
Probabilistic I/O Automata:
Theories of Two Equivalences∗†

Eugene W. Stark1, Rance Cleaveland2‡

1 Department of Computer
Science

State University of New York
at Stony Brook

Stony Brook, NY 11794 USA

2 Department of Computer
Science

University of Maryland
College Park, Maryland 20742

USA

June 7, 2006

Abstract

Working in the context of a process-algebraic language for Probabilistic I/O Au-
tomata (PIOA), we study the notion of PIOA behavior equivalence by obtaining a
complete axiomatization of its equational theory and comparing the results with a
complete axiomatization of a more standard equivalence, weighted bisimulation. The
axiomatization of behavior equivalence is achieved by adding to the language an oper-
ator for forming convex combinations of terms.

1 Introduction

In previous work [SCS03], we presented a process-algebraic language, motivated by the
probabilistic I/O automaton model, that provides a compositional formalism for defining
continuous-time Markov chains (CTMCs). The constructs in our language are similar to
those in other “Markovian process algebra” languages that have been studied by a number
of other researchers (see [HH02] for a survey), especially EMPA [BDG98]. In our language,
we classify transitions as either output (“active”) transitions or input (“passive”) transitions.
Output transitions, which can occur spontaneously, have associated positive rates. Rates

∗This is a full version of an extended abstract that appeared in Christel Baier, Holger Hermanns (eds.),
Proceedings of CONCUR’06, Springer-Verlag Lecture Notes in Computer Science, August 2006.

†This research was supported in part by the National Science Foundation under Grant CCR-9988155 and
the Army Research Office under Grants DAAD190110003 and DAAD190110019. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation, the Army Research Office, or other sponsors.

‡Authors’ E-mail addresses: stark@cs.sunysb.edu, rance@cs.umd.edu

1

are dimensional quantities with units of 1/time, which are regarded as the parameters of
exponential probability distributions. When multiple output transitions are available for a
process, the choice between them is made probabilistically by a “race policy” semantics: an
exponentially distributed random future time is chosen for the occurrence of each transition
(using the associated rate as the parameter of the distribution) and the transition for which
the earliest time is chosen “wins the race” and becomes the next transition to occur. In-
put transitions, which can occur for a process only in conjunction with a similarly labeled
output transition performed by its environment, have associated positive weights, which are
dimensionless. When multiple input transitions labeled by the same action are available, the
choice between them is made probabilistically on the basis of their proportionate weights.

In this paper, we consider a fragment of our language having the following syntax, where
Act is a set of actions, variables a, b, c, . . . are used to range over Act , and variables t, u, v, . . .
are used to range over process terms:

nilI | 〈a?w〉 t | 〈b!r〉 t | t + t′ | t O‖O′ t′

The informal meaning of the constructs is as follows:

• nilI denotes a process that passively accepts an input from the set I ⊆ Act , assigning
such an input a weight of 1, and then continues to behave as nilI .

If I 6= ∅, then term nilI can be regarded as an abbreviation for the recursive term
µX.

∑
a∈I〈a?1〉 X in the full language of [SCS03]. The term nil∅ is the same as the

term nil of [SCS03].

• 〈a?w〉 t denotes an input-prefixed process that can accept an input a ∈ Act with positive
weight w and then become the process t.

• 〈b!r〉 t denotes an output-prefixed process that can spontaneously perform output action
b ∈ Act with positive rate r and then become the process denoted by t.

• t + t′ denotes a choice between alternatives offered by t and t′.

• t O‖O′ t′ denotes the parallel composition of t and t′. Here O and O′ are disjoint sets
of output actions controlled by t and t′, respectively.

The constructs we omit from consideration in the present paper are: internal prefixing,
hiding, renaming, and recursion.

Synchronization of actions, which occurs between the components of a parallel composi-
tion, is restricted to the input/input and input/output cases only. Output/output synchro-
nization is not permitted. This seems to be the simplest version of action synchronization
that has an intuitively meaningful stochastic interpretation. As our goal is to understand the
relationship between input and output in the simplest possible setting, we do not complicate
the language with immediate actions, priorities, or other extraneous constructs.

2

The standard notions of process equivalence in the context of stochastic process algebra
are based on variants of probabilistic bisimulation [LS92], which is closely related to the con-
cept of lumpability in the theory of Markov chains. A typical example of such an equivalence
is Markovian bisimulation [Hil96], in which terms regarded as equivalent are required to have
the same aggregate transition rate, and which is such that equivalent terms have identical
total transition probabilities to each equivalence class of terms for each action. In this paper
we use weighted bisimulation, which uses the same fundamental idea and covers the cases of
weight-labeled and rate-labeled transitions.

Behavior equivalence is an alternative to weighted bisimulation equivalence that we have
studied in earlier papers. This equivalence is strictly coarser than weighted bisimulation
equivalence, but still substitutive with respect to the process algebraic operations listed
above. The original motivation of behavior equivalence was as a testing equivalence, and in
this context a full-abstractness result was established in [WSS97]. The original definitions
were reformulated in subsequent papers as our understanding of behavior equivalence im-
proved. In [Sta03] we were able to compare weighted bisimulation equivalence and behavior
equivalence by viewing them both as certain “invariant” equivalences on formal linear com-
binations of process terms, rather than as equivalences on individual terms. We showed,
roughly: (1) that weighted bisimulation equivalence can be characterized as the largest
invariant equivalence on combinations of terms that is in a sense generated by equations
between individual terms, (2) that behavior equivalence can be characterized as the largest
invariant equivalence on combinations of terms that in a sense separates terms having dis-
tinct aggregate rates, and (3) that behavior equivalence is strictly coarser than weighted
bisimulation equivalence, even when restricted to individual terms.

For example, the following intuitively reasonable equation between terms in our language
holds for behavior equivalence but not for weighted bisimulation equivalence:

〈b!r〉 (〈c!πs〉 t + 〈d!(1−π)s〉 u) = 〈b!πr〉 〈c!s〉 t + 〈b!(1−π)r〉 〈d!s〉 u

where π can be any value in the interval (0, 1). Intuitively, both sides above can perform
the output b with the same aggregate rate r. After doing so, the term on the left-hand
side evolves to the derivative term 〈c!πs〉 t + 〈d!(1−π)s〉 u, which can do output c with rate
πs and output d with rate (1 − π)s, for an aggregate rate of s. In contrast, there is no
individual term that expresses the derivative of the right-hand side after output b has been
performed. The best we can do is to think of this derivative as a probability distribution that
assigns probability π to term 〈c!s〉 t and probability 1− π to term 〈d!s〉 t. Intuitively, there
is no observable difference between such a probability distribution and the individual term
〈c!πs〉 t+ 〈d!(1−π)s〉 u, which explains why the original equation is a reasonable one to expect.

Consideration of the preceding example suggests that an axiomatization of behavior
equivalence might be achieved if we augment the language with an explicit notation for
expressing convex combinations of terms; for example: 〈c!s〉 t π⊕1−π 〈d!s〉 u. We would then
be able to express the equivalence between the derivatives of the left and right-hand sides of
the equation above as follows:

〈c!πs〉 t + 〈d!(1−π)s〉 u = 〈c!s〉 t π⊕1−π 〈d!s〉 u.

3

In fact, for the ‖-free fragment of the language, an axiomatization of behavior equivalence
can be achieved in this way and the details are the subject of the present paper. A key
point, which took us a long time to discover, is that we cannot permit the the formation of
combinations t π⊕1−π u for arbitrary terms t and u. Rather, we must require as a condition
of well-formedness that terms t and u have an identical aggregate rate, which then becomes
the aggregate rate of the combined term. Failing to impose this requirement results in
the possibility of having “terms” that do not have unique aggregate rates, which produces
seemingly insurmountable complications in the semantics and axiomatization. Another detail
that required some care to work out properly concerns keeping track of the “types” of terms,
by which we mean the sets of input and output actions in which a term is required to
participate.

As a result of our investigation, we have further clarified our understanding of behavior
equivalence and its relationship to weighted bisimulation equivalence. Perhaps the simplest
way to summarize what we have learned is to compare the normal form used in the proofs of
completeness for the axiomatization of weighted bisimulation equivalence with that used in
the proof for behavior equivalence. Employing

∑
-notation in a standard way and (for the

moment) ignoring special cases that arise with empty summations, the following is a generic
normal form for a term with respect to weighted bisimulation equivalence:

m∑
i=1

〈ai?wi
〉 ti +

n∑
j=1

〈bj!rj
〉 tj

In the above, the ti and tj are recursively required to be normal forms. Moreover, it is
required that for no distinct i and i′ do we have both ai = ai′ and ti equivalent to ti′ and
for no distinct j and j′ do we have both bj = bj′ and tj equivalent to tj′ . Thus, wi is the
aggregate weight of ai-transitions to the equivalence class of ti, and rj is the aggregate rate
of bj-transitions to the equivalence class of tj.

In contrast, a generic normal form for a term with respect to behavior equivalence is the
following: ∑

a∈I

∑
s∈Ra

〈a?wa,s〉 ta,s +
∑
b∈O

∑
s∈Rb

〈b!rb,s
〉 tb,s,

where each set Ra and Rb is nonempty and each term ta,s and tb,s is required recursively to
be a normal form with aggregate rate s. The main point here is that, once input a has been
chosen, there is a unique derivative term ta,s for each aggregate rate in the set Ra, and once
output b has been chosen, there is a unique derivative term tb,s for each aggregate rate in
the set Rb. Terms ta,s and ta,s′ cannot be equivalent for distinct values of s because they
have distinct aggregate rates. Similar considerations hold for tb,s and tb,s′ . A normal form
for behavior equivalence is thus also a normal form for weighted bisimulation equivalence,
but not conversely. So, the essential difference between weighted bisimulation equivalence
and behavior equivalence is that the former will in general draw distinctions between terms
based on the existence of multiple derivatives having the same aggregate rate, whereas the
latter will not.

4

Note that, although the operator π⊕1−π does not appear in the normal form for behavior
equivalence, achieving a reduction to normal form will in general require passing through
terms in which explicit use is made of this operator.

The remainder of the paper is organized as follows: In Section 2, we summarize the
basic definitions pertaining to our process-algebraic language and its semantics. In Section
3, we define the notion of weighted bisimulation equivalence for our language and present a
sound and complete set of axioms for this equivalence. In Section 4, we define the notion
of behavior equivalence, extend the language with the convex combination operator π⊕1−π

discussed above, present a sound and complete set of axioms for behavior equivalence in
the extended language, and sketch the main ideas of the completeness proof. Although we
include the parallel composition construct in the language defined in section 2, the results of
Sections 3 and 4 concern only the ‖-free fragment. We hope to extend our results to include
parallel composition in a future paper.

2 Basic Definitions

2.1 Types

As detailed in our previous paper, our PIOA language is equipped with a set of rules for
inferring typing judgements of the form

t : I/J ⇒ O

where I, J , and O are sets of actions. We write ` t : φ to assert that a typing judgement
t : φ is inferable. A term t is well-typed if ` t : φ for some φ. Let Proc(I/J ⇒ O) denote the
set of all terms t such that ` t : I/J ⇒ O.

Intuitively, a typing judgement t : I/J ⇒ O asserts that I is a set of actions for which
input transitions are guaranteed to be enabled at the first step of t, that J is a set of actions
for which input transitions are guaranteed to be enabled at all steps of t after the first, and
O is a set of actions that includes at least all the outputs that may be produced by t (but
which may be larger). The primary purpose of the typing system is to identify those terms
that are input-enabled, in order to rule out the formation of parallel compositions involving
non-input-enabled terms. Non-input-enabled terms are required in the language to permit
the building up of sets of alternatives using + . The reason why only input-enabled terms
are permitted in parallel compositions is that we do not wish to allow stochastically unclear
situations in which one component in a system is attempting to perform an output with a
definite rate, but is inhibited from doing so by another component that will not accept that
action as an input.

Figure 1 presents the type-inference rules applicable to the language fragment we consider
here. The rule given here for the abbreviation nilI can be shown to be a derived rule of the
full language. We have included an additional “weakening” rule (the last rule), which was
not present in our previous paper. The purpose of the weakening rule is to ensure that if

5

nilI : I/I ⇒ ∅

t : J/J ⇒ O a ∈ J

〈a?w〉 t : {a}/J ⇒ O

t : J/J ⇒ O b 6∈ J

〈b!r〉 t : ∅/J ⇒ O ∪ {b}
t : It/J ⇒ Ot u : Iu/J ⇒ Ou

t + u : It ∪ Iu/J ⇒ Ot ∪Ou

t : It/It ⇒ Ot u : Iu/Iu ⇒ Ou I = (It ∪ Iu) \ (Ot ∪Ou)

t Ot‖Ou u : I/I ⇒ Ot ∪Ou

t : I/J ⇒ O O ⊆ O′ O′ ∩ J = ∅
t : I/J ⇒ O′

Figure 1: Type-Inference Rules

` t : I/J ⇒ O then also ` t : I/J ⇒ O′ for all O′ ⊇ O such that O′ ∩ J = ∅; which is a
useful property that did not hold of the typing system in our previous paper.

The following metatheoretic result from our previous work will be important for our
present purposes. Its truth is not affected by the introduction of the new weakening rule.

Proposition 1. If ` t : I/J ⇒ O for some I, J , and O, then

1. I ⊆ J and J ∩O = ∅.

2. There exists Ô such that ` t : I/J ⇒ Ô, and such that whenever ` t : I ′/J ′ ⇒ O′ then
I ′ = I, J ′ = J , and O′ ⊇ Ô.

A technical issue with our PIOA language is that of “native” versus “non-native” actions.
If t ∈ Proc(I/J ⇒ O), then actions e ∈ J ∪O are called native to t and actions outside this
set are called non-native. Intuitively, native actions are those in which t must participate
and non-native actions are those that t ignores. This distinction is important because if t has
no transition for a particular output action in which it must participate, then that action is
inhibited from occurring, whereas if t ignores an action then it may occur freely. Note that
whether an action is considered native or non-native depends on our having fixed a particular
type I/J ⇒ O inferable for t. All such types have the same input sets I and J , but the
output sets O may differ. Thus, in the sequel it will be necessary for us to parameterize
certain notions by the particular output set on which they depend.

2.2 Transition Semantics

In our previous paper, we gave structural operational semantics rules that defined the tran-
sitions that could be taken by terms in our language. Though our present purposes do not
require a full presentation of the transition semantics given in our previous paper, we do
need a notation for the aggregate weight or rate ∆O

e (t, v) of e-labeled transitions from t to v.

6

Suppose t ∈ Proc(I/J ⇒ O). Define ∆O
e (t, v) as follows: If e 6∈ J ∪O (non-native case),

then ∆O
e (t, v) = 1 if v = t, and ∆O

e (t, v) = 0 otherwise. If e ∈ J ∪O (native case), then

1. ∆O
e (nilI , v) =

{
1, if e ∈ I and v = nilI .
0, otherwise.

2. ∆O
e (〈a?w〉 t, v) =

{
w, if e = a and v = t
0, otherwise.

3. ∆O
e (〈b!r〉 t, v) =

{
r, if e = b and v = t
0, otherwise.

4. ∆O
e (t + u, v) = ∆O

e (t, v) + ∆O
e (u, v).

5. ∆O
e (t Ot‖Ou u, v) =

{
∆

O\Ou
e (t, t′) ·∆O\Ot

e (u, u′), if v = t′ Ot‖Ou u′

0, otherwise.

In the sequel, if C is a set of terms, then ∆O
e (t, C) will be an abbreviation for the sum∑

v∈C ∆O
e (t, v), which is always finite.

It is important for us that inferable types are preserved under transitions. Formally, we
have the following result, which was stated in our previous paper and remains true in the
presence of the weakening rule.

Proposition 2. Suppose t ∈ Proc(I/J ⇒ O). If ∆O
e (t, u) 6= 0, then u ∈ Proc(J/J ⇒ O). In

particular, Proc(J/J ⇒ O) is closed under transitions and terms in Proc(I/J ⇒ O) reach
Proc(J/J ⇒ O) after one transition.

Term t ∈ Proc(J/J ⇒ O) is called input-stochastic if
∑

v∈Proc(J/J⇒O) ∆O
e (t, v) = 1 for all

e ∈ J .

3 Weighted Bisimulation

We first consider the equational theory of the indicated fragment under a suitable general-
ization of probabilistic bisimulation equivalence. The generalization we use, called weighted
bisimulation, can be obtained by applying the standard definition of probabilistic bisimula-
tion to total transition weights and rates, rather than transition probabilities. A technical
complication is that Proc(J/J ⇒ O) is closed under transitions, but Proc(I/J ⇒ O) is not.
Thus, we first define weighted bisimulation for Proc(J/J ⇒ O) and then use it to define
weighted bisimulation equivalence for general Proc(I/J ⇒ O).

In this paper, we discuss weighted bisimulation equivalence primarily for the purposes
of comparison with behavior equivalence. Modulo minor differences in the formal setup,
the properties of this equivalence are standard, and have been established before by other

7

authors (e.g. [HR94]). We include the full definitions and proofs below for completeness, but
do not make any claims of novelty for them.

Formally, a weighted bisimulation on Proc(J/J ⇒ O) is an equivalence relation R ⊆
Proc(J/J ⇒ O) such that the following condition is satisfied:

• Whenever t R t′ then for all actions e and all equivalence classes C of R we have
∆O

e (t, C) = ∆O
e (t′, C).

Clearly, the identity relation is a weighted bisimulation, and a standard argument shows
that the transitive closure of the union of an arbitrary collection of weighted bisimulations
is again a weighted bisimulation, hence there is a largest weighted bisimulation relation on
Proc(J/J ⇒ O).

Terms t and t′ in Proc(I/J ⇒ O) are defined to be weighted bisimulation equivalent if
there exists a weighted bisimulation relation R on Proc(J/J ⇒ O) such that for all actions
e and all equivalence classes C of R we have ∆O

e (t, C) = ∆O
e (t′, C). In this case we write

t ∼
O

t′ (there is no need to mention the input sets I and J which are uniquely determined

by t and t′). The following result shows that for Proc(J/J ⇒ O), which is closed under
transitions, the definition of weighted bisimulation equivalence given above coincides with
the usual formulation.

Lemma 3. Suppose t and t′ are in Proc(I/J ⇒ O), where I = J . Then t ∼
O

t′ if and only

if there exists a weighted bisimulation relation R on Proc(J/J ⇒ O) such that t R t′.

Proof. If there exists a weighted bisimulation relation R on Proc(J/J ⇒ O) such that t R t′,
then clearly for all actions e and all equivalence classes C of R we have ∆O

e (t, C) = ∆O
e (t′, C),

so that t ∼
O

t′.

Conversely, if t ∼
O

t′, then there exists a weighted bisimulation relation R on Proc(J/J ⇒
O) such that for all actions e and all equivalence classes C of R we have ∆O

e (t, C) = ∆O
e (t′, C).

We show that R is contained in a weighted bisimulation relation S on Proc(J/J ⇒ O) such
that t S t′. Let S be the least equivalence relation on Proc(J/J ⇒ O) that contains
R ∪{(t, t′)}. Then t S t′ by construction. To show that S is a weighted bisimulation relation
it suffices to show: (1) that if u R u′, then for all actions e and all equivalence classes C
of S we have ∆O

e (u, C) = ∆O
e (u′, C), and (2) for all actions e and all equivalence classes C

of S we have ∆O
e (t, C) = ∆O

e (t′, C), because the general case of u S u′ will then follow by
induction on the length of an R ∪{(t, t′)}-chain from u to u′. But (1) is immediate from the
fact that R is a weighted bisimulation relation that refines S. Moreover, (2) follows from
the assumption defining R and the fact that R is a refinement of S.

For the purpose of shortening proofs in the sequel, we note here that the bisimulation
condition ∆O

e (t, C) = ∆O
e (t′, C) is automatically satisfied if action e is non-native, due to the

fact that for such e we have ∆O
e (t, C) = 1 if t ∈ C and ∆O

e (t, C) = 0 otherwise. So, when
proving that a particular relation is a weighted bisimulation, we need only consider native
actions.

8

Lemma 4. Suppose t and t′ in Proc(I/J ⇒ O) have the property that ∆O
e (t, w) = ∆O

e (t′, w)
for all actions e ∈ J ∪ O and all terms w ∈ Proc(J/J ⇒ O). Then t and t′ are weighted
bisimulation equivalent.

Proof. Let R be the identity relation on Proc(J/J ⇒ O). Clearly R is a weighted bisimu-
lation relation. Moreover, each equivalence class of R is a singleton set {w}. Thus for all
e ∈ J∪O and all equivalence classes {w} of R we have ∆O

e (t, {w}) = ∆O
e (t, w) = ∆O

e (t′, w) =
∆O

e (t′, {w}), thus establishing that t and t′ are weighted bisimulation equivalent.

3.1 Substitutivity

Lemma 5. Weighted bisimulation equivalence is substitutive for input prefixing, output pre-
fixing, choice, and parallel composition. That is, each of the following assertions holds for
terms t and t′ in Proc(I/J ⇒ O) whenever all the terms mentioned are well-typed and the
equivalences make sense:

1. If t ∼
O

t′ then 〈a?p〉 t ∼
O
〈a?p〉 t′.

2. If t ∼
O

t′ then 〈b!r〉 t ∼
O
〈b!r〉 t′.

3. If t ∼
O

t′ then t + u ∼
O

t′ + u and u + t ∼
O

u + t′.

4. If t ∼
O

t′ then t O‖Ou u ∼
O′

t′ O‖Ou u and u Ou‖O t ∼
O′

u Ou‖O t′.

Proof.

1. Suppose t ∼
O

t′, where t, t′ ∈ Proc(I/J ⇒ O). Note that for 〈a?p〉 t and 〈a?p〉 t′ to

be well-typed, we must have I = J , hence in fact t, t′ ∈ Proc(J/J ⇒ O). Let R be a
weighted bisimulation on Proc(J/J ⇒ O) such that t R t′. If C is an equivalence class
of R then

∆O
e (〈a?p〉 t, C) =

{
p, if e = a and t ∈ C,
0, otherwise.

Similarly,

∆O
e (〈a?p〉 t′, C) =

{
p, if e = a and t′ ∈ C,
0, otherwise.

However, t ∈ C if and only if t′ ∈ C, so these two quantities are identical.

2. Suppose t ∼
O

t′, where t, t′ ∈ Proc(I/J ⇒ O). Note that for 〈b!r〉 t and 〈b!r〉 t′ to be

well-typed, we must have I = J and b ∈ O. The argument that 〈b!r〉 t ∼
O
〈b!r〉 t′ is

entirely analogous to the previous case.

9

3. Suppose t ∼
O

t′, where t, t′ ∈ Proc(I/J ⇒ O). Then there exists a weighted bisimulation

R on Proc(J/J ⇒ O) such that for all actions e ∈ J ∪ O and all equivalence classes
C of R we have ∆O

e (t, C) = ∆O
e (t′, C). Let u be such that t + u and t′ + u are well-

typed; note then that we must have ` u : I ′/J ⇒ O′ where O′ ⊆ O. We claim that
∆O

e (t + u, C) = ∆O
e (t′ + u, C) for all actions e ∈ J ∪ O and all equivalence classes C of

R, thus showing that ∆O
e (t + u, C) ∼

O
∆O

e (t′ + u, C). For, by definition

∆O
e (t + u, C) = ∆O

e (t, C) + ∆O
e (u, C).

Similarly,
∆O

e (t′ + u, C) = ∆O
e (t′, C) + ∆O

e (u, C).

But ∆O
e (t, C) = ∆O

e (t′, C) for all e and C, so the above two quantities are identical.

A symmetric proof shows that u + t ∼
O

u + t′.

4. Suppose t ∼
O

t′, where t, t′ ∈ Proc(I/J ⇒ O). Note that for t O‖Ou u and t′ O‖Ou u to

be well-typed we must have I = J , hence t, t′ ∈ Proc(J/J ⇒ O). Then there exists a
weighted bisimulation R on Proc(J/J ⇒ O) such that for all actions e ∈ J ∪O and all
equivalence classes C of R we have ∆O

e (t, C) = ∆O
e (t′, C). Let u be such that t O‖Ou u

and t′ O‖Ou u are well-typed; then ` u : Iu/Ju ⇒ Ou for some sets Iu, Ju, and Ou.
Suppose ` t O‖Ou u : I ′/J ′ ⇒ O′, and ` t′ O‖Ou u : I ′/J ′ ⇒ O′, then O ∪Ou ⊆ O′ and
I ′ = J ′ = (J ∪ Ju) \O′.

Let binary relation S on Proc(J ′/J ′ ⇒ O′) be the union of the identity relation and
the set ⋃

w∈Proc(Ju/Ju⇒Ou)

{(v O‖Ou w, v′ O‖Ou w) : v R v′}.

Clearly S is an equivalence relation such that (t O‖Ou u) S (t′ O‖Ou u). We claim
that in fact S is a weighted bisimulation on Proc(J ′/J ′ ⇒ O′), thereby showing that
(t O‖Ou u) ∼

O′
(t′ O‖Ou u). The proof that (u Ou‖O t) ∼

O′
(u Ou‖O t′) is symmetric.

To show that S is a weighted bisimulation on Proc(J ′/J ′ ⇒ O′), suppose x S x′.
Then either x = x′ or else x = v O‖Ou w and x′ = v′ O‖Ou w for some v R v′ and
w ∈ Proc(Ju/Ju ⇒ Ou). If x = x′ then trivially ∆O

e (x, C) = ∆O
e (x′, C) for all e ∈ J ′∪O′

and all equivalence classes C of S. Suppose x = v O‖Ou w and x′ = v′ O‖Ou w for some
v R v′ and w ∈ Proc(Ju/Ju ⇒ Ou). Then for all y we have that

∆O′

e (x, y) =

{
∆

O′\Ou
e (v, v′′) ·∆O′\O

e (w, w′′), if y = v′′ O‖Ou w′′

0, otherwise.

and

∆O′

e (x′, y) =

{
∆

O′\Ou
e (v′, v′′) ·∆O′\O

e (w, w′′), if y = v′′ O‖Ou w′′

0, otherwise.

10

Now, an equivalence class C of S is either a singleton set {y} where y is not a parallel
composition, or else it is a set of the form:

{v′′ O‖Ou w′′ : v′′ R v0}

for some v0 ∈ Proc(J/J ⇒ O) and w′′ ∈ Proc(Ju/Ju ⇒ Ou). In the first case, C
does not contain any terms that are parallel compositions, hence ∆O

e (x, C) = 0. In the
second case, letting D denote the R-equivalence class of v0, we have

∆O′

e (x, C) =
∑
y∈C

∆O′

e (x, y)

=
∑
v′′∈D

∆O′

e (x, v′′ O‖Ou w′′)

= ∆O′\Ou
e (v,D) ·∆O′\O

e (w,w′′)

= ∆O′\Ou
e (v′,D) ·∆O′\O

e (w, w′′)

= ∆O′

e (x′, C),

where the replacement of ∆O
e (v,D) by ∆O

e (v′,D) is justified by the fact that v R v′.

3.2 Axioms

Axioms for behavior equivalence are shown in Table 2. Note that an equation is only regarded
an axiom if all the terms involved are well-formed and the same type can be inferred for the
left and right-hand sides.

t + nil∅ = t (choice-unit)

t + u = u + t (choice-comm)

(t + u) + v = t + (u + v) (choice-assoc)

〈a?p〉 t + 〈a?q〉 t = 〈a?p+q〉 t (input-choice)

〈b!r〉 t + 〈b!s〉 t = 〈b!r+s〉 t (output-choice)

If I 6= ∅, then
∑
a∈I

〈a?1〉 nilI = nilI (nil-fold)

Table 1: Axioms for Weighted Bisimulation Equivalence

In axiom (nil-fold), we have used the summation notation∑
a∈I

〈a?1〉 nilI .

11

We regard this as an abbreviation, the general case of which takes the form:

m∑
i=1

〈ai?1〉 nilJ

where m > 0. This is defined by induction on m as follows:

• If m = 1, then
∑m

i=1〈ai?1〉 nilJ abbreviates 〈a1?1〉 nilJ .

• If m > 1, then
∑m

i=1〈ai?1〉 nilJ abbreviates

m−1∑
i=1

〈ai?1〉 nilJ + 〈am?1〉 nilJ .

Later, once we have removed the possibility of ambiguity by establishing the soundness of
axioms (choice-unit), (choice-comm), and (choice-assoc), we will use summation notation in
the conventional fashion without further comment.

Lemma 6. The axioms shown in Table 1 are sound for weighted bisimulation equivalence.

Proof. In each of the following, assume that the terms on the left and right-hand side of
the equation being considered are in Proc(I/J ⇒ O). By Lemma 4, it suffices to show that
if t and t′ are the left and right-hand sides of the equation being considered, then for all
e ∈ J ∪O and all terms w in Proc(J/J ⇒ O) we have ∆O

e (t, w) = ∆O
e (t′, w).

• (choice-unit) (choice-comm) (choice-assoc)

We calculate, for e ∈ J ∪O and w ∈ Proc(J/J ⇒ O):

∆O
e (t + nil∅, w) = ∆O

e (t + nil∅, w)

= ∆O
e (t, w) + ∆O

e (nil∅, w)

= ∆O
e (t, w) + 0

= ∆O
e (t, w).

∆O
e (t + u, w) = ∆O

e (t + u, w)

= ∆O
e (t, w) + ∆O

e (u, w)

= ∆O
e (u, w) + ∆O

e (t, w)

= ∆O
e (u + t, w).

∆O
e ((t + u) + v, w) = ∆O

e ((t + u) + v, w)

= ∆O
e (t + u, w) + ∆O

e (v, w)

= ∆O
e (t, w) + ∆O

e (u, w) + ∆O
e (v, w)

= ∆O
e (t + (u + v), w).

12

• (nil-fold)

We calculate:

∆O
e (
∑
a∈I

〈a?1〉 nilI , C) =
∑
a∈I

∆O
e (〈a?1〉 nilI , C)

=

{
1, if e ∈ I and nilI ∈ C
0, otherwise.

= ∆O
e (nilI , C).

• (input-choice)

We calculate, for e ∈ J ∪O and w ∈ Proc(J/J ⇒ O):

∆O
e (〈a?p〉 t + 〈a?q〉 t, w) = ∆O

e (〈a?p〉 t, w) + ∆O
e (〈a?q〉 t, w)

=

{
p + q, if e = a and t = w
0, otherwise.

= ∆O
e (〈a?p+q〉 t, w).

• (output-choice)

This case is entirely analogous to case of (input-choice).

3.3 Completeness

We say that two terms are identical up to permutation of sums if they can be proved equiv-
alent to each other using only axioms (choice-comm) and (choice-assoc). Define a term t to
be reduced with respect to axiom (nil-fold), if there is no term t′, identical to t up to permu-
tation of sums, such that t′ contains an instance of the left-hand side of axiom (nil-fold) as
a subterm.

Let the notions input normal form, output normal form, and normal form be defined
mutually recursively as follows:

• An input normal form is a well-typed term u that is either nilI for some I 6= ∅, or else
has the form:

m∑
i=1

〈ai?pi
〉 ti

where we require that:

1. Each ti is a normal form.

2. For no distinct i, i′ do we have ai = ai′ and ti identical to ti′ up to permutation
of sums.

13

3. u is reduced with respect to (nil-fold).

• An output normal form is a well-typed term v that is either nil∅ or else has the form

n∑
j=1

〈bj!rj
〉 tj

where we require that:

1. Each tj is a normal form.

2. For no distinct j, j′ do we have bj = bj′ and tj identical to tj′ up to permutation
of sums.

An output normal form is called nontrivial if it is not nil∅.

• A normal form is either an input normal form, an output normal form, or a sum u+v,
where u is an input normal form and v is a nontrivial output normal form.

Lemma 7.

1. If u and u′ are input normal forms, then u + u′ can be proved equivalent to an input
normal form.

2. If v and v′ are output normal forms, then v + v′ can be proved equivalent to an output
normal form, which is nontrivial if either v or v′ are nontrivial.

3. If u is an input normal form and t′ is a normal form, then u+t′ can be proved equivalent
to a normal form. If t is a normal form and u′ is an input normal form, then t + u′

can be proved equivalent to a normal form.

4. If t and t are normal forms, then t + t′ can be proved equivalent to a normal form.

Proof.

1. Suppose u and u′ are input normal forms. If u is nilI , then axiom (nil-fold) can be
used to prove u equivalent to

∑
a∈I〈a?1〉 nilI , and similarly for u′. We therefore assume

in what follows that u has the form
∑m

i=1〈ai?pi
〉 ti and u′ has the form

∑m′

i=1〈a′i?p′i
〉 t′i.

Let I = {a1, a2, . . . , am} and I ′ = {a′1, a′2, . . . , a′m}. Axioms (choice-comm) and
(choice-assoc) can be used to prove u + u′ equivalent to the summation

m+m′∑
i=1

〈a′′i ?p′′i
〉 t′′i

where a′′i , p′′i , and t′′i are ai, pi, and ti, respectively, if 1 ≤ i ≤ m, and are a′i−m, p′i−m,
and t′i−m, respectively, if m + 1 ≤ i ≤ m + m′.

14

If the summation above fails to be reduced with respect to axiom (nil-fold) then we
may apply that axiom (after possibly rearranging terms using (choice-comm) and
(choice-assoc)). If for some distinct i, i′ we have ai = ai′ and ti identical to ti′ up
to permutation of sums, then we may apply axiom (input-choice) (again after possibly
rearranging terms). Either of these reductions strictly decreases the number of sum-
mands in the term. As the number of summands cannot decrease forever, the reduction
eventually terminates with an input normal form.

2. Suppose v and v′ are output normal forms. If both v and v′ are nil∅, then axiom
(choice-unit) can be used to prove v + v′ equivalent to the output normal form nil∅. If
one of v or v′ is nil∅ and the other is not, then axiom (choice-unit) can be used to prove
v + v′ equivalent to the one of v, v′ that is not nil∅. If neither v nor v′ is nil∅, then v
has the form

∑n
j=1〈bj!rj

〉 tj and v′ has the form
∑n′

j=1〈b′j!r′j〉 t′j. Axioms (choice-comm)

and (choice-assoc) can now be used to prove v + v′ equivalent to the summation

n+n′∑
j=1

〈b′′j !r′′j 〉 t′′j

where b′′j , r′′j , and t′′j are bj, rj, and tj, respectively, if 1 ≤ j ≤ n, and are b′j−n, p′j−n,
and t′j−n, respectively, if n + 1 ≤ j ≤ n + n′.

If for distinct j, j′ we have bj = bj′ and tj identical to tj′ up to permutation of sums,
then we may apply axiom (output-choice) (after possibly rearranging terms using
(choice-comm) and (choice-assoc)) to reduce the number of summands. As the num-
ber of summands cannot decrease forever, the reduction eventually terminates with an
output normal form.

3. Suppose u is an input normal form and t′ is a normal form. If t′ is in fact an input
normal form u′, then the proof reduces to case 1 above.

If t′ is an output normal form v′, then either t′ is trivial or it is not. If t′ is not trivial,
then u + t′ is already a normal form. If t′ is trivial, then axiom (choice-unit) can be
used to prove u + t′ equivalent to u, which is an input normal form, hence a normal
form.

If t′ is u′+v′, where u′ is an input normal form and v′ is a nontrivial output normal form,
then axioms (choice-comm) and (choice-assoc) can be used to prove u + t′ equivalent
to (u + u′) + v′. Then u + u′ can be proved equivalent to an input normal form u′′ by
case 1 above, hence u + t′ can be proved equivalent to the normal form u′′ + v′.

The case in which t is a normal form and u′ is an input normal form is symmetric to
that just considered.

4. Suppose t and t′ are normal forms. If either t or t′ is an input normal form, then this
case reduces to case 1 above, so we suppose that neither t nor t′ is an input normal
form.

15

Suppose t is an output normal form and t′ is u′ + v′, where u′ is an input normal
form and v′ is a nontrivial output normal form. Using axioms (choice-comm) and
(choice-assoc) we can prove t + t′ equivalent to u′ + (t + v′). By case 3 above, t + v′

can be proved equivalent to a nontrivial output normal form v′′, thereby showing that
t + t′ can be proved equivalent to the normal form u′ + v′′.

Suppose both t and t′ are output normal forms. Then by case 2, t + t′ can be proved
equivalent to an output normal form, hence normal form, t′′.

Suppose t is u+v, where u is an input normal form and v is a nontrivial output normal
form, and t′ is u′ + v′, where u′ is an input normal form and v′ is a nontrivial output
normal form. Then t + t′ can be proved equivalent to (u + u′) + (v + v′) using axioms
(choice-comm) and (choice-assoc). By case 1, u + u′ can be proved equivalent to an
input normal form u′′, and by case 2, v + v′ can be proved equivalent to a nontrivial
output normal form v′′. Thus, t + t′ can be proved equivalent to the normal form
u′′ + v′′.

Lemma 8. Any ‖-free term t in Proc(I/J ⇒ O) can be proved equivalent to a normal form
using the axioms in Table 1.

Proof. The proof is by structural induction on t.

• Suppose t is nilI . If I = ∅, then t is an output normal form, hence a normal form. If
I 6= ∅, then t is an input normal form, hence a normal form.

• Suppose t is 〈a?p〉 u. By induction, u can be proved equal to a normal form u′, from
which it follows by substitutivity that t can be proved equivalent to t′ = 〈a?p〉 u′. If t′

is reduced with respect to axiom (nil-fold), then it is an input normal form, hence also
a normal form. If t′ is not reduced with respect to axiom (nil-fold), then we can apply
axiom (nil-fold) to prove t′ equivalent to nil{a}, which is an input normal form, hence
a normal form.

• Suppose t is 〈b!r〉 u. By induction, u can be proved equal to a normal form u′, from
which it follows by substitutivity that t can be proved equivalent to t′ = 〈b!r〉 u′, which
is an output normal form and a normal form.

• Suppose t is t1 + t2. By induction, t1 can be proved equivalent to a normal form t′1 and
t2 can be proved equivalent to a normal form t′2, so that t can be proved equivalent to
t′1 + t′2 by substitutivity. Lemma 7 now shows that t′1 + t′2 can be proved equivalent to
a normal form, hence t can be proved equivalent to that same normal form.

16

Lemma 9. Suppose u and u′ are input normal forms in Proc(I/J ⇒ O) and v and v′ are
output normal forms in Proc(∅/J ⇒ O). Then u + v and u′ + v′ in Proc(I/J ⇒ O) are
weighted bisimulation equivalent if and only if u and u′ are weighted bisimulation equivalent
in Proc(I/J ⇒ O) and v and v′ are weighted bisimulation equivalent in Proc(∅/J ⇒ O).

Proof. If u and u′ are weighted bisimulation equivalent in Proc(I/J ⇒ O) and v and v′ are
weighted bisimulation equivalent in Proc(∅/J ⇒ O), then u + v and u′ + v′ are weighted
bisimulation equivalent in Proc(I/J ⇒ O) by substitutivity.

Conversely, suppose u+v and u′+v′ are weighted bisimulation equivalent in Proc(I/J ⇒
O). Let R be a weighted bisimulation relation on Proc(J/J ⇒ O) such that for all e ∈ J ∪O
and all equivalence classes C of R we have ∆O

e (u + v, C) = ∆O
e (u′ + v′, C). We claim that for

all e ∈ J∪O and all equivalence classes C of R we have ∆O
e (u, C) = ∆O

e (u′, C) and ∆O
e (v, C) =

∆O
e (v′, C), so that u and u′ are weighted bisimulation equivalent in Proc(I/J ⇒ O) and v

and v′ are weighted bisimulation equivalent in Proc(∅/J ⇒ O).
For, observe that

∆O
e (u + v, C) =

{
∆O

e (u, C), if e ∈ J
∆O

e (v, C), if e ∈ O

and similarly

∆O
e (u′ + v′, C) =

{
∆O

e (u′, C), if e ∈ J
∆O

e (v′, C), if e ∈ O

Now, ∆O
e (u + v, C) = ∆O

e (u′ + v′, C) by hypothesis. If e ∈ J , then ∆O
e (u, C) = ∆O

e (u +
v, C) = ∆O

e (u′ + v′, C) = ∆O
e (u′, C) by the observation above. If e ∈ O, then ∆O

e (u, C) =
0 = ∆O

e (u′, C). Hence ∆O
e (u, C) = ∆O

e (u′, C) for all e ∈ J ∪ O. Similarly, if e ∈ O, then
∆O

e (v, C) = ∆O
e (u + v, C) = ∆O

e (u′ + v′, C) = ∆O
e (v′, C) by the observation above, and if

e ∈ J , then ∆O
e (v, C) = 0 = ∆O

e (v′, C). Hence ∆O
e (v, C) = ∆O

e (v′, C) for all e ∈ J ∪ O,
completing the proof.

Lemma 10. For all I, J , and O:

1. If output normal forms t and t′ in Proc(I/J ⇒ O) are weighted bisimulation equivalent,
then they are identical up to permutation of sums.

2. If input normal forms t and t′ in Proc(I/J ⇒ O) are weighted bisimulation equivalent,
then they are identical up to permutation of sums.

3. If normal forms t and t′ in Proc(I/J ⇒ O) are weighted bisimulation equivalent, then
they are identical up to permutation of sums.

Proof. We prove all three conclusions simultaneously by induction on the sum of the depths
of nesting of input and output prefix operators in terms t and t′. Suppose we have established
the result for all pairs of terms u and u′ in Proc(I ′/J ′ ⇒ O′) whose prefix depths sum to
strictly less than some d ≥ 0, and suppose t and t′ are terms in Proc(I/J ⇒ O) whose prefix
depths sum to d.

17

1. Suppose output normal forms t and t′ in Proc(I/J ⇒ O) are weighted bisimulation

equivalent. Then t has the form
∑n

j=1〈bj!rj
〉 tj and t′ has the form

∑n′

j=1〈b′j!r′j〉 t′j. We
claim that there can be no distinct k, l with 1 ≤ k, l ≤ n such that bk = bl and such
that tk and tl are weighted bisimulation equivalent. For if there were such k, l, then
by induction hypothesis tk and tl would be identical up to permutation of sums. But
then since also bk = bl we would have a contradiction with the assumption that t is an
output normal form. Similar reasoning applies to t′.

Now, since t and t′ are weighted bisimulation equivalent, for each j with 1 ≤ j ≤ n
there must exist j′ with 1 ≤ j′ ≤ n′ such that bj = b′j′ and such that tj and t′j′ are
weighted bisimulation equivalent. Conversely, for each j′ with 1 ≤ j′ ≤ n′ there must
exist j with 1 ≤ j ≤ n such that the same relationships hold. Moreover, by the
claim of the previous paragraph, j′ is uniquely determined by j and vice versa and
we must therefore have rj = ∆O

bj
(t, tj) = ∆O

b′
j′
(t, t′j′) = r′j′ for corresponding j and j′.

It follows that n = n′ and there is a bijection φ : {1, 2, . . . , n} → {1, 2, . . . , n′} such
that b′φ(j) = bj, r′φ(j) = rj, and t′φ(j) and tj are weighted bisimulation equivalent for
1 ≤ j ≤ n.

Since the sum of the prefix depths of tj and t′φ(j) is strictly less than the sum of the
prefix depths of t and t′, by induction we can conclude that tj and t′φ(j) are identical
up to permutation of sums. Thus, for 1 ≤ j ≤ n we have b′φ(j) = bj, r′φ(j) = rj, and
t′φ(j) and tj are identical up to permutation of sums. But this implies that t and t′ are
identical up to permutation of sums, as was to be proved.

2. Suppose input normal forms t and t′ in Proc(I/J ⇒ O) are weighted bisimulation
equivalent. If both t and t′ are nilJ , then they are identical and there is nothing to
prove, so suppose at least one of t and t′ is not nilJ . We consider the case in which t
is not nilJ ; the case in which t′ is not nilJ is symmetric. If t is not nilJ , then t has the
form

m∑
i=1

〈ai?pi
〉 ti.

We claim that in this case t′ also must not be nilJ . Suppose the contrary, then the
following must hold by the assumption that t and t′ are weighted bisimulation equiva-
lent:

(a) I = {a1, a2, . . . , am} = J .

(b) Each ti is weighted bisimulation equivalent to nilJ .

(c)
∑

{i∈I:ai=a} pi = 1 for all a ∈ I.

Because the sum of the prefix depths of ti and nilJ is strictly less than d, by induction
it follows that each ti is identical up to permutation of sums to nilJ , hence each ti is
nilJ . Because of this and the fact that t is an input normal form, for each a ∈ I there

18

can be at most one i such that ai = a. Thus, all the pi are equal to 1. But we have
thus shown that t has the form ∑

a∈J

〈a?1〉 nilJ .

This is a contradiction with the fact that t is reduced with respect to axiom (nil-fold),
so we conclude that t′ cannot be nilJ .

It remains to consider the case in which both t and t′ are not nilI . Then t has the form

m∑
i=1

〈ai?pi
〉 ti.

and t′ has the form
m′∑
i=1

〈a′i?p′i
〉 t′i.

We may now argue as in case (1) above, using the fact that there can be no distinct k, l
such that ak = al and such that tk is identical to tl up to permutation of sums, and the
symmetric fact for t′, to conclude that t and t′ are weighted bisimulation equivalent.

3. Suppose normal forms t and t′ in Proc(I/J ⇒ O) are weighted bisimulation equivalent.

Suppose one of t or t′ is an output normal form. We claim the other must be as well.
For, if t is an output normal form, then I = ∅, hence in view of the assumption that
t and t′ are weighted bisimulation equivalent, t′ cannot be nilJ , nor can t′ have any
input-prefixed summands. The only remaining possibility is that t′ is an output normal
form. Symmetric reasoning applies in case t′ is an output normal form. Thus, if one
of t or t′ is an output normal form, the other is as well, and the proof then reduces to
that in case (1) above.

Suppose one of t or t′ is an input normal form. We claim the other must be as well.
For, if t is an input normal form, then in view of the assumption that t and t′ are
weighted bisimulation equivalent, t′ cannot have any output-prefixed summands. The
only remaining possibility is that t′ is an input normal form. Thus, if one of t or t′ is
an input normal form, the other is as well, and the proof then reduces to that in case
(2) above.

Finally, suppose that t is u + v where u is an input normal form and v is a nontrivial
output normal form and that t′ is u′ + v′ where u′ is an input normal form and v′ is
a nontrivial output normal form. By Lemma 9, u and u′ are weighted bisimulation
equivalent in Proc(I/J ⇒ O) and v and v′ are weighted bisimulation equivalent in
Proc(∅/J ⇒ O). By case (1) already established, v and v′ are identical up to permuta-
tion of sums. By case (2) already established, u and u′ are identical up to permutation
of sums. It follows that t and t′ are identical up to permutation of sums.

19

Theorem 1. The axioms in Table 1 are sound and complete for weighted bisimulation equiv-
alence of ‖-free terms.

Proof. Soundness was shown in Lemma 6.
Suppose terms t and u are weighted bisimulation equivalent. Then t can be proved

equivalent to a normal form t′, and u can be proved equivalent to a normal form u′. By
soundness, t′ and u′ are weighted bisimulation equivalent. Since t′ and u′ are weighted
bisimulation equivalent normal forms, they are identical up to permutation of sums. Thus
t and u can be proved equivalent to terms identical up to permutation of sums, hence they
can be proved equivalent to each other.

4 Behavior Equivalence

We now consider the theory of behavior equivalence. To define behavior equivalence, we
need some auxiliary concepts. First is the notion of the aggregate rate rt(t) of a term
t ∈ Proc(I/J ⇒ O). This is defined by: rt(t) =

∑
e∈O

∑
t′ ∆

O
e (t, t′). The following result

gives a syntax-directed characterization of rt(t).

Lemma 11. Suppose t ∈ Proc(I/J ⇒ O). Then

• If t has the form nilI or 〈a?w〉 u, then rt(t) = 0.

• If t has the form 〈b!r〉 u, then rt(t) = r.

• If t has the form u + v, then rt(t) = rt(u) + rt(v).

• If t has the form u Ou‖Ov v, where u and v are input-stochastic (cf. Section 2.2), then
rt(t) = rt(u) + rt(v).

Proof. Structural induction on t, using the definitions of rt(t) and ∆O
e .

Next, we define a rated action to be a pair 〈e, r〉 ∈ Act × [0,∞). A rated trace is a finite
sequence of rated actions:

〈e1, r1〉〈e2, r2〉 . . . 〈en, rn〉.

We use ε to denote the empty rated trace.
An observable is a mapping from rated traces to real numbers. We use Obs to denote

the set of all observables. The derivative of an observable Φ by a rated action 〈e, r〉 is the
observable 〈e, r〉−1Φ defined by

(〈e, r〉−1Φ)(α) = Φ(〈e, r〉 α)

for all all rated traces α.
To each term t in Proc(I/J ⇒ O) we associate a behavior map BO

t : Obs → Obs defined
by induction on the length of a rated trace as follows:

20

1. BO
t [Φ](ε) = Φ(ε).

2. BO
t [Φ](〈e, r〉α) =

∑
u ∆O

e (t, u) · BO
u [〈e, r + rt(t)〉−1Φ](α).

Terms t and t′ in Proc(I/J ⇒ O) are defined to be behavior equivalent, and we write t ≡
O

u,

if BO
t = BO

u .

4.1 Properties of Behavior Maps

The following result helps to clarify the nature of the somewhat obscure-looking definition
of BO

t . The inductive definition of BO
t basically serves to describe the computation of the

coefficients ck and “rate variants” αk of the rated trace α in the indicated linear combination.

Lemma 12. Let sets of actions I, J , and O be given. Then for all rated traces α, for all
terms t with inferable type I/J ⇒ O, and for all observables Φ, BO

t [Φ](α) can be expressed
as a linear combination of the values of Φ at a finite number of arguments. That is:

BO
t [Φ](α) =

∑
k∈K

ck · Φ(αk).

for some finite set K, values {ck : k ∈ K} ⊆ (0,∞) and rated traces {αk : k ∈ K}.

Proof. We prove, by induction on the length of α, that for all α, for all t, and forall Φ,
BO

t [Φ](α) can be expressed as a finite linear combination of values of Φ. In the basis case,
α = ε, we have

BO
t [Φ](α) = Φ(ε),

so given any t we may take K = {∗} (a one-point set), c∗ = 1, and α∗ = ε to obtain the
result.

Now suppose we have shown the result for α and consider a rated trace of the form
〈e, r〉α. Then we have

BO
t [Φ](〈e, r〉α) =

∑
u

∆O
e (t, u) · BO

u [〈e, r + rt(t)〉−1Φ](α)

=
∑

u

∆O
e (t, u) ·

∑
k∈K′

ck · (〈e, r + rt(t)〉−1Φ)(αk)

=
∑

u

∑
k∈K′

∆O
e (t, u) ck · Φ(〈e, r + rt(t)〉αk),

where we have applied the induction hypothesis in the second line. Since there are only
finitely many u for which ∆O

e (t, u) 6= 0, we may take

• K to be the set of all pairs (u, k) such that k ∈ K ′ and ∆O
e (t, u) 6= 0,

• c(u,k) = ∆O
e (t, u) ck, and

21

• α(u,k) = 〈e, r + rt(t)〉αk.

to obtain the desired result:

BO
t [Φ](α) =

∑
(u,k)∈K

c(u,k) · Φ(α(u,k)).

Lemma 13. The mapping that takes Φ to 〈e, r〉−1Φ is a linear operator on the set of observ-
ables Obs, considered as a vector space under pointwise addition and scalar multiplication.

Proof. We calculate, using the definitions:

〈e, r〉−1(c · Φ + d ·Ψ)(α) = (c · Φ + d ·Ψ)(〈e, r〉α)

= c · Φ(〈e, r〉α) + d ·Ψ(〈e, r〉α)

= c · 〈e, r〉−1Φ(α) + d · 〈e, r〉−1Ψ(α).

Lemma 14. Behavior maps BO
t are linear operators on the set of observables Obs, considered

as a vector space under pointwise addition and scalar multiplication.

Proof. We prove, by induction on the length of a rated trace, that for all rated traces α, all
t, all observables Φ and Ψ, and all real numbers c and d we have

BO
t [c · Φ + d ·Ψ](α) = c · BO

t [Φ](α) + d · BO
t [Ψ](α).

In the basis case, α = ε we have:

BO
t [c · Φ + d ·Ψ](ε) = (c · Φ + d ·Ψ)(ε)

= c · Φ(ε) + d ·Ψ(ε)

= c · BO
t [Φ](ε) + d · BO

t [Ψ](ε).

For the induction step, suppose the result has been shown for α and consider the rated
trace 〈e, r〉α. We calculate, using the definitions, the induction hypothesis, and Lemma 13:

BO
t [c · Φ + d ·Ψ](〈e, r〉α) =

∑
u

∆O
e (t, u) · BO

u [〈e, r + rt(t)〉−1(c · Φ + d ·Ψ)](α)

=
∑

u

∆O
e (t, u) · (c · BO

u [〈e, r + rt(t)〉−1Φ](α)

+ d · BO
u [〈e, r + rt(t)〉−1Ψ](α))

=

(
c ·
∑

u

∆O
e (t, u) · BO

u [〈e, r + rt(t)〉−1Φ](α)

)

+

(
d ·
∑

u

∆O
e (t, u) · BO

u [〈e, r + rt(t)〉−1Ψ](α)

)
= c · BO

t [Φ](〈e, r〉α) + d · BO
t [Ψ](〈e, r〉α)

completing the induction step and the proof.

22

Lemma 15. For all t ∈ Proc(I/J ⇒ O), all observables Φ, all rated actions 〈e, r〉 and all
rated traces α:

〈e, r〉−1BO
t [Φ](α) =

∑
u

∆O
e (t, u) · BO

u [〈e, r + rt(t)〉−1Φ](α).

Proof. Calculation using the definitions shows:

〈e, r〉−1BO
t [Φ](α) = BO

t [Φ](〈e, r〉α)

=
∑

u

∆O
e (t, u) · BO

u [〈e, r + rt(t)〉−1Φ](α).

The following theorem gives a syntax-directed characterization of BO
t that is useful in

proofs. Case (1) is concerned with non-native actions. It reflects the fact that, although a
term t does not participate in non-native actions, the occurrence of such an action implies
that t has “lost the race” with its environment for control of that action, and consequently
the rate of t must be taken into account in determining the value of the behavior map on an
observable.

Lemma 16. For all terms t ∈ Proc(I/J ⇒ O), all observables Φ, all rated traces α and
rated actions 〈e, r〉:

1. BO
t [Φ](〈e, r〉α) = BO

t [〈e, r + rt(t)〉−1Φ](α), if e 6∈ J ∪O.

2. BO
nilJ

[Φ](〈e, r〉α) =

{
BO

nilJ
[〈e, r〉−1Φ](α), if e ∈ J,

0, if e ∈ O.

3. BO
〈a?p〉 t[Φ](〈e, r〉α) =

{
p · BO

t [〈e, r〉−1Φ](α), if e = a
0, if e ∈ (J ∪O) \ {a}.

4. BO
〈b!s〉 t[Φ](〈e, r〉α) =

{
s · BO

t [〈e, r + s〉−1Φ](α), if e = b
0, if e ∈ (J ∪O) \ {b}.

5. BO
t+u[Φ](〈e, r〉α) = BO

t [Φ](〈e, r + rt(u)〉α) + BO
u [Φ](〈e, r + rt(t)〉α).

6. BO
t Ot‖Ou u = BO\Ou

t ◦ BO\Ot
u = BO\Ot

u ◦ BO\Ou

t , assuming t and u are input-stochastic.

Proof. (1)-(4) are straightforward consequences of the definitions.

23

To prove (5), we calculate:

BO
t+u[Φ](〈e, r〉α) =

∑
v

∆O
e (t + u, v) · BO

v [〈e, r + rt(t + u)〉−1Φ](α)

=
∑

v

(∆O
e (t, v) + ∆O

e (u, v)) · BO
v [〈e, r + rt(t) + rt(u)〉−1Φ](α)

=
∑

v

∆O
e (t, v) · BO

v [〈e, (r + rt(u)) + rt(t)〉−1Φ](α)

+
∑

v

∆O
e (u, v) · BO

v [〈e, (r + rt(t)) + rt(u)〉−1Φ](α)

= BO
t [Φ](〈e, r + rt(u)〉α) + BO

u [Φ](〈e, r + rt(t)〉α).

To establish (6), we prove, by induction on the length of a rated trace α, that for all
suitably well-typed, input-stochastic t and u, all observables Φ and all rated traces α, that

BO
t Ot‖Ou u[Φ](〈e, r〉α) = BO\Ou

t [BO\Ot
u [Φ]](α).

For the basis case, α = ε, we have

BO
t Ot‖Ou u[Φ](ε) = Φ(ε)

= BO\Ot
u [Φ](ε)

= BO\Ou

t [BO\Ot
u [Φ]](ε).

For the induction step, suppose the result has been established for α and consider a rated
trace 〈e, r〉α. We calculate, using the definitions, the induction hypothesis, Lemma 14 and
Lemma 15:

BO
t Ot‖Ou u[Φ](〈e, r〉α) =

∑
t′

∑
u′

∆O\Ou
e (t, t′) ·∆O\Ot

e (u, u′)

· BO
t′ Ot‖Ou u′ [〈e, r + rt(t) + rt(u)〉−1Φ](α)

=
∑

t′

∑
u′

∆O\Ou
e (t, t′) ·∆O\Ot

e (u, u′)

· BO\Ou

t′ [BO\Ot

u′ [〈e, r + rt(t) + rt(u)〉−1Φ]](α)

=
∑

t′

∆O\Ou
e (t, t′) · BO\Ou

t′

[
∑
u′

∆O\Ot
e (u, u′) · BO\Ot

u′ [〈e, r + rt(t) + rt(u)〉−1Φ]](α)

=
∑

t′

∆O\Ou
e (t, t′) · BO\Ou

t′ [〈e, r + rt(t)〉−1BO\Ot
u [Φ]](α)

= BO\Ou

t [BO\Ot
u [Φ]](〈e, r〉α)

completing the induction step and the proof. Note that t Ot‖Ou u = rt(t) + rt(u), which
follows from the assumption of input-stochasticity, has been used in the first line.

24

As the terms nilI play an important role, the following characterization of their behaviors
is useful.

Lemma 17. Suppose α = 〈e1, r1〉〈e2, r2〉 . . . 〈ek, rk〉. Then

BO
nilI

[Φ](α) =

{
Φ(α), if {e1, e2, . . . , ek} ∩O = ∅,
0, otherwise.

Proof. Straightforward calculation from the definitions.

The following is a special case of a more general result, proved in Section 4.5, on the
information about a term that can be extracted from its behavior map.

Lemma 18. If t ≡
O

u then rt(t) = rt(u).

Proof. Suppose t, u ∈ Proc(I/J ⇒ O) are such that t ≡
O

u. Let ∗ be an arbitrarily chosen

(non-native) action in Act \ (J ∪O). Let Φ be the observable defined as follows:

Φ(α) =

{
s, if α = 〈∗, s〉,
0, otherwise.

Then

BO
t [Φ](〈∗, 0〉) = BO

t′ [〈∗, rt(t)〉−1Φ](ε)

= Φ(〈∗, rt(t)〉)
= rt(t).

Similarly, BO
u [Φ](〈∗, 0〉) = rt(u). Since t ≡

O
u by hypothesis, it follows that rt(t) = rt(u).

Further discussion of behavior maps and their properties can be found in our previous
papers [WSS97, Sta03, SCS03].

4.2 Combinations

As indicated in the introduction, in order to axiomatize behavior equivalence, we extend our
language by adding a construct for forming (convex) combinations of terms. Specifically, we
add an additional binary operator π⊕1−π , where the parameter π is a real number in the
open interval (0, 1). The following typing rule applies to this new operator:

t : I/J ⇒ O u : I/J ⇒ O rt(t) = rt(u)

t π⊕1−π u : I/J ⇒ O

This rule requires that, for t π⊕1−π u to be well-typed, terms t and u must have the same
aggregate rate as well as a common type. In this case we extend the notion of aggregate rate
by defining rt(t π⊕1−π u) to be the common value rt(t) = rt(u).

25

We formally extend the transition semantics ∆O
e given in Section 2.2 to encompass terms

containing t π⊕1−π u by adding to the defining clauses given there the additional clause:

∆O
e (t π⊕1−π u, v) = π ·∆O

e (t, v) + (1− π) ·∆O
e (u, v).

Note that in making the extension we are implicitly re-interpreting the original clauses from
Section 2.2 by allowing for the possibility of terms containing π⊕1−π . For example, we now
have

∆O
a (〈a?w〉 (t π⊕1−π u), t π⊕1−π u) = w.

We similarly extend the definition of BO
t given earlier in this section to allow for the possibility

of terms containing π⊕1−π . These particular definitions are intuitively motivated by our
desire for t π⊕1−π u to represent a probabilistic choice between (or superposition of) t and
u; as considered, for example, in [And99]. Formally, we obtain the following result:

Lemma 19. For all terms t, u in Proc(I/J ⇒ O) such that rt(t) = rt(u), for all observables
Φ and all rated traces α we have:

BO
t π⊕1−π u[Φ](α) = π · BO

t [Φ](α) + (1− π) · BO
u [Φ](α).

Proof. We proceed by induction on the length of a rated trace α. If α = ε, then

BO
t π⊕1−π u[Φ](α) = Φ(ε)

= π · Φ(ε) + (1− π) · Φ(ε)

= π · BO
t [Φ](α) + (1− π) · BO

u [Φ](α).

If α = 〈e, r〉α′, then we have

BO
t π⊕1−π u[Φ](α) =

∑
v

∆O
e (t π⊕1−π u, v) · BO

v [〈e, r + rt(t π⊕1−π u)〉−1Φ](α′)

=
∑

v

(π ·∆O
e (t, v) + (1− π) ·∆O

e (u, v))

· BO
v [〈e, r + rt(t π⊕1−π u)〉−1Φ](α′)

= π ·
∑

v

∆O
e (t, v) · BO

v [〈e, r + rt(t)〉−1Φ](α′)

+ (1− π) ·
∑

v

∆O
e (u, v) · BO

v [〈e, r + rt(u)〉−1Φ](α′)

= π · BO
t [Φ](α) + (1− π) · BO

u [Φ](α)

completing the induction step and the proof.

It will also be convenient to make use of an additional summation notation tailored
to combinations. Specifically, for n > 0, for 0 < πi < 1 such that

∑n
i=1 πi = 1, and

for {t1, t2, . . . , tn} sharing a common inferable type I/J ⇒ O and total rate r, we define
◦
∑n

i=1 πi · ti as follows:

26

1. For n = 1,
n

◦
∑
i=1

πi · ti = t1

2. For n > 1,
n

◦
∑
i=1

πi · ti =

(
n

◦
∑
i=1

πi

1− πn

· ti

)
1−πn⊕πn tn

We will establish the soundness of laws for π⊕1−π that make it possible to manipulate such
summations without ambiguity.

Lemma 20. Behavior equivalence is substitutive for input prefixing, output prefixing, choice,
combination of arbitrary terms, and also for parallel composition of input-stochastic terms.
That is, each of the following assertions holds for terms t and t′ in Proc(I/J ⇒ O) whenever
all the terms mentioned are well-typed and the equivalences make sense:

1. If t ≡
O

t′ then 〈a?w〉 t ≡
O
〈a?w〉 t′.

2. If t ≡
O

t′ then 〈b!r〉 t ≡
O
〈b!r〉 t′.

3. If t ≡
O

t′ then t + u ≡
O

t′ + u and u + t ≡
O

u + t′.

4. If t ≡
O

t′ then t O‖Ou u ≡
O′

t′ O‖Ou u and u Ou‖O t ≡
O′

u Ou‖O t′,

assuming t, t′, and u are input-stochastic.

5. If t ≡
O

t′ then t π⊕1−π u ≡
O

t′ π⊕1−π u and u π⊕1−π t ≡
O

u π⊕1−π t′.

Proof.

1. If t ≡
O

t′, then

BO
〈a?w〉 t[Φ](〈e, r〉α) =

∑
v

∆O
e (〈a?w〉 t, v) · BO

t [〈e, r + 0〉−1Φ](α)

=

{
w · BO

t [〈a, r〉−1Φ](α), if e = a
0, otherwise.

=

{
w · BO

t′ [〈a, r〉−1Φ](α), if e = a
0, otherwise.

=
∑

v

∆O
e (〈a?w〉 t′, v) · BO

t′ [〈e, r + 0〉−1Φ](α)

= BO
〈a?w〉 t′ [Φ](〈e, r〉α).

27

2. If t ≡
O

t′, then

BO
〈b!r〉 t[Φ](〈e, s〉α) =

∑
v

∆O
e (〈b!r〉 t, v) · BO

t [〈e, r + s〉−1Φ](α)

=

{
r · BO

t [〈b, r + s〉−1Φ](α), if e = b
0, otherwise.

=

{
r · BO

t′ [〈b, r + s〉−1Φ](α), if e = b
0, otherwise.

=
∑

v

∆O
e (〈b!r〉 t′, v) · BO

t′ [〈e, r + s〉−1Φ](α)

= BO
〈b!r〉 t′ [Φ](〈e, s〉α).

3. If t ≡
O

t′, then

BO
t+u[Φ](〈e, r〉α) = BO

t [Φ](〈e, r + rt(u)〉α) + BO
u [Φ](〈e, r + rt(t)〉α)

= BO
t′ [Φ](〈e, r + rt(u)〉α) + BO

u [Φ](〈e, r + rt(t′)〉α)

= BO
t′+u[Φ](〈e, r〉α),

where we have used Lemma 18 and the assumption that t ≡
O

t′ to conclude that

rt(t) = rt(t′).

4. If t ≡
O

t′, then

BO′

t O‖Ou u = BO′\Ou

t ◦ BO′\Ot
u

= BO′\Ou

t′ ◦ BO′\Ot
u

= BO′

t O‖Ou u.

5. If t ≡
O

t′, then

BO
t π⊕1−π u[Φ](〈e, r〉α) = π · BO

t [Φ](〈e, r〉α) + (1− π) · BO
u [Φ](〈e, r〉α)

= π · BO
t′ [Φ](〈e, r〉α) + (1− π) · BO

u [Φ](〈e, r〉α)

= BO
t′ π⊕1−π u[Φ](〈e, r〉α).

4.3 Axioms

Axioms for behavior equivalence are shown in Table 2. Note that an equation is only regarded
an axiom if all the terms involved are well-formed and the same type can be inferred for the

28

left and right-hand sides. Particular care must be taken when using axioms (input-distr)
and (output-distr), to see that these equations are never applied in such a way as to create
combinations whose operands have different rates.

In contrast to the axioms for weighted bisimulation equivalence, the axioms for behavior
equivalence expose some distinction between input and output. For example, comparison of
axiom (input-comb) and (output-comb) reveals that in (output-comb) the two output actions
are permitted to be distinct. This is not permitted in (input-comb), because in that case the
right-hand side would never be well-typed. Also, the axiom (input-extract) exhibits a special
property of input that is not shared by output. Intuitively, since rt(〈a?p〉 t) = 0, its presence
in 〈a?p〉 t + u does not impact the behavior of u. Also, the presence or absence of rt(〈a?p〉 t)
does not affect the aggregate rate of the first argument to π⊕1−π , so the combination is
well-formed (i.e. the arguments have same aggregate rates) in either case. These statements
would not hold if 〈a?p〉 t were replaced by a term with nonzero aggregate rate. The content
of axiom (interchange) is that the two types of sums commute freely with each other, subject
only to the conditions on rates imposed by well-typedness.

Note that Table 2 includes all the axioms for weighted bisimulation equivalence, except
for the axioms (input-choice) and (output-choice). However, these axioms are derivable, as
we now show, so that all equations provable for weighted bisimulation equivalence are also
provable for behavior equivalence.

Lemma 21. Equations (input-choice) and (output-choice) are derivable from the axioms in
Table 2.

Proof. (input-choice)

〈a?p〉 t + 〈a?q〉 t = 〈a?p+q〉 t p
p+q
⊕ q

p+q
〈a?p+q〉 t by (input-comb)

= 〈a?p+q〉 (t p
p+q
⊕ q

p+q
t) by (input-distr)

= 〈a?p+q〉 t by (comb-idemp)

(output-choice)

〈b!r〉 t + 〈b!s〉 t = 〈b!r+s〉 t r
r+s
⊕ s

r+s
〈b!r+s〉 t by (output-comb)

= 〈b!r+s〉 (t r
r+s
⊕ s

r+s
t) by (output-distr)

= 〈b!r+s〉 t by (comb-idemp)

The theory generated by the axioms in Table 2 is not a conservative extension of that
generated by the axioms in Table 1. A typical example of an equation that is provable from
the axioms in Table 2, but which is not sound for weighted bisimulation equivalence is the
following:

〈b!r〉 (〈c!sπ〉 t + 〈d!s(1−π)〉 u) = 〈b!rπ〉 〈c!s〉 t + 〈b!r(1−π)〉 〈d!s〉 u

where 0 < π < 1. As we shall see, the axioms in Table 2 permit us to prove each term t
equivalent to a normal form in which the same rate, rt(t), is displayed on all output-prefixed
terms that are summed together.

29

t + nil∅ = t (choice-unit)

t + u = u + t (choice-comm)

(t + u) + v = t + (u + v) (choice-assoc)∑
a∈I

〈a?1〉 nilI = nilI (nil-fold)

〈a?p〉 t + 〈a?q〉 u = 〈a?p+q〉 t p
p+q
⊕ q

p+q
〈a?p+q〉 u (input-comb)

〈b!r〉 t + 〈c!s〉 u = 〈b!r+s〉 t r
r+s
⊕ s

r+s
〈c!r+s〉 u (output-comb)

t = t π⊕1−π t (comb-idemp)

t π⊕1−π u = u 1−π⊕π t (comb-comm)

(t π⊕1−π u) ρ⊕1−ρ v = t σ⊕1−σ (u τ⊕1−τ v), (comb-assoc)

whenever πρ = σ and (1− ρ) = (1− σ)(1− τ).

〈a?p〉 t π⊕1−π 〈a?p〉 u = 〈a?p〉 (t π⊕1−π u) (input-distr)

〈b!r〉 t π⊕1−π 〈b!r〉 u = 〈b!r〉 (t π⊕1−π u) (output-distr)

(t π⊕1−π w) + (u π⊕1−π v) = (t + u) π⊕1−π (w + v) (interchange)

〈a?πp〉 t + (u π⊕1−π v) = (〈a?p〉 t + u) π⊕1−π v (input-extract)

Table 2: Axioms for Behavior Equivalence

30

Lemma 22. The axioms in Table 2 are sound for behavior equivalence.

Proof. For each equation L = R, where ` L : I/J ⇒ O and ` R : I/J ⇒ O, we show, by
induction on the length of a rated trace α, that for all rated traces alpha and all observables
Φ we have BO

L [Φ](α) = BO
R [Φ](α). In the basis case α = ε the reasoning is always the same:

BO
L [Φ](ε) = BO

R [Φ](ε), which is immediate because by definition each side is equal to Φ(ε).
Hence, in the remainder of the proof we assume that α = 〈e, r〉β. It is easy to check for each
equation L = R that rt(L) = rt(R). In case e 6∈ J ∪O (i.e. e is non-native), we have

BO
L [Φ](〈e, r〉β) = BO

L [〈e, r + rt(L)〉−1Φ](β)

= BO
R [〈e, r + rt(R)〉−1Φ](β)

= BO
R [Φ](〈e, r〉β)

where we have used the induction hypothesis in the second step.
It thus remains in each case for us to show that BO

L [Φ](〈e, r〉β) = BO
R [Φ](〈e, r〉β) for all

observables Φ, all rated actions 〈e, r〉 with e ∈ J ∪ O, and all rated traces β. We consider
each axiom in turn:

• Axiom (choice-unit). Recalling that rt(nil∅) = 0, we have

BO
t+nil∅

[Φ](〈e, r〉β) = BO
t [Φ](〈e, r + rt(nil∅)〉β) + BO

nil∅
[Φ](〈e, r + rt(t)〉β)

= BO
t [Φ](〈e, r〉β) + BO

nil∅
[Φ](〈e, r + rt(t)〉β)

for all observables Φ, all rated actions 〈e, r〉 and all rated traces β. Now,

BO
nil∅

[Φ](〈e, r + rt(t)〉β) =

{
0, if e ∈ O,
BO

nil∅
[〈e, r + rt(t)〉−1Φ](β), otherwise.

If e ∈ O, then BO
t+nil∅

[Φ](〈e, r〉β) = BO
t [Φ](〈e, r〉β) follows immediately. If e 6∈ O, then

in fact e 6∈ J ∪ O (i.e. e is non-native) because we can only have ` nil∅ : I/J ⇒ O if
I = J = ∅. The case of non-native e has already been treated above.

• Axiom (choice-comm).

BO
t+u[Φ](〈e, r〉β) = BO

t [Φ](〈e, r + rt(u)〉β) + BO
u [Φ](〈e, r + rt(t)〉β)

= BO
u [Φ](〈e, r + rt(t)〉β) + BO

t [Φ](〈e, r + rt(u)〉β)

= BO
u+t[Φ](〈e, r〉β).

• Axiom (choice-assoc).

BO
t+(u+v)[Φ](〈e, r〉β) = BO

t [Φ](〈e, r + rt(u + v)〉β) + BO
u+v[Φ](〈e, r + rt(t)〉β)

= BO
t [Φ](〈e, r + rt(u) + rt(v)〉β)

+BO
u [Φ](〈e, r + rt(t) + rt(v)〉β)

+BO
v [Φ](〈e, r + rt(t) + rt(u)〉β)

= BO
t+u[Φ](〈e, r + rt(v)〉β) + BO

v [Φ](〈e, r + rt(t + u)〉β)

= BO
(t+u)+v[Φ](〈e, r〉β).

31

• Axiom (nil-fold). Note that in this case well-typedness implies that I = J . Since
rt(〈a?1〉 nilI) = 0 = rt(nilI) we have

BOP
a∈I 〈a?1〉 nilI

[Φ](〈e, r〉β) =
∑
a∈I

BO
〈a?1〉 nilI

[Φ](〈e, r + 0〉β)

=

{
BO

nilI
[〈e, r〉−1Φ](β), if e ∈ I,

0, if e ∈ O

= BO
nilI

[Φ](〈e, r〉β).

• Axiom (input-distr).

BO
〈a?p〉 (t π⊕1−π u)[Φ](〈e, r〉β)

=

{
p · BO

t π⊕1−π u[〈e, r〉−1Φ](β), if e = a

0, otherwise

=

{
pπ · BO

t [〈e, r〉−1Φ](β) + p(1− π) · BO
u [〈e, r〉−1Φ](β) if e = a

0, otherwise
= π · BO

〈a?p〉 t[Φ](〈e, r〉β) + (1− π) · BO
〈a?p〉 u[Φ](〈e, r〉β)

= BO
〈a?p〉 t π⊕1−π 〈a?p〉 u[Φ](〈e, r〉β).

• Axiom (output-distr).

BO
〈b!s〉 (t π⊕1−π u)[Φ](〈e, r〉β)

=

{
s · BO

t π⊕1−π u[〈e, r + s〉−1Φ](β), if e = a

0, otherwise

=

s · π · BO

t [〈e, r + s〉−1Φ](β)
+ s · (1− π) · BO

u [〈e, r + s〉−1Φ](β) if e = a
0, otherwise

= π · BO
〈b!s〉 t[Φ](〈e, r〉β) + (1− π) · BO

〈b!s〉 u[Φ](〈e, r〉β)

= BO
〈b!s〉 t π⊕1−π 〈b!s〉 u[Φ](〈e, r〉β).

• Axiom (comb-idemp).

BO
t π⊕1−π t[Φ](〈e, r〉β) = π · BO

t [Φ](〈e, r〉β) + (1− π) · BO
t [Φ](〈e, r〉β)

= BO
t [Φ](〈e, r〉β).

• Axiom (comb-comm).

BO
t π⊕1−π u[Φ](〈e, r〉β) = π · BO

t [Φ](〈e, r〉β) + (1− π) · BO
u [Φ](〈e, r〉β)

= (1− π) · BO
u [Φ](〈e, r〉β) + π · BO

t [Φ](〈e, r〉β)

= BO
u 1−π⊕π t[Φ](〈e, r〉β).

32

• Axiom (comb-assoc). Suppose πρ = σ and (1 − ρ) = (1 − σ)(1 − τ). Then also
(1− π)ρ = (1− σ)τ and we have

BO
(t π⊕1−π u) ρ⊕1−ρ v[Φ](〈e, r〉β)

= ρ · BO
t π⊕1−π u[Φ](〈e, r〉β) + (1− ρ) · BO

v [Φ](〈e, r〉β)

= πρ · BO
t [Φ](〈e, r〉β) + (1− π)ρ · BO

u [Φ](〈e, r〉β) + (1− π)(1− ρ) · BO
v [Φ](〈e, r〉β)

= πρ · BO
t [Φ](〈e, r〉β) + (1− σ) · (τ · BO

u [Φ](〈e, r〉β) + (1− τ) · BO
v [Φ](〈e, r〉β))

= σ · BO
t [Φ](〈e, r〉β) + (1− σ) · BO

u τ⊕1−τ v[Φ](〈e, r〉β)

= BO
t σ⊕1−σ (u τ⊕1−τ v)[Φ](〈e, r〉β).

• Axiom (input-comb).

BO
〈a?p〉 t+〈a?q〉 u[Φ](〈e, r〉β)

= BO
〈a?p〉 t[Φ](〈e, r + 0〉β) + BO

〈a?q〉 u[Φ](〈e, r + 0〉β)

=

{
p · BO

t [〈a, r〉−1Φ](β) + q · BO
u [〈a, r〉−1Φ](β) if e = a

0, otherwise

=

(p + q) · p

p+q
· BO

t [〈a, r〉−1Φ](β)

+ (p + q) · q
p+q

· BO
u [〈a, r〉−1Φ](β) if e = a

0, otherwise
= BO

〈a?p+q〉 t p
p+q

⊕ q
p+q

〈a?p+q〉 u[Φ](〈e, r〉β).

• Axiom (output-comb).

BO
〈b!r〉 t+〈c!r′ 〉 u[Φ](〈e, s〉β)

= BO
〈b!r〉 t[Φ](〈e, s + r′〉β) + BO

〈c!r′ 〉 u[Φ](〈e, s + r〉β)

=

r · BO

t [〈b, s + r + r′〉−1Φ](β) if b = e 6= c
r′ · BO

u [〈c, s + r + r′〉−1Φ](β) if b 6= e = c
r · BO

t [〈b, s + r + r′〉−1Φ](β)
+ r′ · BO

u [〈c, s + r + r′〉−1Φ](β) if e = b = c
0, otherwise

=

(r + r′) · r

r+r′
· BO

t [〈b, s + r + r′〉−1Φ](β) if b = e 6= c

(r + r′) · r′

r+r′
· BO

u [〈c, s + r + r′〉−1Φ](β) if b 6= e = c

(r + r′) · r
r+r′

· BO
t [〈b, s + r + r′〉−1Φ](β)

+ (r + r′) · r′

r+r′
· BO

u [〈c, s + r + r′〉−1Φ](β) if e = b = c

0, otherwise
= BO

〈b!r+r′ 〉 t r
r+r′

⊕ r′
r+r′

〈c!r+r′ 〉 u[Φ](〈e, s〉β).

33

• Axiom (interchange).

BO
(t π⊕1−π w)+(u π⊕1−π v)[Φ](〈e, r〉β)

= BO
t π⊕1−π w[Φ](〈e, r + rt(u π⊕1−π v)〉β)

+BO
u π⊕1−π v[Φ](〈e, r + rt(t π⊕1−π w)〉β)

= π · BO
t [Φ](〈e, r + rt(u)〉β) + (1− π) · BO

w [Φ](〈e, r + rt(v)〉β)

+π · BO
u [Φ](〈e, r + rt(t)〉β) + (1− π) · BO

v [Φ](〈e, r + rt(w)〉β)

= π · (BO
t [Φ](〈e, r + rt(u)〉β) + BO

u [Φ](〈e, r + rt(t)〉β))

+(1− π) · (BO
w [Φ](〈e, r + rt(v)〉β) + BO

v [Φ](〈e, r + rt(w)〉β))

= π · BO
t+u[Φ](〈e, r〉β) + (1− π) · BO

w+v[Φ](〈e, r〉β)

= BO
(t+u) π⊕1−π (w+v)[Φ](〈e, r〉β).

Note that the above reasoning depends crucially on the assumptions rt(t π⊕1−π w) =
rt(t) = rt(w) and rt(u π⊕1−π v) = rt(u) = rt(v), which are prerequisite for the well-
typedness of t π⊕1−π w and u π⊕1−π v.

• Axiom (input-extract).

BO
〈a?πp〉 t+(u π⊕1−π v)[Φ](〈e, s〉β)

= BO
〈a?πp〉 t[Φ](〈e, s + rt(u π⊕1−π v)〉β) + BO

u π⊕1−π v[Φ](〈e, s〉β)

= π · BO
〈a?p〉 t[Φ](〈e, s + rt(u)〉β) + π · BO

u [Φ](〈e, s〉β) + (1− π) · BO
v [Φ](〈e, s〉β)

= π · BO
〈a?p〉 t+u[Φ](〈e, s〉β) + (1− π) · BO

v [Φ](〈e, s〉β)

= BO
(〈a?p〉 t+u) π⊕1−π v[Φ](〈e, s〉β).

Note that the first and third steps crucially depend on the fact that the input-prefixed
terms 〈a?πp〉 t and 〈a?p〉 t have aggregate rate 0, and that rt(〈a?πp〉 t + (u π⊕1−π v)) =
rt(u π⊕1−π v) = rt(u) = rt(v) = rt((〈a?p〉 t + u) π⊕1−π v) = s.

The next few results obtain generalizations of axioms (output-comb), (interchange), and
(input-extract) to n-ary summations. These generalizations will be needed for the complete-
ness proof in the next section.

Lemma 23. All equations of the following form (for m ≥ 1) are provable:

〈b!r〉 t +

(
m

◦
∑
i=1

σi · 〈ci!s〉 ui

)
= 〈b!r+s〉 t r

r+s
⊕ s

r+s

m

◦
∑
i=1

σi · 〈bi!r+s〉 ti

34

Proof. We proceed by induction on m. If m = 1, then the stated equation is an instance
of axiom (output-comb). Suppose m > 2. Using axioms (comb-comm), (comb-assoc),
(comb-idemp), and (interchange) we may prove

〈b!r〉 t + (◦
∑m

i=1 σi · 〈ci!s〉 ui)

= 〈b!r〉 t +
(
〈c1!s〉 u1 σ1⊕1−σ1 ◦

∑m
i=2

σi

1−σ1
· 〈ci!s〉 ui

)
= (〈b!r〉 t σ1⊕1−σ1 〈b!r〉 t) +

(
〈c1!r〉 u1 σ1⊕1−σ1 ◦

∑m
i=2

σi

1−σ1
· 〈ci!s〉 ui

)
= (〈b!r〉 t + 〈c1!s〉 u1) σ1⊕1−σ1

(
〈b!r〉 t + ◦

∑m
i=2

σi

1−σ1
· 〈ci!s〉 ui

)
By axiom (output-comb) we may prove

〈b!r〉 t + 〈c1!s〉 u1 = 〈b!r+s〉 t r
r+s
⊕ s

r+s
〈c1!r+s〉 t1

By induction hypothesis, we may prove

〈b!r〉 t +
m

◦
∑
i=2

σi

1− σ1

· 〈ci!s〉 ui = 〈b!r+s〉 t r
r+s
⊕ s

r+s

m

◦
∑
i=2

σi

1− σ1

· 〈ci!r+s〉 ui

Substituting into

(〈b!r〉 t + 〈c1!s〉 u1) σ1⊕1−σ1

(
〈b!r〉 t +

m

◦
∑
i=2

σi

1− σ1

· 〈ci!s〉 ui

)

gives

(
〈b!r+s〉 t r

r+s
⊕ s

r+s
〈c1!r+s〉 u1

)
σ1⊕1−σ1

(
〈b!r+s〉 t r

r+s
⊕ s

r+s

m

◦
∑
i=2

σi

1− σ1

· 〈ci!r+s〉 ui

)

and then using axioms (comb-comm) and (comb-assoc) to rearrange terms yields and axiom
(comb-idemp) to combine the two occurrences of 〈b!r+s〉 t yields the result.

Lemma 24. All equations of the following form are provable (for m ≥ 1):

m∑
i=1

〈bi!rσi
〉 ti =

m

◦
∑
i=1

σi · 〈bi!r〉 ti.

Proof. If m = 1, then there is nothing to prove. If m = 2, then the stated equation is an
instance of axiom (input-comb). If m > 2, then we may prove

m∑
i=1

〈bi!rσi
〉 ti = 〈b1!rσ1〉 t1 +

m∑
i=2

〈bi!rσi
〉 ti

35

By induction,

〈b1!rσ1〉 t1 +
m∑

i=2

〈bi!rσi
〉 ti = 〈b1!rσ1〉 t1 +

m∑
i=2

〈bi!r(1−σ1)
σi

1−σ1

〉 ti

= 〈b1!rσ1〉 t1 +
m

◦
∑
i=2

σi

1− σ1

· 〈bi!r(1−σ1)〉 ti

By Lemma 23, this last expression is provably equivalent to

〈b1!r〉 t1 σ1⊕1−σ1

m

◦
∑
i=2

σi

1− σ1

· 〈bi!r〉 ti

But it follows from axioms (comb-comm) and (comb-assoc) that this is provably equivalent
to

m

◦
∑
i=1

σi · 〈bi!r〉 ti

completing the induction step and the proof.

Lemma 25. Suppose t1, t2, . . . , tn and t′1, t
′
2, . . . , t

′
n (n ≥ 1) are well-typed terms such that ti

and t′i have a common inferable type and rt(ti) = rt(t′i) for 1 ≤ i ≤ n. Then the equation

n∑
i=1

ti π⊕1−π

n∑
i=1

t′i =
n∑

i=1

(ti π⊕1−π t′i)

is provable.

Proof. The proof is by induction on n. If n = 1 there is nothing to prove. Suppose n > 1.
Then

n∑
i=1

ti π⊕1−π

n∑
i=1

t′i = (t1 +
n∑

i=2

ti) π⊕1−π (t′1 +
n∑

i=2

t′i)

Since by hypothesis t1 and t′1 have a common inferable type and rate and the same for
∑n

i=2 ti
and

∑n
i=2 t′i, we may apply axiom (interchange) to prove the last expression above equivalent

to

(t1 π⊕1−π t′1) +

(
n∑

i=2

ti π⊕1−π

n∑
i=2

t′i

)
By induction, this is provably equivalent to

(t1 π⊕1−π t′1) +
n∑

i=2

(ti π⊕1−π t′i)

36

which using axioms (choice-comm) and (choice-assoc) is provably equivalent to

n∑
i=1

(ti π⊕1−π t′i)

completing the induction step and the proof.

Lemma 26. All equations of the following form, where m ≥ 1 and n ≥ 1, are derivable from
the axioms in Table 2:

m∑
i=1

〈a?pi
〉 ti π⊕1−π

n∑
j=1

〈a?qj
〉 uj =

m∑
i=1

〈a?πpi
〉 ti +

n∑
j=1

〈a?(1−π)qj
〉 uj

Proof. We proceed by induction on the pair (m,n). If (m, n) is (1, 1), then the stated
equation is an instance of axiom (input-comb).

If m > 1, then

m∑
i=1

〈a?pi
〉 ti π⊕1−π

n∑
j=1

〈a?qj
〉 uj =

(
〈a?p1〉 t1 +

m∑
i=2

〈a?pi
〉 ti

)
π⊕1−π

n∑
j=1

〈a?qj
〉 uj

Using axiom (input-extract), the right-hand side is provably equivalent to

〈a?πp1〉 t1 +

(
m∑

i=2

〈a?pi
〉 ti π⊕1−π

n∑
j=1

〈a?qj
〉 uj

)

By induction, this last expression is provably equivalent to

〈a?πp1〉 t1 +

(
m∑

i=2

〈a?πpi
〉 ti +

n∑
j=1

〈a?(1−π)qj
〉 uj

)

Axioms (choice-comm) and (choice-assoc) can now be used to show this provably equivalent
to

m∑
i=1

〈a?πpi
〉 ti +

n∑
j=1

〈a?(1−π)qj
〉 uj

completing the induction step and the proof.

4.4 Normal Forms

Let the notions input normal form, output normal form, and normal form be defined mutually
recursively as follows:

37

• An input normal form is a well-typed term u that is either nilI for some I 6= ∅, or else
has the form: ∑

a∈I

∑
s∈Ra

〈a?pa,s〉 ta,s,

where we require that:

1. I 6= ∅.
2. Each ta,s is a normal form, with rt(ta,s) = s.

3. For each a ∈ I the set Ra is a nonempty finite subset of (0,∞).

4. u is not an instance (up to permutation of sums) of the left-hand side of axiom
(nil-fold).

• An output normal form is a well-typed term u that is either nil∅ or else has the form:∑
b∈O

∑
s∈Rb

〈b!σb,s·r〉 tb,s,

where we require that:

1. O 6= ∅.
2. Each tb,s is a normal form, with rt(tb,s) = s.

3. For each b ∈ O the set Rb is a nonempty finite subset of (0,∞).

4. Each σb,s satisfies 0 < σb,s ≤ 1 and
∑

b∈O

∑
s∈Rb

σb,s = 1.

An output normal form is called nontrivial if it is not nil∅.

• A normal form is either an input normal form, an output normal form, or a sum u+v,
where u is an input normal form and v is a nontrivial output normal form.

Lemma 27. Suppose t1 and t2 are terms having a common inferable type I/J ⇒ O and
such that rt(t1) = rt(t2) = r.

1. If t1 and t2 are input normal forms then there exists an input normal form t′ such that
the equation t1 π⊕1−π t2 = t′ is provable.

2. If t1 and t2 are output normal forms then there exists an output normal form t′ such
that the equation t1 π⊕1−π t2 = t′ is provable.

3. If t1 and t2 are normal forms then there exists a normal form t′ such that the equation
t1 π⊕1−π t2 = t′ is provable.

Proof. We prove all three claims simultaneously by induction on the sum of the maximum
prefix depths of t1 and t2. Suppose we have established (1)-(3) for all pairs of terms whose
whose maximum prefix depths sum to strictly less than some d ≥ 0 and suppose the sum of
the maximum prefix depths of t1 and t2 is exactly d.

38

1. Suppose t1 and t2 are input normal forms. If both t1 and t2 are nilI , then we may
prove t1 π⊕1−π t2 = nilI using axiom (comb-idemp). For the remainder of this case, we
assume that t1 and t2 are not both nilI .

Now, t1 is either nilI or else has the form∑
a∈I

∑
r∈Ra,1

〈aa,r,1?pa,r,1〉 ta,r,1

Similarly, t2 is either nilI2 or else has the form∑
a∈I

∑
r∈Ra,2

〈aa,r,2?pa,r,2〉 ta,r,2

If t1 is nilI then we may use axiom (nil-fold) to prove it equivalent to a summation
in the form above. The same reasoning applies to t2. We assume that this has been
done, so that neither t1 nor t2 is nilI . Note that since t1 and t2 are not both nilI , axiom
(nil-fold) is applied to at most one of them. Because of this, for any pair i, i′, the sum
of the maximum prefix depths of ti,1 and ti′,2 is strictly less than d. This observation
will enable the application of the induction hypothesis in the argument below.

We may now apply Lemma 25 to prove t1 π⊕1−π t2 equivalent to

∑
a∈I

 ∑
r∈Ra,1

〈a?pa,r,1〉 ta,r,1 π⊕1−π

∑
r∈Ra,2

〈a?pa,r,2〉 ta,r,2

Using Lemma 26, this may be proved equivalent to

∑
a∈I

 ∑
r∈Ra,1

〈a?πpa,r,1〉 ta,r,1 +
∑

r∈Ra,2

〈a?(1−π)pa,r,2〉 ta,r,2

 (∗)

Using axioms (choice-comm) and (choice-assoc), this can be proved equivalent to∑
a∈I

∑
r∈Ra,1∪Ra,2

ua,r

where

ua,r =

〈a?πpa,r,1〉 ta,r,1, if r ∈ Ra,1 \Ra,2

〈a?(1−π)pa,r,2〉 ta,r,2, if r ∈ Ra,2 \Ra,1

〈a?πpa,r,1〉 ta,r,1 + 〈a?(1−π)pa,r,2〉 ta,r,2, if r ∈ Ra,1 ∩Ra,2.

If r ∈ Ra,1 ∩ Ra,2, then because rt(ta,r,1) = r = rt(ta,r,2), by axioms (input-comb) and
(input-distr) the term

〈a?πpa,r,1〉 ta,r,1 + 〈a?(1−π)pa,r,2〉 ta,r,2

39

is provably equivalent to
〈a?q〉 (ta,r,1 σa,r,1⊕σa,r,2 ta,r,2)

where

q = πpa,r,1 + (1− π)pa,r,2

σa,r,1 = πpa,r,1/q

σa,r,2 = (1− π)pa,r,2/q.

Now, as observed above, the sum of the maximum prefix depths of ti(a,r,1),1 and ti(a,r,2),2

is strictly less than d. We may therefore apply the induction hypothesis to conclude
that

ta,r,1 σa,r,1⊕σa,r,2 ta,r,2

provably equivent to a normal form ta,r. Thus t1 π⊕1−π t2 is provably equivalent to∑
a∈I

∑
r∈R1∪R2

〈a?qa,r〉 u′a,r

where

qa,r =

πpa,r,1, if r ∈ R1 \R2

(1− π)pa,r,2, if r ∈ R2 \R1

q, if r ∈ R1 ∩R2.

u′a,r =

ta,r,1, if r ∈ R1 \R2

ta,r,2, if r ∈ R2 \R1

ta,r, if r ∈ R1 ∩R2.

If this last summation is reduced with respect to axiom (nil-fold), then it is already
an input normal form. If it is not so reduced, then we may apply axiom (nil-fold) to
prove it equivalent to nilI , which is an input normal form.

2. Suppose t1 and t2 are output normal forms. If both t1 and t2 are trivial, then t1 π⊕1−π t2
can be proved equivalent to the output normal form nil∅ using axiom (comb-idemp).
Note that it is impossible for one of t1 or t2 to be trivial and the other nontrivial,
because then we would have rt(t1) 6= rt(t2) So, we assume in what follows that both t1
and t2 are nontrivial.

Now, t1 has the form ∑
b∈O1

∑
s∈Rb,1

〈b!σb,s,1r1〉 tb,s,1

where r1 = rt(t1), and t2 has the form∑
b∈O2

∑
s∈Rb,2

〈b!σb,s,2r2〉 tb,s,2.

40

where r2 = rt(t2). By Lemma 24, t1 may be proved equivalent to t′1 which has the form

◦
∑

b∈O1,s∈Rb,1

σb,s,1 · 〈b!r1〉 tb,s,1.

Similarly, t2 may be proved equivalent to t′2 which has the form

◦
∑

b∈O2,s∈Rb,2

σb,s,2 · 〈b!r2〉 tb,s,2.

Hence t1 π⊕1−π t2 may be proved equivalent to t′1 π⊕1−π t′2.

Since rt(t1) = rt(t2) = r by hypothesis, using axioms (comb-comm) and (comb-assoc)
the term t′1 π⊕1−π t′2 can be proved equivalent to

◦
∑

b∈O1∪O2,s∈Rb

σb,s · tb,s

where

Rb =

Rb,1, if b ∈ O1 \O2

Rb,2, if b ∈ O2 \O1

Rb,1 ∪Rb,2, if b ∈ O1 ∩O2.

σb,s =

πσb,s,1, if b ∈ O1 \O2

(1− π)σb,s,2, if b ∈ O2 \O1

πσb,s,1, if b ∈ O1 ∩O2, s ∈ Rb,1 \Rb,2

(1− π)σb,s,2, if b ∈ O1 ∩O2, s ∈ Rb,2 \Rb,1

πσb,s,1 + (1− π)σb,s,2, if b ∈ O1 ∩O2, s ∈ Rb,1 ∩Rb,2

tb,s =

〈b!r〉 tb,s,1, if b ∈ O1 \O2

〈b!r〉 tb,s,2, if b ∈ O2 \O1

〈b!r〉 tb,s,1, if b ∈ O1 ∩O2, s ∈ Rb,1 \Rb,2

〈b!r〉 tb,s,2, if b ∈ O1 ∩O2, s ∈ Rb,2 \Rb,1

〈b!r〉 tb,s,1 πb
⊕1−πb

〈b!r〉 tb,s,2, if b ∈ O1 ∩O2, s ∈ Rb,1 ∩Rb,2

and where πb = πσb,s,1/σb for b ∈ O1 ∩O2.

Using axiom (output-distr) each term 〈b!r〉 tb,s,1 πb
⊕1−πb

〈b!r〉 tb,s,2 can be proved equiv-
alent to 〈b!r〉 (tb,s,1 πb

⊕1−πb
tb,s,2). Since the sum of the maximum prefix depths of tb,s,1

and tb,s,2 is strictly less than d, by induction each term tb,s,1 πb
⊕1−πb

tb,s,2 can be proved
equivalent to a normal form ub,s. Thus t′1 π⊕1−π t′2 can be proved equivalent to

◦
∑

b∈O1∪O2,s∈Rb

σb,s · t′b,s

41

where σb,s is as above and

t′b,s =

〈b!r〉 tb,s,1, if b ∈ O1 \O2

〈b!r〉 tb,s,2, if b ∈ O2 \O1

〈b!r〉 tb,s,1, if b ∈ O1 ∩O2, s ∈ Rb,1 \Rb,2

〈b!r〉 tb,s,2, if b ∈ O1 ∩O2, s ∈ Rb,2 \Rb,1

〈b!r〉 ub,s, if b ∈ O1 ∩O2, s ∈ Rb,1 ∩Rb,2

Lemma 24 may now be applied again to show

◦
∑

b∈O1∪O2,s∈Rb

σb,s · t′b,s =
∑

b∈O1∪O2

∑
s∈Rb

t′′b,s

where

t′′b,s =

〈b!σb,sr〉 tb,s,1, if b ∈ O1 \O2

〈b!σb,sr〉 tb,s,2, if b ∈ O2 \O1

〈b!σb,sr〉 tb,s,1, if b ∈ O1 ∩O2, s ∈ Rb,1 \Rb,2

〈b!σb,sr〉 tb,s,2, if b ∈ O1 ∩O2, s ∈ Rb,2 \Rb,1

〈b!σb,sr〉 ub,s, if b ∈ O1 ∩O2, s ∈ Rb,1 ∩Rb,2

The right-hand side of the last equation is an output normal form.

3. Suppose t1 and t2 are normal forms. If t1 and t2 are both input normal forms, then
this case reduces to case (1) already established. If t1 and t2 are both output normal
forms, then this case reduces to case (2) already established.

We assume in the remainder of the proof that t1 is either an output normal form or
else it has the form u1 + v1, where u1 is an input normal form and v1 is a (possibly
trivial) output normal form. This is without loss of generality, since if if t1 is an input
normal form, then we may replace it by the provably equivalent t1 + nil∅. Similarly,
we assume that t2 is either an output normal form or else has the form u2 + v2, where
u2 is an input normal form and v2 is a (possibly trivial) output normal form.

We next claim that it is impossible for t1 to be an output normal form and t2 to be
u2 +v2, where u2 is an input normal form and v2 is an output normal form. For, in this
case t1 would have inferable type ∅/J ⇒ O and t2 would have inferable type I/J ⇒ O
for some I 6= ∅, contradicting the assumption that t1 and t2 have a common inferable
type. For the same reason, it is impossible for t2 to be an output normal form and t1
to be u1 + v1, where u1 is an input normal form and v1 is an output normal form.

It remains to consider the case in which t1 = u1 + v1 and t2 = u2 + v2, where u1 and
u2 are input normal forms and v1 and v2 are output normal forms. In this case, using
axiom (interchange) we may prove t1 π⊕1−π t2 equivalent to the term

(u1 π⊕1−π u2) + (v1 π⊕1−π v2).

42

Using case (1) already established, we can prove u1 π⊕1−π u2 equivalent to an input
normal form u′. Using case (2) already established, we can prove v1 π⊕1−π v2 equivalent
to an output normal form v′. Thus, we can prove t1 π⊕1−π t2 equivalent to u′ + v′. If
v′ is nontrivial, then this is already a normal form. If v′ is trivial, then we may use
axiom (choice-unit) to prove u′ + v′ equivalent to u′, which is a normal form.

Lemma 28.

1. If t1 and t2 are input normal forms then there exists an input normal form t′ such that
the equation t1 + t2 = t′ is provable.

2. If t1 and t2 are output normal forms then there exists an output normal form t′ such
that the equation t1 + t2 = t′ is provable.

3. If t1 and t2 are normal forms then there exists a normal form t′ such that the equation
t1 + t2 = t′ is provable.

Proof.

1. Suppose t1 and t2 are input normal forms, where t1 has inferable type I1/J ⇒ O1 and
t2 has inferable type I2/J ⇒ O2. Then t1 is either nilI1 or else has the form∑

a∈I1

∑
r∈Ra,1

〈a?pa,r,1〉 ta,r,1

Similarly, t2 is either nilI2 or else has the form∑
a∈I2

∑
r∈Ra,2

〈a?pa,r,2〉 ta,r,2

If t1 is nilI1 then we may use axiom (nil-fold) to prove it equivalent to a summation
as above. The same reasoning applies to t2. Thus, for the remainder of the proof we
assume that t1 is not nilI1 and t2 is not nilI2 .

For a ∈ I1 ∪ I2 define

Ra =

Ra,1, if a ∈ I1 \ I2

Ra,2, if a ∈ I2 \ I1

Ra,1 ∪Ra,2, if a ∈ I1 ∪ I2

Using axioms (choice-comm) and (choice-assoc) we may prove t1 + t2 equivalent to a
term of the form ∑

a∈I1∪I2

∑
r∈Ra

ta,r

43

where

ta,r =

〈a?pa,r,1〉 ta,r,1, if a ∈ I1 \ I2

〈a?pa,r,2〉 ta,r,2, if a ∈ I2 \ I1

〈a?pa,r,1〉 ta,r,1, if a ∈ I1 ∩ I2, r ∈ Ra,1 \Ra,2

〈a?pa,r,2〉 ta,r,2, if a ∈ I1 ∩ I2, r ∈ Ra,2 \Ra,1

〈a?pa,r,1〉 ta,r,1 + 〈a?pa,r,2〉 ta,r,2, if a ∈ I1 ∩ I2, r ∈ Ra,1 ∩Ra,2

Using axiom (input-comb) we may prove each term

〈a?pa,r,1〉 ta,r,1 + 〈a?pa,r,2〉 ta,r,2

equivalent to the term
〈a?qa,r〉 (ta,r,1 πa,r⊕1−πa,r ta,r,2)

where

qa,r = pa,r,1 + pa,r,2

πa,r = pa,r,1/qa,r.

We may now apply Lemma 27 to conclude that the term ta,r,1 πa,r⊕1−πa,r ta,r,2 is prov-
ably equivalent to a normal form ua,r. Thus we may prove t1 + t2 equivalent to∑

a∈I1∪I2

∑
r∈Ra

t′a,r

where

t′a,r =

〈a?pa,r,1〉 ta,r,1, if a ∈ I1 \ I2

〈a?pa,r,2〉 ta,r,2, if a ∈ I2 \ I1

〈a?pa,r,1〉 ta,r,1, if a ∈ I1 ∩ I2, r ∈ R1,a \R2,a

〈a?pa,r,2〉 ta,r,2, if a ∈ I2 ∩ I1, r ∈ R2,a \R1,a

〈a?qa,r〉 ua,r, if a ∈ I1 ∩ I2, r ∈ R1,a ∩R2,a

If the last summation above is reduced with respect to axiom (nil-fold), then it is
already an input normal form. Otherwise, axiom (nil-fold) can be applied to prove it
equal to nilI1∪I2 .

2. Suppose t1 and t2 are output normal forms. If t1 is trivial, then t1 + t2 can be proved
equivalent to t2 using axiom (choice-unit). Similarly, if t2 is trivial, then t1 + t2 can
be proved equivalent to t1, so we suppose in the remainder of the proof that neither t1
nor t2 is trivial.

Now, t1 has the form ∑
b∈O1

∑
s∈Rb,1

〈b!σb,s,1r1〉 tb,s,1

44

and t2 has the form ∑
b∈O2

∑
s∈Rb,2

〈b!σb,s,2r2〉 tb,s,2.

so that t1 + t2 is provably equivalent to∑
b∈O1

∑
s∈Rb,1

〈b!σb,s,1r1〉 tb,s,1 +
∑
b∈O2

∑
s∈Rb,2

〈b!σb,s,2r2〉 tb,s,2.

Let π = r1

r1+r2
, then applying Lemma (24) shows that this last term is provably equiv-

alent to
◦
∑

b∈O1∪O2,s∈Rb

σb,s · 〈b!r1+r2〉 tb,s

where

Rb =

Rb,1, if b ∈ O1 \O2

Rb,2, if b ∈ O2 \O1

Rb,1 ∪Rb,2, if b ∈ O1 ∩O2

σb,s =

σb,s,1π, if b ∈ O1 \O2

σb,s,2π, if b ∈ O2 \O1

σb,s,1π, if b ∈ O1 ∩O2, s ∈ Rb,1 \Rb,2

σb,s,2π, if b ∈ O1 ∩O2, s ∈ Rb,2 \Rb,1

σb,s,1π + σb,s,2(1− π), if b ∈ O1 ∩O2, s ∈ Rb,1 ∩Rb,2

tb,s =

〈b!r1+r2〉 tb,s,1, if b ∈ O1 \O2

〈b!r1+r2〉 tb,s,2, if b ∈ O2 \O1

〈b!r1+r2〉 tb,s,1, if b ∈ O1 ∩O2, s ∈ Rb,1 \Rb,2

〈b!r1+r2〉 tb,s,2, if b ∈ O2 ∩O1, s ∈ Rb,2 \Rb,1

〈b!r1+r2〉 tb,s,1 ρb,s
⊕1−ρb,s

〈b!r1+r2〉 tb,s,2, if b ∈ O1 ∩O2, s ∈ Rb,1 ∩Rb,2

and ρb,s =
σb,s,1π

σb,s
.

By axiom (output-comb), we can prove:

〈b!r1+r2〉 tb,s,1 ρb,s
⊕1−ρb,s

〈b!r1+r2〉 tb,s,2 = 〈b!r1+r2〉 (tb,s,1 ρb,s
⊕1−ρb,s

tb,s,2).

By Lemma 27, the term tb,s,1 ρb,s
⊕1−ρb,s

tb,s,2 is provably equivalent to a normal form
ub,s. Thus we may prove t1 + t2 equivalent to the term

◦
∑

b∈O1∪O2,s∈Rb

σb,s · 〈b!r1+r2〉 t′b,s

where

tb,s =

〈b!r1+r2〉 tb,s,1, if b ∈ O1 \O2

〈b!r1+r2〉 tb,s,2, if b ∈ O2 \O1

〈b!r1+r2〉 tb,s,1, if b ∈ O1 ∩O2, s ∈ Rb,1 \Rb,2

〈b!r1+r2〉 tb,s,2, if b ∈ O2 ∩O1, s ∈ Rb,2 \Rb,1

〈b!r1+r2〉 ub,s, if b ∈ O1 ∩O2, s ∈ Rb,1 ∩Rb,2

45

Another application of Lemma (24) serves to prove this equal to an output normal
form.

3. Suppose t1 and t2 are normal forms. If t1 is an input normal form, then we may use
axiom (choice-unit) to prove t1 equivalent to t1+nil∅. Similarly, if t2 is an input normal
form, then we may prove t2 equivalent to t2+nil∅. We therefore assume in the following
that neither t1 nor t2 is an input normal form.

If both t1 and t2 are output normal forms, then the proof reduces to case (2) already
established.

If t1 = u1 + v1 and t2 = u2 + v2, where u1 and u2 are input normal forms and v1 and v2

are output normal forms, then we may use axioms (choice-comm) and (choice-assoc) to
prove t1+t2 equivalent to (u1 + u2)+(v1 + v2). By case (1) already established, u1+u2

is provably equivalent to an output normal form u′, and by case (2) already established,
v1 + v2 is provably equivalent to an output normal form v′, so (u1 + u2) + (v1 + v2) is
provably equivalent to u′ + v′. If v′ is nontrivial, then u′ + v′ is a normal form. If v′ is
trivial then we may use axiom (choice-unit) to prove u′ + v′ equivalent to u′, which is
a normal form.

The remaining cases, in which one of t1 or t2 is an output normal form and the other
is a sum of an input normal form and an output normal form, are similar to that
considered in the previous paragraph. We omit the details.

Lemma 29. Any ‖-free term t in Proc(I/J ⇒ O) can be proved equivalent to a normal form
using the axioms in Table 2.

Proof. The proof is by structural induction on t. Suppose we have already established the
result for all proper subterms of a well-typed term t such that ` t : I/J ⇒ O, and consider
the possible syntactic forms taken by t:

• Suppose t is nilI . If I = ∅, then t is an output normal form and if I 6= ∅, then t is an
input normal form, so there is nothing to prove.

• Suppose t is 〈a?p〉 u. By induction, u can be proved equivalent to a normal form u′.
It follows by substitutivity that t can be proved equivalent to 〈a?p〉 u′. If u′ does not
have the form nilI , then 〈a?p〉 u′ is already an input normal form. Otherwise, 〈a?p〉 u′

can fail to be an input normal form only if it is an instance of the left-hand side of
axiom (nil-fold); that is, only if p is 1 and u′ is nil{a}. In this case, axiom (nil-fold) can
be used to prove u equivalent to nil{a}, which is an input normal form.

• Suppose t is 〈b!r〉 u. By induction, u can be proved equal to a normal form u′. It follows
by substitutivity and an application of axiom (choice-unit) that t can be proved equal
to 〈b!r〉 u′, which is an output normal form.

46

• Suppose t is u1 π⊕1−π u2. By induction, u1 can be proved equal to a normal form u′1
and u2 can be proved equal to a normal form u′2. By substitutivity, t can be proved
equal to u′1 π⊕1−π u′2. Application of Lemma 27 shows that there exists a normal form
t′ such that u′1 π⊕1−π u′2 is provably equal to t′.

• Suppose t is u1 +u2. By induction, u1 can be proved equal to a normal form u′1 and u2

can be proved equal to a normal form u′2. By substitutivity t can be proved equal to
u′1 + u′2. Application of Lemma 28 shows that there exists a normal form t′ such that
u′1 + u′2 is provably equal to t′.

4.5 Completeness

Key to the completeness proof is Lemma 30 below, which shows how certain information
about the structure of t can be extracted from its behavior. In case t is a normal form, this
information is essentially the entire structure of t, except for the ordering of terms in sums.
Suppose a type I/J ⇒ O has been fixed and let ∗ be an arbitrarily chosen (non-native)
action in Act \ (J ∪ O). Given e ∈ Act and r ≥ 0, let Ξe,r be the observable defined as
follows:

Ξe,r(α) =

s, if α = 〈∗, s〉,
1, if α = 〈e, s〉〈∗, r〉,
0, otherwise.

We call such an observable a probe.

Lemma 30. Suppose t is a well-typed term with ` t : I/J ⇒ O. Then the probe Ξe,r has the
following properties:

1. BO
t [Ξ∗,0](〈∗, 0〉) = rt(t).

2. For e ∈ J ∪O, BO
t [Ξe,r](〈e, 0〉〈∗, 0〉) =

∑
{u:rt(u)=r} ∆O

e (t, u).

Proof. To prove (1), we calculate, using the definition of BO
t and the fact that ∗ is a non-

native action:

BO
t [Ξ∗,0](〈∗, 0〉) = BO

t [〈∗, rt(t)〉−1Ξ∗,0](ε)

= (〈∗, rt(t)〉−1Ξ∗,0)(ε)

= Ξ∗,0(〈∗, rt(t)〉)
= rt(t).

To prove (2), suppose e ∈ J ∪O. We calculate, again using the definition of BO
t and the

47

fact that ∗ is a non-native action:

BO
t [Ξe,r](〈e, 0〉〈∗, 0〉) =

∑
u

∆O
e (t, u) · BO

u [〈e, rt(t)〉−1Ξe,r](〈∗, 0〉)

=
∑

u

∆O
e (t, u) · BO

u [〈∗, rt(u)〉−1〈e, rt(t)〉−1Ξe,r](ε)

=
∑

u

∆O
e (t, u) · Ξe,r(〈e, rt(t)〉〈∗, rt(u)〉)

=
∑

{u:rt(u)=r}

∆O
e (t, u).

Lemma 31. Suppose term t ∈ Proc(I/J ⇒ O) is a normal form that is not nilJ . Then
BO

t 6= BO
nilJ

.

Proof. We proceed by induction on the maximum prefix depth of t.
Suppose we have established the result for all t of maximum prefix depth strictly less than

k for some k ≥ 0. Suppose t has maximum prefix depth k. If k = 0, then the result holds
vacuously, since the only terms with prefix depth 0 are terms of the form nilJ , so suppose
k > 0.

We first consider the case that rt(t) > 0. By Lemma 30 we have

BO
t [Ξ∗,0](〈∗, 0〉) = rt(t) 6= 0 = rt(nilJ) = BO

nilJ
[Ξ∗,0](〈∗, 0〉).

Hence in case rt(t) > 0 we have BO
t 6= BO

nilJ
.

For the remainder of the proof we suppose that rt(t) = 0. Then t must be an input
normal form that is not nilJ , hence it has the form∑

a∈I

∑
r∈Ra

〈a?pa,r〉 ta,r.

Suppose first that I ⊂ J , so that there exists some a ∈ J \ I. In this case, we have

B0
t [1](〈a, 0〉) = 0 6= 1 = BO

nilJ
[1](〈a, 0〉),

thus establishing BO
t 6= BO

nilJ
.

Suppose now that I = J . We next consider the case in which Ra 6= {0} for some a ∈ I.
Then there exists a ∈ I for which there is some r > 0 in Ra. In this case, application of
Lemma 30 shows that

BO
t [Ξa,r](〈a, 0〉〈∗, 0〉) =

∑
{u:rt(u)=r}

∆O
a (t, u).

But because t is an input normal form, the term ta,r is the unique term u such that ∆O
a (t, u) >

0 and rt(u) = r. Then we have

BO
t [Ξa,r](〈a, 0〉〈∗, 0〉) = ∆O

a (t, ta,r) = pa,r 6= 0 = BO
nilJ

[Ξa,r](〈a, 0〉〈∗, 0〉),

48

showing that BO
t 6= BO

nilJ
in this case as well.

Suppose now that Ra = {0} for all a ∈ I. We next consider the case that pa,0 6= 1 for
some a ∈ I. In this case, application of Lemma 30 shows that

BO
t [Ξa,0](〈a, 0〉〈∗, 0〉) = pa,0 6= 1 = BO

nilJ
[Ξa,0](〈∗, 0〉〈ai, 0〉)

once again showing that BO
t 6= BO

nilJ
.

Suppose now that pa,0 = 1 for all a ∈ I. We claim that for some a ∈ I the term ta,0

is different from nilJ . For if all the terms ta,0 were nilJ then since I = J and pa,0 = 1 for
all a ∈ I it would follow that t is an instance of the left-hand side of axiom (nil-fold), in
contradiction to the assumption that t is an input normal form.

Let a ∈ I be chosen such that ta,0 is different from nilJ . Since the prefix depth of ta,0

is strictly less than that of t, the induction hypothesis may be applied to ta,0 to show that
BO

ta,0
6= nilJ . In particular, there exists Ψ and β such that

BO
ta,0

[Ψ](β) 6= BO
nilJ

[Ψ](β).

Let ∗ be an arbitrarily chosen action in Act \ (J ∪O). Define observable Φ as follows:

Φ(α) =

{
Ψ(γ), if α = 〈a, 0〉〈∗, 0〉γ,
0, otherwise.

Then (〈∗, 0〉−1〈a, 0〉−1Φ)(γ) = Φ(〈a, 0〉〈∗, 0〉γ) = Ψ(γ) for all γ, hence

〈∗, 0〉−1〈a, 0〉−1Φ = Ψ.

It follows that

BO
t [Φ](〈a, 0〉〈∗, 0〉β) =

∑
u

∆O
a (t, u) · BO

u [〈a, 0〉−1Φ](〈∗, 0〉β)

=
∑

u

∆O
a (t, u) · BO

u [〈∗, rt(u)〉−1〈a, 0〉−1Φ](β)

= ∆O
a (t, ua,0) · BO

ua,0
[〈∗, 0〉−1〈a, 0〉−1Φ](β)

= pa,0 · BO
ua,0

[Ψ](β)

= BO
ua,0

[Ψ](β)

6= BO
nilJ

[Ψ](β)

= BO
nilJ

[Φ](〈a, 0〉〈∗, 0〉β).

Thus once again we have BO
t 6= BO

nilJ
, completing the induction step and the proof.

Lemma 32. Suppose t and t′ are normal forms such that ` t : I/J ⇒ O and ` t′ : I/J ⇒ O
If BO

t = BO
t′ , then t and t′ are identical up to permutation of sums.

49

Proof. We prove, by induction on the sum of the maximum prefix depths of t and t′, that if
t and t′ are not identical up to permutation of sums, then BO

t 6= BO
t′

If both t and t′ have depth 0, then both must be nilJ , and so the result holds vacuously.
Suppose one of t, t′ has prefix depth 0 and the other has nonzero prefix depth. Then

one of t, t′ takes the form nilJ and the other does not. In this case, BO
t 6= BO

t′ follows from
Lemma 31.

Suppose neither t nor t′ has zero prefix depth. Suppose next that rt(t) = 0 but rt(t′) > 0.
Then by Lemma 30 we have

BO
t [Ξ∗,0](〈∗, 0〉) = rt(t) = 0 6= rt(t′) = BO

t [Ξ∗,0](〈∗, 0〉).

Thus, BO
t 6= BO

t′ in this case. A symmetric argument applies in case rt(t) > 0 but rt(t′) = 0.
There are now two cases remaining: (1) rt(t) = 0 = rt(t′) and (2) rt(t) > 0 and rt(t) > 0.

Case (1): rt(t) = 0 = rt(t′).
Suppose rt(t) = 0 = rt(t′). Then both t and t′ are input normal forms distinct from nilJ .

We therefore have

t =
∑
a∈I

∑
r∈Ra

〈a?pa,r〉 ta,r t′ =
∑
a∈I′

∑
r∈R′

a

〈a?p′a,r
〉 t′a,r.

Since t and t′ have the same inferable type I/J ⇒ O it must be the case that I = I ′.
We first claim that Ra = R′

a for all a ∈ I. Suppose otherwise, that Ra 6= R′
a for some

a ∈ I. Then one of the sets Ra \R′
a or R′

a \Ra is nonempty. Suppose the former, the proof
for the latter is symmetric. Choose r ∈ Ra \R′

a. Then by Lemma 30 we have

BO
t [Ξa,r](〈∗, 0〉〈a, 0〉) = pa,r 6= 0 = BO

t′ [Ξa,r](〈∗, 0〉〈a, 0〉),

contradicting the assumption that BO
t = BO

t′ .
We next claim that for all a ∈ I, and all r ∈ Ra, that pa,r = p′a,r and ta,r and t′a,r are

identical up to permutation of sums. Suppose for some a ∈ I and r ∈ Ra we have pa,r 6= p′a,r.
Then by Lemma 30 we have

BO
t [Ξa,r](〈∗, 0〉〈a, 0〉) = pa,r 6= p′a,r = BO

t′ [Ξa,r](〈∗, 0〉〈a, 0〉),

contradicting the assumption that BO
t = BO

t′ . Suppose pa,r = p′a,r but that ta,r and t′a,r are
not identical up to permutation of sums. In this case, since the sum of the maximum prefix
depths of ta,r and t′a,r is strictly less than that of t, we may apply the induction hypothesis
to infer that BO

ta,r
6= BO

t′a,r
. That is, there exist Ψ and β such that BO

ta,r
[Ψ](β) 6= BO

u′a,r
[Ψ](β).

Let observable Φ be defined as follows:

Φ(γ) =

{
Ψ(δ), if γ = 〈a, 0〉〈∗, r〉δ,
0, otherwise.

50

so that 〈∗, r〉−1〈a, 0〉−1Φ = Ψ. It follows (using the assumption that rt(t) = 0) that for all γ
we have

BO
t [Φ](〈a, 0〉〈∗, 0〉γ) =

∑
u

∆O
a (t, u) · BO

u [〈a, 0〉−1Φ](〈∗, 0〉γ)

=
∑

u

∆O
a (t, u) · BO

u [〈∗, rt(u)〉−1〈a, 0〉−1Φ](γ).

Now, by Lemma 12, for all γ the quantity BO
u [〈∗, rt(u)〉−1〈a, 0〉−1Φ](γ) can be expressed

as a finite linear combination∑
k∈K

ck · (〈∗, rt(u)〉−1〈a, 0〉−1Φ)(γi).

However,
(〈∗, rt(u)〉−1〈a, 0〉−1Φ)(γi) = Φ(〈a, 0〉〈∗, rt(u)〉γi),

which by definition of Φ equals 0 unless rt(u) = r. Thus

BO
u [〈∗, rt(u)〉−1〈a, 0〉−1Φ](γ) = 0

unless rt(u) = r. It follows from this observation (in the particular case that γ = β) that:

BO
t [Φ](〈a, 0〉〈∗, 0〉β) =

∑
u

∆O
a (t, u) · BO

u [〈∗, rt(u)〉−1〈a, 0〉−1Φ](β)

= pa,r · BO
ta,r

[〈∗, r〉−1〈a, 0〉−1Φ](β)

= pa,r · BO
ta,r

[Ψ](β)

6= p′a,r · BO
t′a,r

[Ψ](β)

= BO
t′ [Φ](〈a, 0〉〈∗, 0〉β).

We have thus exhibited observable Φ and rated trace α = 〈a, 0〉〈∗, 0〉β such that BO
t [Φ](α) 6=

BO
t′ [Φ](α), contradicting the fact that BO

t 6= BO
t′ . We conclude that our assumption that ta,r

and t′a,r are not identical up to permutation of sums was impossible, hence ta,r and t′a,r must
in fact be identical up to permutation of sums.

We have therefore shown, in case rt(t) = 0 = rt(t′), that I = I ′, Ra = R′
a for all a ∈ I,

pa,r = p′a,r for all a ∈ I and all r ∈ Ra, and ta,r and t′a,r are identical up to permutation
of sums for all a ∈ I and all r ∈ Ra. But this implies that t and t′ are identical up to
permutation of sums. This completes the induction step in case rt(t) = 0 = rt(t′).

Case (2): rt(t) > 0 and rt(t′) > 0.
Suppose rt(t) > 0 and rt(t′) > 0. In this case, t is either an output normal form or a sum

u + v, where u is an input normal form and v is a nontrivial output normal form. Similarly,
t′ is either an output normal form or a sum u′ + v′, where u′ is an input normal form and v′

is a nontrivial output normal form. Because t and t′ are assumed to have the same inferable

51

type, it is impossible for t to be an output normal form and t′ to be u′ + v′ and vice versa.
Thus, either t and t′ are both output normal forms or else t is u + v and t′ is u′ + v′.

We first consider the case in which both t and t′ are output normal forms. In this case:

t =
∑
b∈O

∑
s∈Rb

〈b!σb,srt(t)〉 vb,s t′ = ◦
∑
b∈O

∑
s∈R′

b

〈b!σ′b,srt(t
′)〉 v′b,s

We first consider the case in which rt(t) 6= rt(t′). Then by Lemma 30 we have

BO
t [Ξ∗,0](〈∗, 0〉) = rt(t) 6= rt(t′) = BO

t′ [Ξ∗,0](〈∗, 0〉)

thus showing that BO
t 6= BO

t′ and completing the induction step in this case.
For the remainder of the proof, we suppose that rt(t) = rt(t′). We claim that Rb = R′

b

for all b ∈ O, that σb,s = σ′
b,s for all b ∈ O and all s ∈ Rb, and that vb,s is identical up to

permutation of sums to v′b,s for all b ∈ O and all s ∈ Rb.
Suppose first that Rb 6= R′

b for some b ∈ O. Then one of the sets Rb \ R′
b and R′

b \ Rb is
nonempty. Suppose the former, the proof for the latter is symmetric. Choose s ∈ Rb \ R′

b.
Then by Lemma 30,

BO
t [Ξb,s](〈∗, 0〉〈b, 0〉) = σb,s 6= 0 = BO

t′ [Ξb,s](〈∗, 0〉〈b, 0〉)

a contradiction with the assumption that BO
t = BO

t′ .
Suppose now that for some b ∈ O and s ∈ Rb we have σb,s 6= σ′

b,s. Then by Lemma 30,

BO
t [Ξb,s](〈∗, 0〉〈b, 0〉) = σb,s 6= σ′

b,s = BO
t′ [Ξb,s](〈∗, 0〉〈b, 0〉)

so that BO
t 6= BO

t′ , again contradicting the assumption that BO
t = BO

t′ .
Finally, suppose that for some b ∈ O and s ∈ Rb the normal form vb,s is not identical up

to permutation of sums to v′b,s. In this case, since the sum of the maximum prefix depths of
vb,s and v′b,s is strictly less than that of t and t′, we may apply the induction hypothesis to
conclude that BO

tb,s
6= BO

t′b,s
. That is, there exist Ψ and β such that BO

tb,s
[Ψ](β) 6= BO

u′b,s
[Ψ](β).

Let observable Φ be defined as follows:

Φ(γ) =

{
Ψ(δ), if γ = 〈b, rt(t)〉〈∗, s〉δ,
0, otherwise.

so that 〈∗, s〉−1〈b, rt(t)〉−1Φ = Ψ. It follows that for all γ we have

BO
t [Φ](〈b, 0〉〈∗, 0〉γ) =

∑
u

∆O
b (t, u) · BO

u [〈b, rt(t)〉−1Φ](〈∗, 0〉γ)

=
∑

u

∆O
b (t, u) · BO

u [〈∗, rt(u)〉−1〈b, rt(t)〉−1Φ](γ).

Now, by Lemma 12, for all γ the quantity BO
u [〈∗, rt(u)〉−1〈b, rt(t)〉−1Φ](γ) can be expressed

as a finite linear combination∑
k∈K

ck · (〈∗, rt(u)〉−1〈b, rt(t)〉−1Φ)(γi).

52

However,
(〈∗, rt(u)〉−1〈b, rt(t)〉−1Φ)(γi) = Φ(〈b, rt(t)〉〈∗, rt(u)〉γi),

which by definition of Φ equals 0 unless rt(u) = s. Thus

BO
u [〈∗, rt(u)〉−1〈b, 0〉−1Φ](γ) = 0

unless rt(u) = s. It follows from this observation (in the particular case that γ = β) that:

BO
t [Φ](〈b, 0〉〈∗, 0〉β) =

∑
u

∆O
b (t, u) · BO

u [〈∗, rt(u)〉−1〈b, rt(t)〉−1Φ](β)

= rt(t) · BO
vb,s

[〈∗, s〉−1〈b, rt(t)〉−1Φ](β)

= rt(t) · BO
vb,s

[Ψ](β)

6= rt(t′) · BO
v′b,s

[Ψ](β)

= BO
t′ [Φ](〈b, 0〉〈∗, 0〉β).

We have thus exhibited observable Φ and rated trace α = 〈b, 0〉〈∗, 0〉β such that BO
t [Φ](α) 6=

BO
t′ [Φ](α), thereby establishing that BO

t 6= BO
t′ . As this is a contradiction with our hypothesis

that BO
t = BO

t′ we conclude that our assumption that for some b ∈ O and s ∈ Rb the normal
form vb,s is not identical up to permutation of sums to v′b,s is incorrect, and hence in fact vb,s

and v′b,s are identical up to permutation of sums for all b ∈ O and s ∈ Rb. This completes
the induction step in case both t and t′ are output normal forms.

It remains to consider the case in which t is u + v and t′ is u′ + v′. In this case, the
same argument as that just given above applies to show that v and v′ are identical up to
permutation of sums. The same argument as that used to prove Lemma 31 shows that it is
impossible for one of u and u′ to be nilJ and the other not. If both u and u′ are nilJ , then
they are identical up to permutation of sums. If both u and u′ are input normal forms other
than nilJ , then the same argument as that given for Case (1) above shows that u and u′ are
identical up to permutation of sums. Thus, in all cases, u is identical up to permutation
of sums to u′ and v is identical up to permutation of sums to v′, hence t is identical up to
permutation of sums to t′.

Theorem 2. The axioms in Table 2 are sound and complete for behavior equivalence of
‖-free terms.

Proof. Soundness was shown in Lemma 22.
Suppose terms t and u are behavior equivalent. Then t can be proved equivalent to a

normal form t′, and u can be proved equivalent to a normal form u′. By soundness, t′ and
u′ are behavior equivalent. Since t′ and u′ are behavior equivalent normal forms, by Lemma
32 they are identical up to permutation of sums. Since t and u can be proved equivalent to
terms identical up to permutation of sums, they can be proved equivalent to each other.

53

5 Conclusion

By comparing complete axiomatizations (and especially the normal forms arising in the
completeness proofs), we have improved our understanding of the relationship between two
notions of equivalence for processes with Markovian behavior. In contrast to the axiom-
atization of weighted bisimulation equivalence, the axiomatization of behavior equivalence
exhibits differences in the role of input actions and output actions.

If we restrict to the output-only fragment of the language, then a complete ax-
iomatization of behavior equivalence is given by axioms (choice-unit), (choice-comm),
(choice-assoc), (comb-idemp), (comb-comm), (comb-assoc), (output-comb), (output-distr),
and (interchange). This axiomatization may be compared to the axiomatization given in
[Ber05] for the “Markovian trace equivalence” notion originally defined in [BC00]. In fact,
each of the axioms for Markovian trace equivalence is sound for behavior equivalence, so
(applying Bernardo’s completeness result) Markovian trace equivalent processes are also be-
havior equivalent.

Conversely, for x ∈ Act∗ (i.e. a trace) and T ∈ [0,∞) let observables Φx,T be defined by
induction on x as follows:

Φε,T = 1

Φax,T (α) =

{ 1
r
· Φx,t− 1

r
(α′), if α = 〈a, r〉α′ and 1

r
≤ T,

0, otherwise.

It can be shown that “the probability of process t performing an execution compatible with
x in average time ≤ T” is given by

∑
α BO

t [Φx,T](α), where α ranges over all rated traces
that contain only actions in O. Thus, behavior equivalent output-only processes are also
Markovian trace equivalent. So, one part of what we have achieved is to show that the
introduction of the operator π⊕1−π permits a finite axiomatization of Markovian trace
equivalence, as opposed to the infinite axiom scheme given in [Ber05].

We have not yet succeeded in extending our results to include parallel composition. For
weighted bisimulation equivalence there is an evident “expansion theorem” that permits
parallel composition to be eliminated in favor of choice. For behavior equivalence, one might
attempt a similar expansion for the parallel composition of two normal forms. One difficulty
in doing this arises from the fact that behavior equivalence fails to be substitutive for parallel
composition unless we restrict to input-stochastic terms. Thus we cannot employ various
useful manipulations that move individual input-prefixed terms into and out of the scope of a
parallel operator, as these do not preserve input-stochasticity, in general. Another subtlety
is the following: if t ∈ Proc(I/J ⇒ O) and J ′ ∩ (J ∪ O) = ∅, then there is no way to
eliminate parallel composition from a term of the form t O‖O′ nilJ ′ . Such a term amounts
to a kind of “input expansion” of t which, in the absence of a recursion operator, cannot
be otherwise expressed. So in the absence of recursion (or alternatively, an explicit input
expansion operator) there can be no expansion theorem that completely eliminates parallel
composition. To attempt an axiomatization of recursion would first require an extension of

54

the completeness results of the present paper to open terms. We leave these explorations as
subjects for future research.

55

References

[And99] S. Andova. Process algebra with probabilistic choice. In ARTS ’99: Proceedings
of the 5th International AMAST Workshop on Formal Methods for Real-Time and
Probabilistic Systems, pages 111–129, London, UK, 1999. Springer-Verlag.

[BC00] M. Bernardo and R. Cleaveland. A theory of testing for Markovian processes.
In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in Computer
Science, pages 305–319, 2000.

[BDG98] M. Bernardo, L. Donatiello, and R. Gorrieri. A formal approach to the integra-
tion of performance aspects in the modeling and analysis of concurrent systems.
Information and Computation, 144(2):83–154, 1998.

[Ber05] M. Bernardo. Markovian testing and trace equivalences exactly lump more than
Markovian bisimilarity. In L. Aceto and A. D. Gordon, editors, International
Workshop on Algebraic Process Calculi: The First Twenty Five Years and Beyond
(APC 25), Electronic Notes in Theoretical Computer Science. Springer-Verlag,
2005.

[HH02] J.-P. Katoen H. Hermanns, U. Herzog. Process algebra for performance evaluation.
Theoretical Computer Science, 274:43–97, 2002.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[HR94] H. Hermanns and M. Rettelbach. Syntax, semantics, equivalences, and axioms for
MTIPP, 1994.

[LS92] K. G. Larsen and A. Skou. Compositional verification of probabilistic processes. In
Proceedings of CONCUR ’92. Springer-Verlag Lecture Notes in Computer Science,
1992.

[SCS03] E. W. Stark, R. Cleaveland, and S. A. Smolka. A process-algebraic language for
probabilistic I/O automata. In Roberto M. Amadio and Denis Lugiez, editors,
CONCUR 2003 - Concurrency Theory, 14th International Conference, Marseille,
France, September 3-5, 2003, Proceedings, volume 2761 of Lecture Notes in Com-
puter Science, pages 189–203. Springer-Verlag, 2003.

[Sta03] E. W. Stark. On behaviour equivalence for probabilistic I/O automata and its
relationship to probabilistic bisimulation. Journal of Automata, Languages and
Combinatorics, 8(2):361–395, 2003.

[WSS97] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of proba-
bilistic I/O automata. Theoretical Computer Science, 176(1-2):1–38, 1997.

56

	Introduction
	Basic Definitions
	Types
	Transition Semantics

	Weighted Bisimulation
	Substitutivity
	Axioms
	Completeness

	Behavior Equivalence
	Properties of Behavior Maps
	Combinations
	Axioms
	Normal Forms
	Completeness

	Conclusion

