
A Process-Algebraic Language for
Probabilistic I/O Automata?

Eugene W. Stark, Rance Cleaveland, Scott A. Smolka??

Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, NY 11794 USA

Abstract. We present a process-algebraic language for Probabilistic
I/O Automata (PIOA). To ensure that PIOA specifications given in our
language satisfy the “input-enabled” property, which requires that all
input actions be enabled in every state of a PIOA, we augment the lan-
guage with a set of type inference rules. We also equip our language
with a formal operational semantics defined by a set of transition rules.
We present a number of results whose thrust is to establish that the
typing and transition rules are sensible and interact properly. The cen-
tral connection between types and transition systems is that if a term is
well-typed, then in fact the associated transition system is input-enabled.
We also consider two notions of equivalence for our language, weighted
bisimulation equivalence and PIOA behavioral equivalence. We show that
both equivalences are substitutive with respect to the operators of the
language, and note that weighted bisimulation equivalence is a strict
refinement of behavioral equivalence.

Keywords: stochastic process algebras; typing systems and algorithms;
process equivalences; continuous-time Markov chains

1 Introduction

In previous work [WSS94,WSS97] we introduced probabilistic I/O automata
(PIOA) as a formal model for systems that exhibit concurrent and probabilistic
behavior. PIOA extend the well-known I/O automaton model for nondetermin-
istic computation [LT87] with two kinds of performance information: probability
distributions representing the relative likelihood with which transitions from a
given state labeled by the same input are performed; and rate information de-
scribing how long, on average, the automaton will remain in a state before taking
a particular output or internal transition.
? This research was supported in part by the National Science Foundation under Grant

CCR-9988155 and the Army Research Office under Grants DAAD190110003 and
DAAD190110019. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation, the Army Research Office, or other
sponsors.

?? Authors’ E-mail addresses: {stark,rance,sas}@cs.sunysb.edu

PIOA are similar in many respects to stochastic automata [Buc99,PA91],
and like stochastic automata, PIOA are associated with continuous-time Markov
chains (CTMCs). PIOA are also equipped with a composition operation by which
a complex automaton can be constructed from simpler components. Both PIOA
and stochastic automata can thus be seen as a formalism for describing large
CTMC system models from simpler components. The composition operation for
PIOA is defined in essentially the same way as for stochastic automata, how-
ever, the PIOA model draws a distinction between input (passive) and output
(active) actions, and in forming the composition of automata only input/input
or input/output synchronization is permitted — the output/output case is pro-
hibited.

In [SS98] we presented algorithms for calculating certain kinds of perfor-
mance parameters for systems modeled in terms of PIOA. These algorithms
work in a compositional fashion; that is, by treating the components of a com-
posite system in succession rather than all at once. Our implementation of these
algorithms, called “PIOATool,” has been integrated into the Concurrency Work-
bench [CPS93] (CWB), as described in [ZCS03]. The CWB provides several
analysis capabilities for specifications expressed in process-algebraic language,
including equivalence, preorder, and model checking. It has a retargetable front
end that allows it to be applied to virtually any process-algebraic language hav-
ing a formal semantics defined in the “structural operational semantics” (SOS)
style. To achieve the PIOATool/CWB integration, it was necessary for us to de-
sign such a process-algebraic language for PIOA-based specifications, together
with an SOS semantics for the language. This language, and associated theorems
about its semantics, form the subject of the present paper.

The PIOA model exhibits certain features that differentiate it from other
languages previously supported by the CWB. One such feature is the fact that
each transition of a PIOA, besides being labeled by an action, is also labeled
by a numeric weight, which can be either a probability (in the case of an input
transition) or a rate (in the case of an output or internal transition). Another
such feature is the so-called “input-enabled” property, which requires that all
input actions be enabled in every state of a PIOA. It is the second of these
features that has the most impact on the design of a process-algebraic language
for PIOA, since it is necessary to ensure that the input-enabled property holds
for every well-formed specification in the language. The problem is that process-
algebraic specifications of desired input-enabled transition systems usually have
to be built up from component specifications that are not input-enabled.

To solve the problem of guaranteeing that PIOA specifications given in our
language satisfy the input-enabled property, we augment the language with a set
of type inference rules. These rules define a set of inferable typing judgements of
the form t : I/J ⇒ O. Such a judgement asserts that for term t, I is a set of
actions for which input transitions are guaranteed to be enabled at the first step
of t, J is a set of actions for which input transitions are guaranteed to be enabled
at all steps of t after the first, and O is a set of actions that includes at least
all the outputs that may be produced by t (but which may be larger). A closed

term t is called well-typed if there is some typing judgement that is inferable for
it. Besides enforcing input-enabledness, types are used to enforce compatibility
conditions for parallel composition and they also appear as hypotheses in some
of the transition rules of the language’s operational semantics.

We present a number of results whose thrust is to establish that the typing
and transition rules are sensible and interact properly, including a principal
type theorem, a connection between the types that can be inferred for a term
and the transitions that can be inferred for it, and a subject reduction theorem
which establishes that well-typedness is preserved across transitions. The central
connection between types and transition systems is that if a term is well-typed,
then in fact the associated transition system is input-enabled.

We also define two notions of equivalence for our language, weighted bisimu-
lation equivalence and PIOA behavioral equivalence, and investigate their prop-
erties. In particular, we observe that weighted bisimulation equivalence strictly
refines behavioral equivalence (a detailed proof can be found in [Sta03]) and that
both equivalences are substitutive with respect to the operators of the PIOA lan-
guage.

The rest of the paper develops along the following lines. Section 2 surveys
some related work by other researchers. Section 3 defines the syntax of our PIOA
language. Section 4 presents the language’s type-inference rules and transition
rules. Section 5 gives metatheoretic results that connect the typing and transi-
tion rules. Section 6 defines the two notions of equivalence and establishes that
they are substitutive. Section 7 contains our concluding remarks. Due to space
limitations, all proofs are omitted.

2 Related Work

Formal languages for specifying (non-probabilistic) I/O automata have previ-
ously been proposed by several researchers. The process-algebraic languages pre-
sented in [Vaa91,DNS95] ensure input-enabledness by filling in “default transi-
tions” for missing input transitions. In the case of [Vaa91], the default transitions
are “self-loop” input transitions taken from a term to itself. In [DNS95], the de-
fault transitions lead to the “unspecified I/O automaton” ΩS . In contrast, we
have found in writing actual specifications that sometimes one wants default
transitions that are self-loops and sometimes one wants default transitions that
go to an error state. An automatic mechanism for filling in defaults is likely to
get it wrong a significant fraction of the time, resulting in a specification lan-
guage that is less transparent to the user. Thus, our language does not make
any attempt to fill in default transitions, but rather it employs a notion of well-
typedness of terms which guarantees that all well-typed terms are input-enabled.

Another language for describing I/O automata is the IOA language of [GL00].
IOA uses guarded-command-like “transition definitions” consisting of precondi-
tions and effects to encode I/O automata. It also provides constructs for nonde-
terministic choice, composition, and action hiding. Automatic code generation
from IOA specifications is also supported.

A number of process algebras capturing performance-related aspects of sys-
tem behavior have been proposed in the literature; see [HH02] for a comprehen-
sive survey. Among these, EMPA [BDG98] is perhaps most closely related to our
PIOA process algebra as it makes an I/O-like master-slave distinction between
“active” and “passive” actions. Active and passive actions can synchronize, with
the rate of the synchronization determined by the rate of the passive action,
while synchronization between active actions is disallowed. Hillston [Hil94] gives
a thoughtful discussion of the issues surrounding synchronization in stochastic
processes, including the role of passive and active actions. The issue has also
been treated more recently by Brinksma and Hermanns [BH01].

3 Syntax

Let Act be a set of actions, and let Var be a set of variables. We use a, b, c . . . to
range over Act and we use X, Y, Z . . . to range over Var . Our language has the
following syntax:

P ::= X | nil | a(w) ? t | b(r) ! t | τ(r) · t |
t1 + t2 | t1 O1‖O2 t2 | t [O] | t{a← a′} | µX.t

The informal meaning of the various constructs is as follows:

– X is a process variable, used in forming recursive processes.
– nil denotes a process with no actions and no transitions.
– a(w) ? t denotes an input-prefixed process that can perform input action a ∈

Act with weight w and then become the process t. The weight w must be a
positive real number, and it is typically a probability.

– b(r) ! t denotes an output-prefixed process that can perform output action
b ∈ Act with rate r and then become process denoted by t. The rate r
must be a positive real number, which (as usual for CTMC-based models)
we regard as the parameter of an exponential probability distribution that
describes the length of time before term b(r) ! t will perform a transition.

– τ(r) · t denotes an internal-prefixed process that can perform an internal tran-
sition with rate r and then become the process denoted by t. Here τ is a
special symbol, not in Act , used to indicate an internal transition. The rate
r must be a positive real number, as for output prefixing.

– t1 + t2 denotes a choice between alternatives offered by t1 and t2. Choices
between summands prefixed by distinct input actions are determined by the
environment, and amount to a form of external nondeterminism. Choices be-
tween summands prefixed by the same input action are probabilistic choices
governed by the relative weights appearing in the prefixes. Choices between
summands prefixed by output or internal actions are probabilistic choices
governed by the usual race condition involving the rates appearing in the
prefixes. Choices between input-prefixed summands and summands prefixed
by output or internal actions are ultimately resolved by a race between the
process and its environment.

– t1 O1‖O2 t2 denotes a process that is the parallel composition of the processes
denoted by t1 and t2. The sets O1 and O2 are the sets of output actions
controlled by t1 and t2, respectively. These sets are required to be disjoint.

– t [O] denotes a term t in which all output transitions labeled by actions not
in the set O have been hidden by transforming them into internal transitions.

– t{e← e′} denotes the renaming of action e to e′ in t. The typing rules pre-
sented below will ensure that action e′ is a fresh action that is not already
an input or output action for t.

– µX.t denotes a recursively defined process in the usual way. The recursion
variable X is required to be be guarded by input, output, or internal prefixing
in the expression t.

4 Semantics

4.1 Types

Our language is equipped with a set of inference rules for inferring typing judge-
ments, which take the form t : I/J ⇒ O where I, J , and O are sets of actions.
The intuitive meaning of such judgements was described in Section 1. We use
the abbreviation I ⇒ O for the special case I/I ⇒ O in which the sets I and J
are equal. A closed term t is well-typed if some typing judgement can be inferred
for it.

The type-inference rules, given in Figure 1, are expressed in a natural-
deduction style. Each rule is to be applied in the context of a set A of as-
sumptions about the types of the free variables appearing in the terms, where
each assumption in A has the form X : I/J ⇒ O. Rules other than the recur-
sion rule are applicable if under assumptions A the judgements in the premises
can be inferred, and in that case the judgement in the conclusion can also be
inferred under the same assumptions A. The rule for recursion is slightly dif-
ferent, in that in order to establish the premise one is permitted to add to the
set A an additional assumption about the recursive variable X. This additional
assumption is discharged by the rule, so that the conclusion is inferable under
assumptions A without the additional assumption on X. Since the set A is the
same in the premises and conclusion of each rule except the rule for recursion,
to avoid clutter, we have not explicitly indicated the set A in each case.

In the sequel, we will use the notation A ` t : φ to assert that there is
an inference of the judgement t : φ from the set of hypotheses A. We will use
` t : φ to assert that a typing judgement t : φ is inferable from the empty set of
assumptions. Note that this is only possible if t is closed.

It is worth pointing out that the type-inference rules do not uniquely associate
a type with each well-typed term. The simplest case of this is the rule for nil,
which permits any judgment of the form nil : ∅ ⇒ O to be inferred. However,
as we will show later, if a closed term t is well-typed, then in fact there is a
uniquely determined set I and a smallest set O such that a judgment t : I ⇒ O
is inferable.

t : I ⇒ O a ∈ I

a(w) ? t : {a}/I ⇒ O

t : I ⇒ O b 6∈ I

b(r) ! t : ∅/I ⇒ O ∪ {b}
t : I ⇒ O

τ(r) · t : ∅/I ⇒ O

t1 : I1/J ⇒ O1 t2 : I2/J ⇒ O2

t1 + t2 : I1 ∪ I2/J ⇒ O1 ∪O2

t1 : I1 ⇒ O′
1 t2 : I2 ⇒ O′

2 O′
1 ⊆ O1 O′

2 ⊆ O2

t1 O1‖O2 t2 : (I1 ∪ I2)\(O1 ∪O2)⇒ O1 ∪O2

t : I ⇒ O a ∈ I a′ 6∈ I ∪O

t{a← a′} : (I\{a}) ∪ {a′} ⇒ O

t : I ⇒ O b′ 6∈ I ∪O

t{b← b′} : I ⇒ (O\{b}) ∪ {b′}

t : I ⇒ O′ O ⊆ O′

t [O] : I ⇒ O
nil : ∅ ⇒ O X : I ⇒ O ` t : I ⇒ O

µX.t : I ⇒ O

Fig. 1. Type-Inference Rules

4.2 Transitions

The transition rules for the PIOA language are used to infer transitions of one
of the following three types: t

a?−→
w

u, t
b!−→
r

u, or t
τ−→
r

u. The first of these
denotes an input transition having associated action a and weight w. The second
denotes an output transition having associated action b and rate r. The third
denotes an internal transition having associated rate r. Both weights w and
rates r are required to be positive real numbers, however we regard weights
w as dimensionless quantities (such as probabilities) and we regard rates as
dimensional quantities with units of 1/time. The full set of transition rules is
given in Figure 2.

There are several points to be noted about the transition rules. In the rules
for a parallel composition t1 O1‖O2 t2, an input transition for component t1 can
occur either independently, if the associated action a is in neither the input
set I2 of t2 nor the set O2 of outputs declared to be controlled by t2, or as a
synchronized input transition, if a is in both I1 and I2, or else as a synchronized
output transition, if a is in I1 and O2. Synchronization in a parallel composition
results in multiplication of the values that label the transitions. However, note
that the rules only call for the multiplication of two weights, or the multiplication
of a weight and a rate, but never the multiplication of two rates. This is consistent
with our view of weights as dimensionless quantities (e.g. probabilities) and with
rates as quantities with dimensions of 1/time.

In a parallel composition t1 O1‖O2 t2 the syntax declares explicitly the sets O1

and O2 of outputs that are to be controlled by t1 and t2, respectively. The sets
of outputs O′1 and O′2 that t1 and t2 can actually produce may be smaller. The
reason for this is because as t1 and t2 evolve, the sets of outputs that they are
capable of actually producing may diminish, though in a parallel composition
they still exert control over “lost” output actions by inhibiting their occurrence
as inputs in other components.

a(w) ? t
a?−→
w

t b(r) ! t
b!−→
r

t τ(r) · t
τ−→
r

t

t1
a?−→
w

t′

t1 + t2
a?−→
w

t′

t2
a?−→
w

t′

t1 + t2
a?−→
w

t′

t1
b!−→
r

t′

t1 + t2
b!−→
r

t′

t2
b!−→
r

t′

t1 + t2
b!−→
r

t′

t1
τ−→
r

t′

t1 + t2
τ−→
r

t′

t2
τ−→
r

t′

t1 + t2
τ−→
r

t′

t1
a?−→
w

t′1 t2 : I2 ⇒ O′
2 a 6∈ I2 ∪O2

t1 O1‖O2 t2
a?−→
w

t′1 O1‖O2 t2

t1 : I1 ⇒ O′
1 a 6∈ I1 ∪O1 t2

a?−→
w

t′2

t1 O1‖O2 t2
a?−→
w

t1 O1‖O2 t′2

t1
a?−→
w1

t′1 t2
a?−→
w2

t′2

t1 O1‖O2 t2
a?−→

w1w2
t′1 O1‖O2 t′2

t1
b!−→
r

t′1 t2 : I2 ⇒ O′
2 b 6∈ I2

t1 O1‖O2 t2
b!−→
r

t′1 O1‖O2 t2

t1 : I1 ⇒ O′
1 b 6∈ I1 t2

b!−→
r

t′2

t1 O1‖O2 t2
b!−→
r

t1 O1‖O2 t′2

t1
a!−→
r

t′1 t2
a?−→
w

t′2

t1 O1‖O2 t2
a!−→
wr

t′1 O1‖O2 t′2

t1
a?−→
w

t′1 t2
a!−→
r

t′2

t1 O1‖O2 t2
a!−→
wr

t′1 O1‖O2 t′2

t1
τ−→
r

t′1

t1 O1‖O2 t2
τ−→
r

t′1 O1‖O2 t2

t2
τ−→
r

t′2

t1 O1‖O2 t2
τ−→
r

t1 O1‖O2 t′2

t
a?−→
w

t′

t [O]
a?−→
w

t′ [O]

t
b!−→
r

t′ b ∈ O

t [O]
b!−→
r

t′ [O]

t
b!−→
r

t′ b 6∈ O

t [O]
τ−→
r

t′ [O]

t
τ−→
r

t′

t [O]
τ−→
r

t′ [O]

t
a?−→
w

t′

t{a← a′} a′?−→
w

t′{a← a′}

t
a?−→
w

t′ a 6= e

t{e← e′} a?−→
w

t′{e← e′}

t
b!−→
r

t′

t{b← b′} b′!−→
r

t′{b← b′}

t
b!−→
r

t′ b 6= e

t{e← e′} b!−→
r

t′{e← e′}

t
τ−→
r

t′

t{e← e′} τ−→
r

t′{e← e′}

t[µX.t/X]
a?−→
w

t′

µX.t
a?−→
w

t′

t[µX.t/X]
b!−→
r

t′

µX.t
b!−→
r

t′

t[µX.t/X]
τ−→
r

t′

µX.t
τ−→
r

t′

Fig. 2. Transition Rules

5 Metatheory

In this section, we present a number of results targeted at showing that the
typing and transition rules presented in the previous section are sensible and
interact properly. In particular, we have the following:

– A principal type theorem (Theorem 1).
– A connection between the types that can be inferred for a term and the

transitions that can be inferred for it. (Theorems 2 and 3).
– A subject reduction theorem (Theorem 4): well-typedness is preserved across

inferable transitions.

5.1 Principal Types

Our first result in this section states that inferable types have disjoint sets of
inputs and outputs, and that the set of inputs available on the first transition is
contained in the set of inputs available on subsequent transitions.

Lemma 1. Suppose ` t : I/J ⇒ O. Then I ⊆ J and J ∩O = ∅.

It is tempting to think that if ` t : I/J ⇒ O, then ` t : I/J ⇒ O′ for all
O′ ⊇ O such that J ∩ O′ = ∅. However this result does not hold for our type
system. As a trivial example, if t is the term “nil [∅]”, then although ` t : ∅ ⇒ ∅,
we do not have ` t : ∅ ⇒ O for any nonempty O.

Theorem 1 (Principal Type Theorem). If ` t : I/J ⇒ O for some I, J ,
and O, then there exists Ô such that ` t : I/J ⇒ Ô, and such that whenever
` t : I ′/J ′ ⇒ O′ then I ′ = I, J ′ = J , and O′ ⊇ Ô.

For a given closed, well-typed term t, define the principal type of t to be the
type I/J ⇒ Ô given by Theorem 1. Let ProcI,O denote the set of all well-typed
closed terms t having principal type I ⇒ O′ for some O′ ⊆ O.

5.2 Types and Transitions

We next establish connections between the types inferable for a term and the
transitions inferable for that term. In particular, if a judgement t : I/J ⇒ O is
inferable, then I is precisely the set of actions a for which a transition of the form
t

a?−→
w

t′ is inferable, and O contains all actions b for which a transition of the form

t
b!−→
r

t′ is inferable. Moreover, well-typedness is preserved across transitions,
although inferable types are not preserved exactly due to the possibility that
the capacity of producing a particular output action can be lost as a result of
taking a transition.

A term t such that t : I/J ⇒ O is called input-enabled if for all actions e ∈ I

some transition of the form t
e?−→
w

t′ is inferable.

Theorem 2 (Input Enabledness Theorem). Suppose t : I/J ⇒ O. Then
for all actions e, e ∈ I if and only if a transition of the form t

e?−→
w

t′ is inferable.

Theorem 3. Suppose t : I/J ⇒ O. Then for all actions e, if a transition of the
form t

e!−→
r

t′ is inferable, then e ∈ O.

Theorem 4 (Subject Reduction Theorem). Suppose ` t : I/J ⇒ O. If for
some term t′ a transition of the form t

e?−→
w

t′, t
e!−→
r

t′, or t
τ−→
r

t′ is inferable,

then ` t′ : J/J ⇒ O′ for some O′ ⊆ O. In particular, ProcI,O is closed under
transitions.

5.3 Total Transition Weight/Rate

For given terms t and t′ and action e, the transition inference rules may yield zero
or more distinct inferences of transitions of one of the forms: t

e?−→
w

t′, t
e!−→
r

t′,

or t
τ−→
r

t′, where w and r vary depending on the specific inference. However,
it is a consequence of the requirement that all recursive variables be guarded
by a prefixing operation that there can be only finitely many such inferences.
We write t

e?7−→
w

t′ to assert that w is the sum of all the weights wi appearing in

distinct inferences of transitions of the form t
e?−→
wi

t′. We call such an expression

a total transition. Since there are only finitely many such inferences, the sum w

is finite. In case there are no inferable transitions t
e?−→
wi

t′ we write t
e?7−→
0

t′. For

output and internal transitions, the notations t
e!7−→
r

t′ and t
τ7−→
r

t′ are defined
similarly.

A related notation will also be useful. Suppose t and t′ are closed terms in
ProcI,O. Then for all e ∈ Act ∪ {τ} define ∆O

e (t, t′) as follows:

1. If e ∈ I, then ∆O
e (t, t′) is the unique weight w for which t

e?7−→
w

t′.

2. If e ∈ O, then ∆O
e (t, t′) is the unique rate r for which t

e!7−→
r

t′.

3. If e = τ , then ∆O
e (t, t′) is the unique rate r for which t

τ7−→
r

t′.

4. If e 6∈ I ∪O ∪ {τ} then ∆O
e (t, t) = 1 and ∆O

e (t, t′) = 0 if t′ 6= t.

The derivative of term t by action e is the mapping ∆O
e t : ProcI,O → [0,∞)

defined so that the relation (∆O
e t)(t′) = ∆O

e (t, t′) holds identically for all terms
t′. If S is a set of terms, then we use ∆O

e (t, S) or (∆O
e t)(S) to denote the sum∑

t′∈S ∆O
e (t, t′), which is finite.

Note that the reason why we retain the superscripted O in the ∆O
e notation

is because the terms t and t′ do not uniquely determine the set O, therefore
whether clause (2) or (4) in the definition applies for a given action e depends
on the set O.

Define the class of input-stochastic terms to be the largest subset of ProcI,O

such that if t is input-stochastic then the following conditions hold:

1. For all e ∈ I we have
∑

t′ ∆O
e (t, t′) = 1.

2. Whenever ∆O
e (t, t′) > 0 then t′ is also input-stochastic.

Input-stochastic terms are those for which the weights associated with input
transitions can be interpreted as probabilities. These are the terms that are
naturally associated with PIOA, in the sense that the set of all stochastic terms
in ProcI,O is the set of states of a PIOA with input actions I, output actions
O, and the single internal action τ , and with ∆O

e as the “transition matrix” for
action e.

In a later section, we will require the notion of the total rate rt(t) of a closed,
well-typed term t such that ` t : I ⇒ O. This quantity is defined as follows:

rt(t) =
∑

e∈O∪{τ}

∑
t′

∆O
e (t, t′).

It is a consequence of the fact that only finitely many actions e can appear in
term t that rt(t) is finite. Note also that rt(t) does not depend on O.

6 Equivalence of Terms

In this section, we define two notions of equivalence for our language, and in-
vestigate their properties. The first equivalence, which we call weighted bisimu-
lation equivalence, is a variant of bisimulation that is based on the same ideas
as probabilistic bisimulation [LS91], Hillston’s “strong equivalence” [Hil96], and
“strong Markovian bisimulation” [HH02]. The second equivalence, called PIOA
behavior equivalence, is based on the notion of the “behavior map” associ-
ated with a PIOA, which has appeared in various forms in our previous work
[WSS94,WSS97,SS98], along with motivation for the concept. Additional moti-
vation and a detailed comparison of probabilistic bisimulation equivalence and
PIOA behavior equivalence can be found in [Sta03]. In the present paper we
focus primarily on congruence properties of these equivalences with respect to
the operators of our language.

6.1 Weighted Bisimulation Equivalence

A weighted bisimulation is an equivalence relation R on ProcI,O such that when-
ever t R t′ then for all actions e and all equivalence classes C of R we have
∆O

e (t, C) = ∆O
e (t′, C). Clearly, the identity relation is a weighted bisimulation.

It is a standard argument to prove that the transitive closure of the union of an
arbitrary collection of weighted bisimulations is again a weighted bisimulation.
Thus, there exists a largest weighted bisimulation ∼

I,O
on ProcI,O. We call ∼

I,O

the weighted bisimulation equivalence relation.
Define a weighting on terms to be a function µ from ProcI,O to the non-

negative real numbers, such that that µ(t) = 0 for all but finitely many terms
t ∈ ProcI,O. Suppose R is an equivalence relation on ProcI,O. Define the lifting
of R to weightings to be the relation R on weightings defined by the following
condition: µ R µ′ if and only if µ(C) = µ′(C) for all equivalence classes C of R.

The following result (cf. [JLY01]) simply restates the definition of weighted
bisimulation in terms of weightings.

Lemma 2. An equivalence relation R on ProcI,O is a weighted bisimulation if
and only if t R u implies ∆O

e t R ∆O
e u for all terms t, u and all actions e.

Lemma 3. Let R be a symmetric relation on terms. If for all terms t, u and all
actions e we have

t R u implies ∆O
e t (R ∪ ∼

I,O
)∗ ∆O

e u,

then R ⊆ ∼
I,O

.

Lemma 3 can be used to establish that weighted bisimilarity is substitutive
with respect to the operators of our language.

Theorem 5. The following hold, whenever the sets of inputs and outputs are
such that the terms are well-typed and the indicated relations make sense:

1. If t ∼
I′,O′

t′, then

(a) a(w) ? t ∼
I,O

a(w) ? t′

(b) b(r) ! t ∼
I,O

b(r) ! t′

(c) τ(r) · t ∼
I,O

τ(r) · t′

2. If t1 ∼
I1,O1

t′1 and t2 ∼
I2,O2

t′2, then t1 + t2 ∼
I,O

t′1 + t′2

3. If t1 ∼
I1,O1

t′1 and t2 ∼
I2,O2

t′2, then t1 O1‖O2 t2 ∼
I,O

t′1 O1‖O2 t′2.

4. If t ∼
I′,O′

t′, then t [O] ∼
I,O

t′ [O].

5. If t ∼
I′,O′

t′, then t{e← e′} ∼
I,O

t′{e← e′}.

6.2 Behavior Equivalence

In this section, we restrict our attention to the fragment of the language ob-
tained by omitting internal actions and hiding. Let Proc−I,O denote the portion
of ProcI,O contained in this fragment. The full language can be treated, but the
definition of behavior equivalence becomes more complicated and requires the
use of fixed-point techniques, rather than the simple inductive definition given
below.

Behavior equivalence is defined by associating with each closed term t with
` t : I ⇒ O a certain function BO

t which we call the behavior of t. Terms t and
t′ will be called behavior equivalent if their associated behaviors are identical.

To define BO
t , some preliminary definitions are required. A rated action is a

pair (r, e) ∈ [0,∞) × Act . Rather than the somewhat heavy notation (r, e), we
usually denote a rated action by an expression re in which the rate appears as
a subscript preceding the action. A finite sequence

r1e1r2e2 . . . rn
en

of rated actions is called a rated trace. We use ε to denote the empty rated trace.
An observable is a mapping from rated traces to real numbers. We use Obs

to denote the set of all observables. The derivative of an observable Φ by a
rated action re is the observable Ψ defined by Ψ(α) = Φ(re α) for all rated
traces α. Borrowing notation from the literature on formal power series (of which
observables are an example), we write re

−1Φ to denote the derivative of Φ by
the rated action re.

To each term t in Proc−I,O we associate a transformation of observables:

BO
t : Obs→ Obs

according to the following inductive definition:

BO
t [Φ](ε) = Φ(ε)

BO
t [Φ](re α) =

∑
t′

∆O
e (t, t′) BO

t′ [r+rt(t)e
−1Φ](α).

Terms t and t′ in Proc−I,O are called behavior equivalent, and we write t ≡
I,O

t′, if

BO
t = BO

t′ .
Intuitively, in the definition of BO

t [Φ](α), one should think of the rated trace α
as giving certain partial information about a particular set of execution trajecto-
ries that might be traversed by a process t in combination with its environment.
In particular, if α = r1e1r2e2 . . . rnen, then e1e2 . . . en is the sequence of actions
performed in such a trajectory (including both input and output actions) and
r1r2 . . . rn is the sequence of output rates associated with the successive states
visited by the environment in such a trajectory. The observable Φ should be
thought of as a way of associating some numeric measure, or reward, with tra-
jectories. By “unwinding” the definition of BO

t [Φ](α), one can see that it amounts
to a weighted summation of the rewards Φ(α′) associated with trajectories α′

that start from t and that “match” α, in the sense that α and α′ have the same
sequence of actions, but the rates of actions in α′ are obtained by adding to the
rate of the corresponding action in α the total rate rt(u) of a state u reachable by
process t. Further explanation and examples of what can be done with behavior
maps can be found in [SS98,Sta03].

The next result states that behavior equivalent terms have the same total
rate, and the same total transition weight for each individual action.

Lemma 4. Suppose t ≡
I,O

t′. Then

1.
∑

u ∆O
e (t, u) =

∑
u ∆O

e (t′, u) for all e ∈ Act.
2. rt(t) = rt(t′).

A mistake that we made repeatedly while developing the language and these
results was to suppose that the choice operator in the language ought to corre-
spond to sum of behavior maps. This is wrong. The following result shows the
correct relationship.

Lemma 5. Suppose t1 and t2 are terms, such that ` t1 + t2 : I ⇒ O. Then for
all observables Φ, rated actions re, and rated traces α′:

BO
t1+t2 [Φ](ε) = Φ(ε)

BO
t1+t2 [Φ](re α′) = BO

t1 [Φ](r+rt(t2)e α′) + BO
t2 [Φ](r+rt(t1)e α′).

The following result states that behavior maps are compositional with respect
to the parallel operator. We have proved this result in various forms in our
previous papers [WSS94,WSS97,SS98]. A proof of the result based on the specific
definition of behavior map given here appears in [Sta03].

Lemma 6. Suppose t1 and t2 are terms, such that ` t1 O1‖O2 t2 : I ⇒ O. Then

BO
t1 O1‖O2 t2

= BO1
t1 ◦ B

O2
t2 .

Lemma 7. Suppose ` t{e← e′} : I ⇒ O. Let mapping h on rated traces be the
string homomorphism that interchanges re

′ and re and is the identity mapping
on all other rated actions. Then

BO
t{e← e′}[Φ] = BO

t [Φ ◦ h] ◦ h,

where O′ = O if e′ ∈ I, and O′ = (O \ {e′}) ∪ {e} if e′ ∈ O.

The preceding lemmas can be used to show that behavior equivalence is sub-
stitutive with respect to the operations of our language (exclusive of internal
prefixing and hiding). The proofs are all ultimately by induction on the length
of the rated trace α supplied as argument, though in the cases of parallel com-
position and renaming we have been able to hide this “operational” induction
inside the more “denotational” Lemmas 6 and 7.

Theorem 6. The following hold, whenever the sets of inputs and outputs are
such that the terms are well-typed and the indicated relations make sense:

1. If t ≡
I′,O′

t′, then

(a) a(w) ? t ≡
I,O

a(w) ? t′

(b) b(r) ! t ≡
I,O

b(r) ! t′

2. If t1 ≡
I1,O1

t′1 and t2 ≡
I2,O2

t′2, then t1 + t2 ≡
I,O

t′1 + t′2

3. If t1 ≡
I1,O1

t′1 and t2 ≡
I2,O2

t′2, then t1 O1‖O2 t2 ≡
I,O

t′1 O1‖O2 t′2.

4. If t ≡
I′,O′

t′, then t{e← e′} ≡
I,O

t′{e← e′}.

6.3 Comparison of the Equivalences

The following result is a consequence of characterizations, obtained in [Sta03],
of weighted bisimulation equivalence and behavior equivalence.

Theorem 7. Suppose t and t′ are in Proc−I,O. If t ∼
I,O

t′, then t ≡
I,O

t′.

In addition, if I = ∅ and O = {a, b, c} then we have

a(1) ! b(2) ! nil + a(1) ! c(2) ! nil ≡
I,O

a(2) ! (b(1) ! nil + c(1) ! nil),

but the same two terms are not related by ∼
I,O

. Thus, weighted bisimulation

equivalence is a strict refinement of behavior equivalence.

7 Conclusion

We have presented a process-algebraic language having input, output, and in-
ternal transitions, where input actions are labeled by weights and output and
internal actions are labeled by rates. A set of typing rules is employed to define
the sets ProcI,O of well-typed terms, which are guaranteed to have transitions
enabled for all actions a ∈ I. A readily identifiable subset of the well-typed
terms are the input-stochastic terms, in which input weights can be interpreted
as probabilities. The input-stochastic terms are therefore the states of a PIOA,
so that the language is suitable for writing PIOA-based specifications. We have
defined two equivalences on the language, a weighted bisimulation equivalence
defined in the same pattern as the classical probabilistic bisimulation equiva-
lence, and a so-called “behavior equivalence” whose definition is motivated by
our previous work on PIOA. Both equivalences were shown to be congruences,
and we noted that weighted bisimulation equivalence is a strict refinement of
behavior equivalence.

A natural direction for future work is to axiomatize the equational theories
of the two congruences. For weighted bisimulation equivalence, a standard equa-
tional axiomatization should be possible, and is not likely to yield any surprises.
The situation for behavior equivalence is a bit different, however. Weighted
bisimulation equivalence is the largest equivalence on terms that respects tran-
sition weights in the sense of Lemma 2. Since behavior equivalence relates terms
that are not weighted bisimulation equivalent, it will not be possible to obtain
an equational axiomatization of behavior equivalence, at least in the context of
a theory of equations between terms. However, it appears that it is possible to
obtain an axiomatization of behavior equivalence in the context of a theory of
equations between weightings, rather than terms. We are currently working out
the details of this idea.

References

[BDG98] M. Bernardo, L. Donatiello, and R. Gorrieri. A formal approach to the
integration of performance aspects in the modeling and analysis of concurrent
systems. Information and Computation, 144(2):83–154, 1998.

[BH01] E. Brinksma and H. Hermanns. Process algebra and Markov chains. In
E. Brinksma, H. Hermanns, and J.-P. Katoen, editors, FMPA 2000: Euro-
Summerschool on Formal Methods and Performance Analysis, volume 2090
of Lecture Notes in Computer Science, pages 183–231. Springer-Verlag, 2001.

[Buc99] P. Buchholz. Exact performance equivalence: An equivalence relation for
stochastic automata. Theoretical Computer Science, 215:263–287, 1999.

[CPS93] R. Cleaveland, J. Parrow, and B. U. Steffen. The Concurrency Workbench:
A semantics-based tool for the verification of concurrent systems. ACM
TOPLAS, 15(1), 1993.

[DNS95] R. De Nicola and R. Segala. A process algebraic view of Input/Output Au-
tomata. Theoretical Computer Science, 138(2), 1995.

[GL00] S. J. Garland and N. A. Lynch. Using I/O automata for developing distributed
systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of
Component-Based Systems, pages 285–312. Cambridge University Press, 2000.

[HH02] J.-P. Katoen H. Hermanns, U. Herzog. Process algebra for performance eval-
uation. Theoretical Computer Science, 274:43–97, 2002.

[Hil94] J. Hillston. The nature of synchronization. In U. Herzog and M. Rettelbach,
editors, Proceedings of the 2nd Workshop on Process Algebra and Performance
Modeling, pages 51–70, University of Erlangen, July 1994.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[JLY01] B. Jonsson, K. G. Larsen, and W. Yi. Probabilistic extensions of process
algebras. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of
Process Algebra. Elsevier, 2001.

[LS91] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94(1):1–28, September 1991.

[LT87] N. A. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles
of Distributed Computing, pages 137–151, 1987.

[PA91] B. Plateau and K. Atif. Stochastic automata networks for modeling parallel
systems. IEEE Transactions on Software Engineering, 17:1093–1108, 1991.

[SS98] E. W. Stark and S. Smolka. Compositional analysis of expected delays in
networks of probabilistic I/O automata. In Proc. 13th Annual Symposium
on Logic in Computer Science, pages 466–477, Indianapolis, IN, June 1998.
IEEE Computer Society Press.

[Sta03] E. Stark. On behavior equivalence for probabilistic I/O automata and its
relationship to probabilistic bisimulation. Journal of Automata, Languages,
and Combinatorics, 8(2), 2003. to appear.

[Vaa91] F. W. Vaandrager. On the relationship between process algebra and in-
put/output automata. In Sixth Annual Symposium on Logic in Computer
Science (LICS ’91), pages 387–398, Amsterdam, July 1991. Computer Soci-
ety Press.

[WSS94] S.-H. Wu, S. A. Smolka, and E. W. Stark. Compositionality and full abstrac-
tion for probabilistic I/O automata. In Proceedings of CONCUR ’94 — Fifth
International Conference on Concurrency Theory, Uppsala, Sweden, August
1994.

[WSS97] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of
probabilistic I/O automata. Theoretical Computer Science, 176(1-2):1–38,
1997.

[ZCS03] D. Zhang, R. Cleaveland, and E.W. Stark. The integrated CWB-
NC/PIOATool for functional and performance analysis of concurrent systems.
In Proceedings of the Ninth International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2003). Lecture Notes
in Computer Science, Springer-Verlag, April 2003.

