
The Integrated CWB-NC/PIOATool for

Functional Veri�cation and Performance

Analysis

of Concurrent Systems

?

Dezhuang Zhang, Rance Cleaveland, and Eugene W. Stark

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

fdezhuang, rance, starkg@cs.sunysb.edu

Abstract. This paper reports on an e�ort to integrate two veri�ca-

tion tools, the Concurrency Workbench of the New Century (CWB-

NC) and PIOATool. Our aim is to build a single tool that combines

the \functional" analysis capabilities of the CWB-NC with the compo-

sitional performance-analysis features of PIOATool. We discuss some of

the issues involved in the integration, highlighting a particular integra-

tion paradigm in which one tool becomes a subshell of the other.

1 Introduction

This paper describes a tool integration e�ort involving the combination of two

system-analysis tools, the Concurrency Workbench of the New Century (CWB-

NC) [4{6] and PIOATool [9, 12]. The goal of this project is to build a new tool

combining support for checking both correctness and performance properties of

system models.

The two tools in question have the following characteristics. The CWB-NC

is a retargetable tool that implements a number of \functional correctness" rou-

tines, including a variety of semantic equivalences and preorders and a model

checker for the modal �-calculus. The PIOATool implements compositional

performance analysis methods [9, 10] for probabilistic I/O automata (PIOA) [14].

PIOAs extend the well-known I/O automaton model for nondeterministic com-

putation [8] with two kinds of performance information: probability distributions

representing the relative likelihood with which transitions from a given state la-

beled by the same input are performed; and rate information describing how

long, on average, outputs / internal actions take. PIOAs are also equipped with

notion of parallel composition. The PIOATool computes a variety of transient

performance measures on parallel compositions of PIOAs.

?

Research supported by NSF grants CCR-9988155, CCR-9988489, and CCR-0098037

and Army Research O�ce grants DAAD190110003 and DAAD190110019.

An important requirement for the integrated tool is that users should be able

to provide system models on which both functional and performance analyses

could be undertaken. However, the CWB-NC and PIOATool have very di�erent

internal model formats. The former generally supports compositional speci�ca-

tion notations based on process algebras. Internally, systems are represented as

terms in a modeling language; semantic routines are then used by the veri�cation

procedures such as the model checker in order to compute the semantic content

of these terms. The PIOATool, on the other hand, includes procedures that are

highly optimized for handling systems given as parallel compositions of semantic

objects in the form of PIOAs.

We address these issues by: de�ning a process algebra for PIOA systems,

implementing a translation for terms in this algebra into sequential compositions

of \pure" PIOAs, and introducing a subshell for running PIOATool analyses. The

rest of this paper discusses each of these in turn and concludes with a case study

and related work.

2 A Process Algebra for PIOAs

The notation for PIOAs [11] has a two-level syntax. The lower level comprises

so-called sequential terms, which denote transition systems annotated with prob-

ability and rate information. At this level, PIOA requirements such as \input-

enabledness" (every state must be capable of processing any input) are not

enforced. The upper level de�nes PIOA agents, which denote probabilistic I/O

automata that satisfy all the input-enabledness, stochasticity, and compatibility

properties that systems of PIOA must possess.

To de�ne the language, let L be a set of labels, and let � =2 L be the internal

action; we use a 2 L and b 2 L [� in what follows. Let p

1

; : : : ; p

n

denote

probabilities summing to 1 and r a positive real number denoting a rate, and let

X come from a set of process names. Then sequential terms are de�ned via the

following BNF grammar.

s ::= nil j a?[p

1

: s

1

; : : : ; p

n

: s

n

] j b(r)!s j s

1

+ s

2

j X

Intuitively nil has no transitions, while a?[p

1

: s

1

; : : : ; p

n

: s

n

] can perform the

input action a? and subsequently evolve to term s

i

with probability p

i

, b(r)!s

denotes a process that can perform output/internal action b! with rate r and then

evolve to term s, and s

1

+ s

2

is a nondeterministic choice. Finally, X represents

an \invocation" of the process term bound to X in the environment.

The upper level of the language syntax is as follows, where I � L and O � L

are sets of labels of input and output actions, respectively, and a; a

0

2 L.

t ::= hI; Ois j [I; O]t j t

1

k t

2

j tfa a

0

g

These operators have the following interpretation. hI; Ois represents a \type

cast": provided every state reachable from s enables all, and only, inputs in I ,

and only outputs in O, and stochasticity requirements are met, then hI; Ois is

a PIOA term. Term [I; O]t denotes a \coercion" of t so that inputs come from I

and outputs come from O. Term t

1

k t

2

is the parallel composition of t

1

and t

2

:

for it to be well-formed, t

1

and t

2

must not share output actions. The resulting

term has as inputs the intersection of the inputs of t

1

and t

2

and as outputs the

union of the output sets of t

1

and t

2

. Outputs of t

1

sharing a label with inputs

of t

2

are \fed into" t

2

and also made available to the environment of t

1

k t

2

.

Finally, tfa a

0

g relabels the actions involving a to ones involving a

0

.

As the previous discussion implies, PIOA terms have a type system that

ensures input-enabledness and compatibility of parallel compositions. The def-

inition of this system, and of the SOS rules de�ning the transitions of PIOA

terms, are omitted. The PAC [3] is applied to these rules to build the single-step

\transition engine" used by the CWB-NC and PIOATool. Exhaustively apply-

ing the engine to a type-correct PIOA term yields a single PIOA describing the

global behavior of the system.

3 Translating PIOA Terms to Parallel Compositions

The PIOA language �ts easily within the CWB-NC framework: terms in the

language represent systems, and the SOS rules de�ne a transition relation. For

the CWB-NC semantic analyses (which are insensitive to stochastic information)

the probability and rate information on the transitions is ignored. However, for

these terms to be processable by the PIOATool they must be converted into

parallel compositions of \pure" PIOA. This entails the elimination of coercion

and renaming and the replacement of sequential terms by PIOAs. The latter

may be easily accomplished by applying the operational semantics exhaustively

to these terms, yielding PIOAs. Coercion may also be eliminated, since in the

PIOA language it turns out to distribute over parallel composition and may

be \absorbed" easily into PIOAs. Somewhat surprisingly, the well-formedness

conditions for PIOAs also license the distribution of renaming over parallel com-

position. Thus the basic conversion routine may be de�ned as follows. (1) \Push"

all coercions and renamings inside all parallel compositions; (2) To the sequential

+ coercion + renaming terms embedded inside the parallel compositions, apply

the SOS rules to generate PIOAs. Because parallel composition is associative,

the resulting term containing PIOAs and parallel composition can be converted

into a list of PIOAs. Note that no special semantic routines need to be imple-

mented for this transformation; the existing PIOA semantic routines, and the

algebraic properties of the language, su�ce.

4 The PIOA Subshell

The �nal conceptual issue we confront involves the integration of the tool func-

tionalities. The paradigm we adopt is based on the notion of a subshell, i.e.

an \inner" command line, or mode, that has access to the data structures of

the \outer" command line. In our case, we make the PIOATool a subshell of

the CWB-NC. Once inside this subshell, the user may invoke the performance-

analysis routines of PIOATool.

As was mentioned earlier, the two tools use di�erent internal representa-

tions for systems. While there are routines for converting terms into sequences

of PIOAs, these are computationally expensive. Consequently, we want to min-

imize the number of times these routines are called, while still providing a user

with the analytical capabilities of both tools. Our solution to this issue is to

introduce a separate environment for the PIOATool subshell. This environment

maps identi�ers to sequences of PIOAs. We also add a command to the subshell

that allows PIOA terms to be \imported" into the PIOATool environment. This

command translates the term given as an argument and binds it to an identi�er.

Once this importation takes place, the associated sequence of PIOAs may be

subjected to PIOATool commands.

The PIOATool computes performance statistics for user-de�ned observables,

which are rules for mapping PIOA execution sequences to numeric values. The

PIOATool subshell also includes commands for binding observables to identi�ers.

5 Case Study: A Distributed Mutual Exclusion Protocol

We now consider the application of the integrated tool to a \tournament-style"

distributed mutual-exclusion protocol. Our example supposes a collection of user

processes that are located at the leaves of a binary tree. Each user process

requires from time to time the exclusive use of a resource, the allocation of

which is managed by arbiter processes located at the interior nodes of the tree.

A user process requests the resource by performing a request output action,

which synchronizes with a corresponding request input action of the user's parent

arbiter. If the resource is currently held by the arbiter, and the arbiter has not

already committed the resource to the user's sibling, then the arbiter will respond

with a grant output, which synchronizes with a corresponding grant input to the

user process. When the user is �nished using the resource, it performs a release

output to return the resource to its parent. The user must then wait for a reset

input from the parent before it is permitted to make a new request.

If a user process makes a request and the resource is already committed to

its sibling, then the arbiter ignores the request. When the sibling has �nished

with the resource and issued a release to the arbiter, then the subsequent reset

action performed by the arbiter also resets the pending request, which must then

be reissued by the user. If a user process requests the resource from its parent

and the resource is not currently in the possession of any process in the subtree

rooted at the parent, then the parent arbiter must request the resource from its

own parent. This is done in exactly the same way as for a user process requesting

the resource from its parent.

seq U_IDLE = request(1)!U_WAITING + reset?[1: U_IDLE] + grant?[1: U_ERROR]

seq U_WAITING = reset?[1: U_IDLE] + grant?[1: U_USING]

seq U_USING = release(1)!U_DONE + reset?[1: U_ERROR] + grant?[1: U_ERROR]

seq U_DONE = reset?[1: U_IDLE] + grant?[1: U_ERROR]

seq U_ERROR = error(1)!U_ERROR + reset?[1: U_ERROR] + grant?[1: U_ERROR]

proc USER = <{reset,grant},{request,release}>U_IDLE

The above shows the PIOA code for a user process. The code de�nes �ve

sequential terms (introduced by the seq keyword), followed by the de�nition of

PIOA term USER.

In the remainder of this section we step through a session in which we an-

alyze a four-user system organized as a complete binary tree. This system has

1; 264; 375 global states, of which 1; 700 are reachable. The session was run on

a 1.8GHz Intel Xeon processor with 2Gb of on-board memory. Throughout, we

quote the commands issued verbatim while simply summarizing the output pro-

duced by the tool.

cwb-nc> load mutex.pioa

cwb-nc> load mutex.mu

cwb-nc> chk MUTEX root_can_error

We begin the session by loading the �le mutex.pioa, which contains the

PIOA declarations needed to de�ne MUTEX, the overall system. We then load �le

mutex.mu, which contains declarations of mu-calculus formulas de�ning various

properties to be checked of MUTEX. One such property, root_can_error, asserts

that the root arbiter is capable of entering an error state due to the arrival of

an unexpected input (e.g. release before a grant). To check this property , we

use the chk command, which invokes the CWB-NC's model checker. After 2.3

seconds, the CWB-NC responds with FALSE: the root arbiter cannot enter an

error state.

cwb-nc> pioa

cwb-nc-pioa> sys S = MUTEX

cwb-nc-pioa> obs awaitRequest1 = await { R.SUBTREE[2].L.[].request_1 }

cwb-nc-pioa> obs awaitGrant1 = await { R.SUBTREE[2].L.[].grant_1 }

cwb-nc-pioa> obs req1ToGrant1Prob = (prob * (awaitRequest1 ; awaitGrant1))

cwb-nc-pioa> obs result = apply S req1ToGrant1Prob

cwb-nc-pioa> obs req1ToGrant1Time = (prob * (awaitRequest1 ; (time * awaitGrant1)))

cwb-nc-pioa> obs result = apply S req1ToGrant1Time

cwb-nc-pioa> eval result

The next part of the session shows the use of PIOATool to calculate two

di�erent quantities concerning the �rst request issued by the leftmost user in

the system. The �rst such quantity is the measure (\probability") that this re-

quest will eventually be granted. To obtain this number, we �rst enter the PIOA

subshell using the pioa command. Then, the PIOA term MUTEX is compiled into

a system of PIOAs and bound to the identi�er S. We next de�ne an \observ-

able" request1ToGrant1Prob using primitives await, prob, ;, and * provided

by PIOATool. The long string inside of the braces is an action pathname that

is generated automatically by the tool to ensure that internal actions are given

unique names. The PIOA system S is then \applied" to request1ToGrant1Prob

to produce a new observable: result. The application of S actually proceeds in

a component-at-a-time fashion. Finally result is \evaluated" to extract the re-

sulting probability. This phase, which involves the solution of a system of linear

equations in 537 unknowns, is performed using straight LU decomposition. The

reported result, 1, is obtained after 149.1 seconds of computation, and repre-

sents the likelihood that the leftmost user does not \starve". This result is in

contrast to what would be obtained a model checker, which would report that

starvation is possible. The quantitative analysis indicates that the \likelihood"

of starvation is 0.

Given that the leftmost user cannot, probabilistically speaking, starve, the

next quantity we compute is the expected time that elapses between the user's

request and the subsequent grant. To calculate this, we form the observable

req1ToGrant1Time, apply S to it, and evaluate the result. After 72.2 seconds,

the answer 15.85 is returned.

6 Conclusions, and Related and Future Work

In this paper we have studied issues surrounding the integration of a performance-

analysis tool, PIOATool, and a functional-analysis tool, the Concurrency Work-

bench of the New Century. Central to our integration architecture is the notion of

subshell, which allows the integrated tools to share data structures and routines

while retaining their separate analytical capabilities. The subshell idea e�ciently

addresses the data transfer problem among integrating tools: how can the tools

exchange information? A common approach involves the use of �les to store this

information. While this has the advantage of enabling tools to be loosely coupled,

it does su�er from the following drawbacks. (a) An intermediate format must be

de�ned. This can be subtle and time-consuming. (b) The intermediate formats

must be parsed and unparsed repeatedly, slowing down tool performance. (c)

The �les can become quite large and require signi�cant processing time when

tools must exchange intermediate data structures.

The two existing e�orts most closely related to this project include TwoTow-

ers [2] and the performance integration work in CADP [7]. TwoTowers is also

built on two existing tools, the CWB-NC and MarCA [13] with EMPAr [1] as

the speci�cation language. Aside from the speci�cation formalisms, the key dis-

tinction between that work and this involves the tool architecture. TwoTowers

isolates the CWB-NC and MarCA from one another; the tool kernel is respon-

sible for translating EMPAr terms into a format suitable for either tool. The

kernel therefore implements a semantics of (a subset of) EMPAr for the MarCA

tool, and another semantics (embedded in the CWB-NC using PAC) for the

functional interpretation of EMPAr. In contrast, our tool implements a single

base semantics used by both tools. The CADP project uses �les to transfer data

between tools; our integration is tighter and therefore avoids overhead associated

with accessing secondary storage to retrieve intermediate results.

As for future work, we would like to study how the CWB-NC/PIOATool can

be modi�ed to support performance analyses for value-passing systems.

References

1. M. Bernardo. An algebra-based method to associate rewards with EMPA terms.

In ICALP'97, vol. 1256 of LNCS, pages 358{368, Jul. 1997.

2. M. Bernardo, R. Cleaveland, S. Sims, and W. Stewart. TwoTowers: A tool in-

tegrating functional and performance analysis of concurrent systems. In FORTE

XI/PSTV XVIII '98, pages 457{467, Nov. 1998.

3. R. Cleaveland, E. Madelaine, and S. Sims. A front-end generator for veri�cation

tools. In TACAS'95, vol. 1019 of LNCS, pages 153{173, May 1995.

4. R. Cleaveland, J. Parrow, and B. Ste�en. The Concurrency Workbench: A

semantics-based tool for the veri�cation of �nite-state systems. ACM TOPLAS,

15(1):36{72, Jan. 1993.

5. R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In Computer

Aided Veri�cation (CAV '96), vol. 1102 of LNCS, pages 394{397, Jul. 1996.

6. R. Cleaveland and S. Sims. Generic tools for verifying concurrent systems. Science

of Computer Programming, 42(1):39{47, Jan. 2002.

7. H. Hermanns and H. Garavel. On combining functional veri�cation and perfor-

mance evaluation using CADP. In FME, vol. 2391 of LNCS, pages 410{429, 2002.

8. N. Lynch and M.Tuttle. Hierarchical correctness proofs for distributed algorithms.

In 6th ACM PODC, pages 137{151, 1987.

9. E. Stark and G. Pemmasani. Implementation of a compositional performance

analysis algorithm for probabilistic I/O automata. In 7th PAPM, pages 3{24,

1999.

10. E. Stark and S. Smolka. Compositional analysis of expected delays in networks of

probabilistic I/O automata. In Proc. 13th LICS, pages 466{477, Jun. 1998.

11. E. Stark, S. Smolka, and R. Cleaveland. A process-algebraic language for PIOA.

Unpublished draft, 2003.

12. E. Stark. Compositional performance analysis using probabilistic I/O automata.

In CONCUR 2000, vol. 1877 of LNCS, pages 25{28, Aug. 2000.

13. W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton

University Presss, 1994.

14. S. Wu, S. Smolka, and E. Stark. Composition and behaviors of probabilistic I/O

automata. Theoretical Computer Science, 176(1{2):1{38, Apr. 1997.

