id. Since � 2 [�] and �

0

2 [�

0

], we have shown that

� 2 [�]!

n

[�

0

].

Conversely, suppose � 2 [�] !

n

[�

0

]. Then � = �

�

!

n

�

0

= (�

0

�)�LV

n

for some � 2 [�],

�

0

2 [�

0

], and uni�er � of l� and l

0

�

0

. Let � 2 � and �

0

2 �

0

be such that �

@

�

� and �

0

@

�

�

0

.

It is easy to see that we also have �!

@

�

� and �

0

!

0

@

�

�

0

. Since � is a uni�er of l� and l

0

� , by

Lemma 4.16 l�! and l

0

�

0

!

0

are uni�able. Moreover, if � = mgu(l�!; l

0

�

0

!

0

), then there exists �

such that �!�� = �� and �

0

!

0

�� = �

0

�. Note that �)

n

�

0

= (�

0

!

0

�)�LV

n

2 �)

n

�

0

. But then

(�)

n

�

0

)� = ((�

0

!

0

�)�LV

n

)� = (�

0

!

0

��)�LV

n

= �, thus showing that �)

n

�

0

@

�

� and hence that

� 2 [�)

n

�

0

].

22

Theorem 3 Suppose T is an AND/OR tree. For each node n in T , de�ne a map BS

n

: Q

B

n

! Q

B

n

as follows:

1. If n is an AND-node, then de�ne BS

n

(�;

�

�) = ([�]; ([

�

�

p

] : n � p)).

2. If n is an OR-node, then de�ne BS

n

(

�

�;

�

�) = (([

�

�

p

] : n � p); ([

�

�

p

] : n � p)).

Let true denote the property that holds of all global states of B(T). Then the pair (true;BS) is a

simulation from B(T) to S(T).

Proof { The proof is immediate from Theorem 2, Lemma 4.17, and the de�nition of

W

and

V

.

Corollary 4.18 The basis sets interpreter B is correct.

5 Discussion

We have described a simple distributed interpreter for logic programs that exploits both AND- and

OR-parallelism, and we have proved its soundness and completeness. A feature of our interpreter

is that it supports bidirectional communication between AND-parallel goals. This feature is impor-

tant because such communication can result in increased e�ciency through pruning of irrelevant

alternatives. A good example of an application in which such pruning would seem to be useful is

alpha-beta minimax search.

There are several issues that must be addressed before a practical interpreter can be based on our

results. Clearly, data and communication requirements of our interpreter must be optimized. For

example, it is not necessary for processes to maintain the set of lower-bound alternatives separately

from the upper-bound set. Rather, tags can be used to identify those elements of the upper-bound

set that are also members of the lower-bound set. It is also unnecessary for processes to repeatedly

send their entire state to their neighbors, since this state will mostly consist of information already

known to the neighbor. We believe it is possible, though, to design a highly e�cient protocol

for the incremental communication of state information between nodes. Such a protocol would

require the design of data structures with which sets of substitutions can be recorded, and the

incremental updates e�ciently computed. We can optimize the data structures by observing that

the substitutions in a state are some instances of substitutions in the previous state and so on up

to the initial state, and hence two substitutions in the current state can share the structure of their

common ancestor substitutions.

The design of an interpreter to run on a particular parallel or distributed architecture must

address the problems of how to dynamically construct the AND/OR tree, assign processes to

processors and schedule processes assigned to the same processor. Solution to these problems will

obviously depend on the particular architecture, and probably also on the properties of application

programs to be run. It seems clear that a fully distributed implementation of the interpreter

described here will probably not be desirable in most circumstances. Rather, it will probably

be necessary for e�ciency reasons to combine the tasks of a number of node processes into one.

This can be done statically, for example by assigning one processor to handle the tasks of all

AND-nodes labeled by the same program clause, or dynamically, for example by assigning one

processor to handle the tasks of all nodes in some neighborhood of the AND/OR tree. The results

of this paper will be useful in showing what must be accomplished by the processors to ensure

23

soundness and completeness. It also seems clear that not all application programs will bene�t from

the completely unrestricted communication patterns supported by our model. However, as our

model does not impose any restrictions other than a minimal bottom-up fairness on the pattern

of communication between processes, we feel that it is easy to introduce performance-improving

heuristics for scheduling communication between processes.

An important issue in the design of distributed interpreters is the problem of detection of

duplicate goals and the elimination of such redundant computations. Ullman [Ull84] has proposed

a method in which the states of all processes are sorted at �xed intervals, so that two or more

processes with identical states (these correspond to duplicate goals in his method) can be detected.

In such cases, only one of the processes is allowed to proceed while others wait for answers from

that process. However, his method is not directly applicable to our interpreter because in our

interpreter a goal can be a�ected by other goals conjunctive with it, and hence identical goals may

not generate the same set of answers. The extension of Ullmans' method to our interpreter merits

further investigation.

References

[CDD85] Jung-Herng Chang, Alvin M. Despain, and Doug DeGroot. AND-parallelism of logic

programs based on a static data dependency analysis. In Digest of Papers, Compcon85,

pages 218{225, February 1985.

[CG86] Keith Clark and Steve Gregory. PARLOG : parallel programming in logic. ACM

Transactions on Programming Languages and Systems, 8(1):1{49, January 1986.

[CH83] Andrzej Ciepielewski and Seif Haridi. A formal model for OR-parallel execution of

logic programs. In R.E.A Mason, editor, Information Processing 83, pages 299{305,

North-Holland, September 1983.

[CJ87] P. Daniel Cheng and J.Y. Juang. A parallel resolution procedure based on connection

graph. In Sixth National Conference on Arti�cial Intelligence, pages 13{17, AAAI87,

July 1987.

[CK83] J.S Conery and D.F. Kibler. AND parallelism in logic programs. Proceedings of 8th

IJCAI, 539{543, August 1983.

[CK85] J.S Conery and D.F. Kibler. AND parallelism and nondeterminism in logic programs.

New Generation Computing, 3:43{70, 1985.

[GTM84] A. Goto, H. Tanaka, and T. Moto-Oka. Highly parallel inference engine PIE|goal

rewriting model and machine architecture. New Generation Computing, 2:37{58, 1984.

[Her86] M.V. Hermenegildo. An abstract machine for restricted AND-parallel execution of

logic programs. In Lecture Notes in Computer Science, Vol 225, pages 25{39, Third

International Conference on Logic Programming, Springer-Verlag, July 1986.

[Kal86] L.V. Kale. Parallel Architectures for Problem Solving. PhD thesis, SUNY Stony Brook,

1986.

24

[Kal87] L.V. Kale. `completeness' and `full parallelism' of parallel logic programming schemes.

In Proceedings 1987 Symposium on Logic Programming, pages 125{133, August 1987.

[KL87] Michael Kifer and E. Lozinskii. Implementing logic programs as a database system. In

Third International Conference on Data Engineering, February 1987.

[Kow79] R.A. Kowalski. Logic for Problem Solving. Elsevier North-Holland, 1979.

[LM86] Peyyun Peggy Li and Alain J. Martin. The SYNC model: a parallel execution

method for logic programming. In Proceedings 1986 Symposium on Logic Program-

ming, pages 223{234, IEEE, September 1986.

[LP84] Gary Lindstrom and Prakash Pananagaden. Stream-based execution of logic programs.

In International Symposium on Logic Programming, pages 168{176, February 1984.

[Pol81] George H. Pollard. Parallel Execution of Horn Clause Programs. PhD thesis, Dept. of

Computing, Imperial College, London, 1981.

[Sha83] Ehud Y. Shapiro. A subset of Concurrent Prolog and its Interpreter. Technical Report,

ICOT Tokyo, 1983.

[Ull84] Je�rey D. Ullman. Flux, sorting, and supercomputer organization for ai applications.

Journal of Parallel and Distributed Computing, 133{151, 1984.

[UT83] Shinji Umeyama and Koichiro Tamura. A parallel execution model of logic programs.

In Tenth International Symposium on Computer Architecture, pages 349{355, June

1983.

[WADK84] D.S. Warren, M. Ahamad, S.K. Debray, and L.V. Kale. Executing distributed prolog

programs on a broadcast network. In Proceedings of the 1984 Logic Programming

Symposium, February 1984.

[Wis86] Michael J. Wise. Prolog Multiprocessors. Prentice-Hall, 1986.

[YN84] Hiroshi Yasuhara and Kazuhiko Nitadori. ORBIT: a parallel computing model of

prolog. New Generation Computing, 277{288, 1984.

25

