
A BDD Representation for
Positive Equational Formulas

Wenxin Song, Eugene W. Stark?

Department of Computer Science
State University of New York

at Stony Brook
Stony Brook, NY 11794 USA

Abstract. A positive equational formula (PEF) is a negation-free open
formula in the language of pure equality. In this paper, we present a nor-
mal form for positive equational formulas that lends itself readily to the
representation of such formulas using ordered binary decision diagrams
(BDDs) whose nodes are labeled by equations. In contrast to previous
work of Groote and van de Pol that treated the larger class of equa-
tional formulas with negation, we show that our normal forms for PEFs
are unique in the sense that two normal forms are logically equivalent
if and only if they are identical. This result means that a BDD-based
representation of our normal forms can implement equivalence checking
for PEFs in constant time, as well as avoid space inefficiency that could
otherwise result from storing multiple syntactically distinct variants of
a formula. We present a recursive algorithm that traverses an arbitrary
PEF given as input and builds an equivalent normal form in a bottom-
up fashion. In addition, we apply ideas from the reduction algorithm to
obtain bottom-up, normal-form-preserving algorithms for various logical
operations on PEFs.

1 Introduction

A positive equational formula (PEF) is a negation-free open formula in the lan-
guage of pure equality. In this paper, we present a normal form for positive
equational formulas that lends itself readily to the representation of such for-
mulas using ordered binary decision diagrams (BDDs) whose nodes are labeled
by equations. Specifically, we represent such formulas as decision forms, where a
decision form is either T or F or has the form (x = y ∧ φ1)∨ φ2, where x = y is
an equation and φ1 and φ2 are (recursively) decision forms. Decision forms that
satisfy certain syntactic conditions that we identify are called normal forms,
and we show that normal forms are canonical in the sense that two normal
forms are logically equivalent if and only if they are identical. This result means
that normal forms can be stored using a maximal structure-shared representa-
tion that permits equivalence checking to be performed in constant time. Such

? Authors’ E-mail addresses: {wenxin,stark}@cs.sunysb.edu

a representation amounts to a BDD in which equations, rather than proposi-
tional variables, are used to label the nodes. We present a recursive algorithm
for reducing an arbitrary PEF to normal form. In addition, we apply ideas from
the reduction algorithm to obtain normal-form-preserving algorithms for various
logical operations on PEFs.

We note at the outset that previous work on BDD representations for equa-
tional formulas has typically been motivated by applications in hardware veri-
fication. In such applications, verification of a hardware design is accomplished
by checking the satisfiability or validity of an equational formula (containing
negation, in general) extracted from the design. Previous work has typically fo-
cused on representations for such formulas that lead to efficient satisfiability or
validity checking algorithms. However, for the positive equational formulas we
consider in this paper, satisfiability and validity checking is not difficult, because
a positive equational formula is valid if and only if it is satisfied by the identity
relation, and it is satisfiable if and only if it is satisfied by the universal relation.
Thus, checking the satisfiability or validity of such a formula reduces to simply
checking whether the formula is satisfied by the identity relation or the universal
relation, respectively. This checking can be performed efficiently (in linear time).

In contrast, our own motivations for considering this problem arise from our
study of an approach to a certain problem of nonlinear pattern matching on
terms. In contrast to linear patterns, in which each variable is permitted to ap-
pear at most once, in nonlinear patterns there can be multiple occurrences of
a single variable and in matching such a pattern against a target term all the
occurrences of a particular variable in the pattern must be matched to identical
subterms of the target term. Roughly speaking, in our approach we separate
nonlinear patterns into a linear part, represented by an MTBDD, and associ-
ated equational constraints, placed at the leaf nodes of the MTBDD. The results
of our paper provide the canonical form necessary for positive equational for-
mulas to appear at the leaves of an MTBDD. In particular, efficient equivalence
checking is needed, and as positive equational formulas represent finite (but pos-
sibly exponentially large) unions of equivalence relations, a naive algorithm for
equivalence checking will not suffice. Our results also provide the operations on
canonical forms necessary to perform common manipulations (such as union and
join) on patterns in MTBDD form.

Since a non-linear pattern can also be thought of as representing a possibly
infinite set of ground terms that satisfy a predicate, we also anticipate applica-
tions to symbolic execution of logic programs and theorem-proving.

1.1 Previous Work

Binary Decision Diagrams (BDDs) [Bry86,Bry92] are efficient data structures for
representing boolean formulas. BDDs have been widely used in formal verifica-
tion and there has been significant interest in extending their applicability from
boolean formulas to more expressive logics that incorporate equations and/or
function symbols. In recent years, there have been three approaches to apply-
ing BDDs to equational formulas. In the first approach, domain variables are

2

eliminated in favor of a collection of boolean variables, and equations involving
the domain variables are replaced by equivalent boolean formulas. The simplest
version of this approach is based on the straightforward observation that a vari-
able ranging over a domain of size n can be replaced by a collection of dlog ne
boolean variables. However, this naive idea tends to result in an excessively large
number of boolean variables. Better results can be obtained by exploiting the
finite domain property of equational formulas; namely, that an equational for-
mula is satisfiable if and only if it is satisfiable in a suitably large finite domain
(in fact, the domain need be no larger than the number of distinct variables
occurring in the formula). Pnueli, et al [PRSS99] present an algorithm to obtain
small domains for each of the domain variables to reduce the total number of
boolean variables in the resulting BDDs. Bryant, et al [BGV99] also reduced the
state space dramatically by exploiting structural “positivity” properties of the
formulas.

The second approach to applying BDDs to equational formulas involves di-
rectly encoding equations xi = xj between domain variables as boolean variables
vi,j . The first proposal along these lines was by Goel, et al [GSZ+98]. The dif-
ficulty in this approach is in handling transitivity constraints, which have the
form vi,j∧vj,k → vi,k, and which are not captured in a BDD representation. Goel
showed that the problem of deciding satisfiability in the context of transitivity
constraints is NP-complete. Bryant and Velev [BV00] proposed an approach to
this satisfiability problem. In their method, a BDD B is built for the original
formula as proposed by Goel, and another BDD B′ is built to represent transi-
tivity constraints over the true support of B, where the true support of a function
f is the set of variables on which f depends. Therefore, in BDD B ∧ B′, any
satisfying assignment obeys transitivity constraints.

Groote and van de Pol [GvdP00] propose a third approach using ordered
Equational Binary Decision Diagrams (EQ-BDDs) that automatically incorpo-
rate transitivity constraints. An EQ-BDD is a DAG with two terminal nodes
0 and 1, where each non-terminal node r is labeled by if-then-else expression
ITE(g, r1, r2). Here g is a guard, r1 is the “then” (“high,” or 1) branch, and
r2 is the “else” (“low,” or 0) branch. A guard is either a propositional variable
p (from set P) or an equation of the form x = y, where x and y are domain
variables (from set V). A total order � is imposed on P ∪ V , and extended
lexicographically to guards. Terminal node 0 represents formula F and node
1 represents formula T. Non-terminal node ITE(g, r1, r2) represents a formula
(g ∧ φr1) ∨ (¬g ∧ φr2), where φr1 and φr2 are formulas represented by r1 and
r2 respectively. Groote and van de Pol presented a term rewriting system that
reduces each EQ-BDD to an equivalent EQ-BDD that is ordered with respect
to �. The term rewriting system automatically incorporates transitivity by en-
suring that in a reduced EQ-BDD ITE(x = y, φ1, φ2) all occurrences of y in φ1

have been replaced by x.

Unlike standard BDDs, ordered EQ-BDDs are not canonical; that is, logically
equivalent ordered EQ-BDDs need not be identical. However, Groote and van
de Pol do show that ordered EQ-BDDs are still adequate for satisfiability and

3

validity checking in the sense that 0 is the only contradictory ordered EQ-BDD
and 1 is the only tautological one. An additional issue with ordered EQ-BDDs is
the fact that the classical Apply algorithm used to perform logical operations (∧,
∨, etc.) on standard BDDs fails to preserve orderedness when applied to ordered
EQ-BDDs. To compensate for this, Groote and van de Pol propose an algorithm
that, if applied repeatedly to a “simplified” EQ-BDD, is guaranteed to produce
an equivalent ordered EQ-BDD after a finite number of applications. A potential
disadvantage of this algorithm is its “top-down” nature, which constructs a series
of non-ordered EQ-BDDs on its way to the final ordered result. This contrasts
with the normal bottom-up approach, in which operations are applied only to
already reduced BDDs. However, Groote and van de Pol report that careful
implementation seems to avoid serious inefficiencies.

In subsequent work along these lines, EQ-BDDs are extended by Badban and
van de Pol [BvdP05], to allow equations with zero and successor, and by van de
Pol and Tveretin [vdPT05] to allow equalities between ground terms. Both of
these extensions share with the original EQ-BDD work the failure of the BDD
representations to be canonical.

In the present paper, we follow an approach similar to that of [GvdP00],
except that we restrict our attention at the outset to positive (i.e. negation-free)
equational formulas. We characterize a class of normal forms for PEFs such that
each normal form is either T or F or has the form (x = y∧φ1)∨φ2, where x = y
is an equation and φ1 and φ2 are again normal forms (and certain ordering
and other syntactic restrictions are satisfied). Such normal forms have a direct
structure-shared representation as ordered EQ-BDDs. In contrast to the case of
formulas with negation, normal forms of PEFs are canonical in the sense that
two normal forms are logically equivalent if and only if they are identical. This
fact permits a maximally structure-shared implementation using a unique table
as is done for standard BDDs. Moreover, our algorithm for reducing an arbitrary
decision form to a normal form is bottom-up in the sense that only normal forms
are ever constructed (from previously existing normal forms) during execution.
In addition, we apply ideas used in the reduction algorithm to obtain bottom-up,
normal-form-preserving algorithms for various logical operations on PEFs.

1.2 Outline of the Paper

In Section 2, we give basic definitions and notations for positive equational for-
mulas. In Section 3, we present the concept of decision forms, which can be
viewed as decision trees and correspond directly to EQ-BDDs. However, deci-
sion forms are not canonical in the sense that logically equivalent decision forms
need not be identical. In Section 4, we identify additional conditions on decision
forms sufficient to ensure that logically equivalent decision forms are identical.
Since the defining conditions for normal forms do not directly suggest an algo-
rithm for converting a decision form into a logically equivalent normal form, in
Section 5 we obtain alternative recursive conditions that are sufficient to guar-
antee that a decision form is a normal form. Based on these sufficient conditions,
an algorithm Reduce for reducing decision forms to normal form is presented in

4

Section 6 and its correctness is proved. In Section 7, we present other algorithms
that implement various logical operations on PEFs based on ideas from the re-
duce algorithm. A brief discussion about the implementation of normal forms is
presented in Section 8. Finally, some conclusions are given in Section 9.

2 Positive Equational Formulas

A positive equational formula (PEF) is a negation-free open formula in the lan-
guage of pure equality. That is, a PEF is a formula built up from the atomic
propositions T (truth) and F (falsity) and equations x = y, via the boolean
connectives ∧ and ∨. Here x and y are variables drawn from a countably in-
finite set V, which we take as fixed. A traditional formulation of the seman-
tics of PEFs would define when it is that a PEF φ whose variables are among
{x1, . . . , xn} is satisfied by a sequence of elements a1, . . . , an of a set A (notation
A |= φ[a1, . . . , an]. For our purposes, it is more convenient for us to define satis-
faction as a relation R |= φ between a PEF φ and an equivalence relation R on
V, so that the meaning of a PEF φ can be identified with the set of equivalence
relations on V that satisfy it. Formally, R |= φ (read R satisfies φ or R entails
φ) is defined recursively as follows: R |= x = y holds exactly when (x, y) ∈ R,
R |= φ ∧ ψ holds exactly when both R |= φ and R |= ψ hold, and R |= φ ∨ ψ
holds exactly when one of R |= φ and R |= ψ holds. PEFs φ and ψ are logically
equivalent (or simply, equivalent) if for all equivalence relations R on V, R |= φ
if and only if R |= ψ.

When speaking about equivalence relations R on V, if no confusion can result
we will often identify an element (x, y) of R with the corresponding equation
x = y, and we will often say that R entails x = y to mean that (x, y) ∈ R.
If R is an equivalence relation on V and x = y is an equation, then we use
R + {x = y} to denote the least equivalence relation containing R and (x, y);
i.e. the transitive closure of R ∪ {(x, y)}. Similarly, if R and R′ are equivalence
relations we write R + R′ to denote the least equivalence relation containing R
and R′.

An obvious consequence of the semantics of PEFs is monotonicity: If R |= φ
then R′ |= φ for all R′ such that R ⊆ R′. Another obvious property is the
following: R′ |= φ if and only if R |= φ for some R ⊆ R′ that is finitary in the
sense that each equivalence class has at most finitely many elements and all but
finitely many of the equivalence classes of R are singleton sets.

We say that an equivalence relation R minimally satisfies φ, and we write
R |=min φ, if R |= φ and whenever R′ ⊆ R is such that R′ |= φ, then R′ = R.
The following easily established results are important for us:

Lemma 1. Suppose φ is a PEF and R is an equivalence relation such that
R |= φ. Then there exists an equivalence relation R′ ⊆ R such that R′ |=min φ.

Proof. The set S of equivalence relations R′ such that R′ ⊆ R and R′ |= φ is
nonempty (it contains R) and is partially ordered by containment. According
to Hausdorff’s Maximal Principle, if X is a partially ordered set then X has a

5

maximal linearly ordered subset. Hence, the set S contains a maximal linearly
ordered subset C, which is nonempty because it must contain R. Moreover, since
R is finitary, the set S is finite, hence C is also finite. Let R′ be the least element
of C, then R′ |=min φ. ut

Lemma 2. PEFs φ and ψ are equivalent if and only if whenever R |=min φ then
R |= ψ and vice versa.

Proof. Suppose φ and ψ are equivalent. It is then obvious that R |= φ if and
only if R |= ψ. Since R |=min φ implies R |= φ, it follows that R |=min φ implies
R |= ψ. Similarly, R |=min ψ implies R |= φ.

Conversely, suppose R |=min φ implies R |= ψ and R |=min ψ implies R |= φ.
Suppose R is an equivalence relation such that R |= φ. Then by Lemma 1, there
exists R′ ⊆ R such that R′ |=min φ. By hypothesis, R′ |=min φ implies R′ |= ψ,
hence R′ |= ψ. Symmetric reasoning shows that if R |= ψ implies R |= φ, hence
φ and ψ are equivalent. ut

3 Decision Forms

The set of decision forms is the least set of PEFs that contains T and F and is
closed under the following formation rule:

– If φ1 and φ2 are decision forms and x = y is an equation, then (x = y∧φ1)∨φ2

is also a decision form.

The following is easily established:

Proposition 1. There exist algorithms that:

1. Given decision forms φ1 and φ2, output a decision form φ that is equivalent
to φ1 ∨ φ2.

2. Given decision forms φ1 and φ2, output a decision form φ that is equivalent
to φ1 ∧ φ2.

3. Given an arbitrary PEF φ, output a decision form φ′ that is equivalent to φ.

Algorithm Convert, shown in Figure 1, converts an arbitrary PEF φ to
a logically equivalent decision form. The algorithm scans a formula twice such
that the first scan (function Simplify) eliminates occurrences of T from the
formula and the second scan (function Convert′) converts a formula without
any T’s to a decision form. Function Simplify runs in time linear in the size of
its argument and function Convert′ runs in time linear in the size of its first
argument, hence Convert(φ) runs in time linear in the size of φ.

Lemma 3 (Correctness of Convert). Suppose φ is an arbitrary PEF. Then
Convert(φ) terminates, and it returns a decision form ψ that is logically equiv-
alent to φ.

6

fun Convert(φ) =
let fun Simplify(T) = T

| Simplify(F) = F
| Simplify(x = y) = x = y
| Simplify(φ1 ∨ φ2) =

let φ′
1 = Simplify(φ1)
φ′

2 = Simplify(φ2)
in

if φ′
1 = T orelse φ′

2 = T
then T
else φ′

1 ∨ φ′
2

end
| Simplify(φ1 ∧ φ2) =

let φ′
1 = Simplify(φ1)
φ′

2 = Simplify(φ2)
in

if φ′
1 = T then φ′

2

else if φ′
2 = T then φ′

1

else φ′
1 ∧ φ′

2

end

fun Convert′(F) (t, f) = F
| Convert′(x = y) (t, f) = (x = y ∧ t) ∨ f
| Convert′(φ1 ∨ φ2) (t, f) = Convert′ φ1 (t,Convert′ φ2 (t, f))
| Convert′(φ1 ∧ φ2) (t, f) = Convert′ φ1 (Convert′ φ2 (t, F), f)

φ′ = Simplify(φ)
in

if φ′ = T then T
else Convert′ φ′ (T,F)

end

Fig. 1. Function Convert

Proof. Since the recursive calls in Simplify and Convert′ are always made on
proper subformulas, the termination of Convert is clear.

We first prove by induction that Simplify(φ) returns a logically equivalent
formula φ′ that is either just T or else a formula that does not contain any T’s.
It is obvious that this is true in the basis cases in which φ is T or F or x = y.
Now we consider the following cases in the induction step:

1. φ is φ1 ∨ φ2. Let φ′1 = Simplify and φ′2 = Simplify(φ2). By induction, φ′1
is logically equivalent to φ1 and φ′2 is logically equivalent to φ2. If φ′1 = T
or φ′2 = T then φ′ = T. Otherwise, φ′ = φ′1 ∨ φ′2. It then follows that φ′ is
equivalent to φ, and φ′ is either T or a formula that does not contain any
T’s.

7

2. φ is φ1 ∧ φ2. Let φ′1 = Simplify and φ′2 = Simplify(φ2). By induction, φ′1
is logically equivalent to φ1 and φ′2 is logically equivalent to φ2. If φ′1 = T
then φ′ = φ′2. If φ′2 = T then φ′ = φ′1. Otherwise, φ′ = φ′1 ∧ φ′2. It then
follows that φ′ is equivalent to φ, and φ′ is either T or a formula that does
not contain any T’s.

We next prove by induction that Convert′(φ) (t, f) returns a decision form
φ′ that is logically equivalent to (φ ∧ t) ∨ f provided φ is a formula without T’s
and t and f are decision forms. It is obvious that this is true in the basis cases
in which φ is either F or x = y. Now we consider the following cases in the
induction step:

1. φ is φ1∨φ2. Let f ′ = Convert′ φ2 (t, f). By induction, f ′ is a decision form
that is logically equivalent to (φ2 ∧ t)∨ f . Let φ′ = Convert′ φ1 (t, f ′). By
induction, φ′ is a decision form that is logically equivalent to (φ1 ∧ t) ∨ f ′.
It then follows that φ′ is logically equivalent to (φ1 ∧ t) ∨ (φ2 ∧ t) ∨ f , and
is logically equivalent to ((φ1 ∨ φ2) ∧ t) ∨ f . Hence φ′ is logically equivalent
to φ.

2. φ is φ1∧φ2. Let t′ = Convert′ φ2 (t, F). By induction, t′ is a decision form
that is logically equivalent to (φ2 ∧ t)∨F . Let φ′ = Convert′ φ1 (t′, f). By
induction, φ′ is a decision form that is logically equivalent to (φ1 ∧ t′)∨ f . It
then follows that φ′ is logically equivalent to (φ1 ∧ ((φ2 ∧ t) ∨ F)) ∨ f , and
is logically equivalent to ((φ1 ∧ φ2) ∧ t) ∨ f . Hence φ′ is logically equivalent
to φ.

Finally, let φ′ = Simplify(φ). If φ′ = T then ψ = T. Otherwise ψ =
Convert′ φ′ (T,F). In either case, ψ is a decision form and ψ is logically
equivalent to φ. ut

There is an evident algorithm, shown in Figure 2 for determining whether an
equivalence relation R satisfies a decision form. Algorithm Sat simply performs
a depth-first traversal of the formula to be checked. For each subformula of
the form (x = y ∧ φ1) ∨ φ2 it first checks recursively if R satisfies φ2. If that
fails, it checks if R satisfies x = y ∧ φ2. Note that, when applied to a general
decision form, algorithm Sat may make the same “query” (x, y) ∈ R about the
equivalence relation R multiple times. The normal forms discussed in the next
section have an ordering property that makes it possible to check satisfaction
without repeating any queries.

Lemma 4 (Correctness of Sat). Suppose R is an equivalence relation and φ
is a decision form. Then Sat(R,φ) terminates, and it returns true if and only
if R |= φ.

Proof. Since recursive calls in Sat are always made on proper subformulas, ter-
mination is clear.

If there are no recursive calls, then either φ = F and Sat(R,φ) returns false
or else φ = T and Sat(R,φ) returns true. In each case, it is obvious that true
is returned if and only if R |= φ.

8

fun Sat(R,φ) =
if φ = F then false
else if φ = T then true
else

let
(x = y ∧ φ1) ∨ φ2 be φ

in
if Sat(R,φ2) then true
else if (x, y) ∈ R then Sat(R,φ1)
else false

end

Fig. 2. Function Sat

Otherwise, φ is (x = y∧φ1)∨φ2. Suppose R does not satisfy φ. Then R does
not satisfy φ2 and if R |= x = y then R also does not satisfy φ1. So, by induction
Sat(R,φ2) returns false. If (x, y) ∈ R, then by induction Sat(R,φ1) returns
false, as does Sat(R,φ). If (x, y) 6∈ R, then Sat(R,φ) returns false in this case
as well. Thus, if R does not satisfy φ, then Sat(R,φ) returns false.

Suppose R |= φ. Then either R |= φ2 or else R |= x = y ∧ φ1. If R |= φ2, then
by induction Sat(R,φ2) returns true, as does Sat(R,φ). Otherwise, (x, y) ∈ R
and by induction Sat(R,φ1) returns true, as does Sat(R,φ). ut

Decision forms have the property that, if they are viewed as trees, then each
path from the root to a leaf determines an equivalence relation; namely the
least equivalence relation generated by the set of equations encountered along
the path. We call such equivalence relations implicants of φ. More formally, we
define the set of implicants of a decision form φ recursively as follows:

1. The decision form F has no implicants.
2. The decision form T has the identity relation I on V as its only implicant.
3. An equivalence relation R is an implicant of a decision form (x = y∧φ1)∨φ2

if and only if either R is an implicant of φ2 or else R = R′ + {x = y} for
some implicant R′ of φ1.

The following result relates the (more or less) syntactic notion of implicant to
the semantic notion of satisfaction.

Lemma 5. Let φ be a decision form. Then R |= φ if and only if R′ ⊆ R for
some implicant R′ of φ.

Proof. We show by structural induction on φ that R |= φ implies R′ ⊆ R
for some implicant R′ of φ. If φ = F, then φ is unsatisfiable, and the result
holds vacuously. If φ = T, then for any equivalence relation R we have R |= φ,
and the identity relation I is such that I ⊆ R and I |= φ. Now suppose φ is
(x = y ∧φ1)∨φ2. If R |= φ, then either R |= φ1 or R |= φ2. By induction, either
R1 ⊆ R for some implicant R1 of φ1 or R2 ⊆ R for some implicant R2 of φ2. In

9

the first case, R1 + {x = y} is an implicant of φ that is contained in R. In the
second case, R2 is an implicant of φ that is contained in R.

Conversely, we show by structural induction on φ that if R contains some
implicant R′ of φ, then R |= φ. If φ = F, then φ has no implicants and the
result holds vacuously. If φ = T, then the only implicant of φ is the identity
relation I. Clearly I |= T, and since I ⊆ R it follows that R |= T. Now, suppose
φ is (x = y ∧ φ1) ∨ φ2 and R contains some implicant R′ of φ. Then either R′ is
an implicant of φ2 or else R′ = R1 + {x = y}, where R1 is an implicant of φ1.
If R′ is an implicant of φ2, then by induction R′ |= φ2, hence also R′ |= φ. If
R′ = R1 + {x = y}, where R1 is an implicant of φ1, then by induction R′ |= φ1,
and since R′ entails x = y it follows that R′ |= φ. Thus, in either case we have
R′ |= φ. Since R′ ⊆ R it then follows that R |= φ. ut

The following lemma, which relates implicants to minimal satisfaction, is
established by a straightforward structural induction using Lemma 1.

Lemma 6. Let φ be a decision form. If R |=min φ then R is an implicant of φ.

Proof. By structural induction on φ. If φ is F then φ is unsatisfiable, so the
result holds vacuously. If φ is T, then the only equivalence relation R such such
that R |=min T is the identity relation I, which by definition is an implicant of
T.

Now, suppose φ is (x = y∧φ1)∨φ2 and R is an equivalence relation such that
R |=min φ. Then clearly either R |=min x = y ∧ φ1 or R |=min φ2. If R |=min φ2,
then by induction R is an implicant of φ2, hence by definition it is also an
implicant of φ. If R |=min x = y ∧ φ1, then R |= φ1. According to Lemma 5,
there exists an equivalence relation R1 such that R1 ⊆ R and R1 is an implicant
of φ1. Now, R1 + {x = y} ⊆ R and R1 + {x = y} |= x = y ∧ φ1, so because
R |=min x = y ∧ φ1, we have that R1+{x = y} = R. But since R1 is an implicant
of φ1, by definition R1 + {x = y}, hence R, is an implicant of φ. ut

Note that decision forms are not canonical: two equivalent decision forms
need not be identical. One reason for this is that the converse of Lemma 6 does
not hold. That is, for an arbitrary decision form φ, even though each implicant
R of φ obviously satisfies φ, it may not minimally satisfy φ because there could
exist a strictly smaller implicant R′ ⊂ R associated with a different path in φ.
Other reasons why decision forms are not canonical have to do with the fact that
equations may appear in differing orders along the paths through φ, and that
some paths through φ may contain equations that are redundant in the sense
that they are logical consequences of other equations appearing along the same
path. The objective of the next section is to identify additional conditions on
decision forms sufficient to ensure they are canonical.

4 Normal Forms

From now on, we assume that the set V of variables is equipped with a total
ordering, which we denote by �. We say that an equation x = y is oriented if

10

x � y, and we consider only oriented equations. In particular, we only permit
oriented equations to appear in formulas; one consequence of this is that the
formula T becomes essential, as it is no longer possible to write x = x. In
addition, we regard an equivalence relation R as consisting only of oriented
equations. There is no loss of generality in this because any equivalence relation
is completely determined by its oriented elements. We extend the ordering � to
equations lexicographically: x = y � x′ = y′ if and only if either x � x′ or else
x = x′ and y � y′.

A decision form is a normal form if it is either T or F, or else it has the form
(x = y ∧ φ1) ∨ φ2 and the following five conditions all hold:

N1: φ1 is a normal form that is not F.
N2: φ2 is a normal form that is not T.
N3: y does not appear in φ1.
N4: If x′ = y′ is an equation contained in some implicant of φ1 or φ2, then

x = y � x′ = y′.
N5: If R is an implicant of φ that contains x = y, then R 6|= φ2.

With respect to conditions (N4) and (N5), note that it is possible for an implicant
of a decision form to entail an equation without that equation explicitly occurring
in the decision form. This is because implicants of a decision form are obtained
by taking transitive closures of the sets of equations that actually appear along
paths.

The following properties of normal forms are established by structural induc-
tion.

Lemma 7. For all normal forms φ, if φ is equivalent to T (resp. F) then φ
equals T (resp. F).

Proof. By structural induction on normal form φ. If φ is T or F, then clearly it
is equivalent to T (resp. F) if and only if it is equal to T (resp. F), so the result
holds in this case. For the remainder of the proof, suppose φ is (x = y∧φ1)∨φ2.

If φ is equivalent to T, then R |= φ holds for every equivalence relation R.
In particular this must be true for the identity relation I. But because x = y is
an oriented equation, hence x and y are distinct variables, it cannot be the case
that I |= x = y ∧ φ1, hence it must be the case that I |= φ2. But since I ⊆ R for
any equivalence relation R, it follows that R |= φ2 for any equivalence relation
R; that is, φ2 is equivalent to T. Then by induction φ2 = T. But φ is a normal
form, so we have a contradiction with condition (N2). We conclude that it is
impossible for a normal form φ = (x = y ∧ φ1) ∨ φ2 to be equivalent to T.

If φ is equivalent to F, then R |= φ does not hold for any equivalence relation
R. This implies that both x = y∧φ1 and φ2 are equivalent to F. Now, x = y∧φ1

is equivalent to F if and only R 6|= φ1 whenever R is an equivalence relation that
entails x = y. But this implies that φ1 must be equivalent to F, since if R′ |= φ1

were to hold for some R′, then R′ + {x = y} would be an equivalence relation R
such that R |= x = y ∧ φ1. Since φ1 is equivalent to F, by induction φ1 = F. But
φ is a normal form, so we have a contradiction with condition (N1). We conclude

11

that it is impossible for a normal form φ = (x = y ∧φ1)∨φ2 to be equivalent to
F. ut

Lemma 8. Suppose φ is a normal form (x = y ∧ φ1) ∨ φ2. Then no implicant
of φ can entail any equation x′ = y′ such that x′ = y′ � x = y.

Proof. By induction on normal form φ. Suppose φ = (x = y ∧ φ1) ∨ φ2 and we
have already established the result for the subformulas φ1 and φ2. According to
conditions (N1) and (N2), φ1 is not F and φ2 is not T. If φ has no implicants,
then it is equivalent to F, which is impossible by Lemma 7. So, let R be an
implicant of φ. There are now two cases:

1. R is an implicant of φ2. Since we have already noted that φ2 cannot be
T, either it is F or it has the form (x2 = y2 ∧ φ21) ∨ φ22. It is impossible
for φ2 to be F, since this would contradict the assumption that it has R
as an implicant. So, φ2 must have the form (x2 = y2 ∧ φ21) ∨ φ22. Then by
induction, R does not entail any equation x′ = y′ with x′ = y′ � x2 = y2.
By condition (N4), x = y � x2 = y2. It then follows that R does not entail
any equation x′ = y′ with x′ = y′ � x = y.

2. R has the form R1 + {x = y} for some implicant R1 of φ1. We have already
noted that φ1 cannot be F. If φ1 is T, then R1 is the identity relation, and
R entails the single (oriented) equation x = y. Hence in this case R does not
entail any equation x′ = y′ with x′ = y′ � x = y.
If φ1 is not T, then it has the form (x1 = y1 ∧ φ11) ∨ φ12. By induction,
R1 does not entail any equation x′ = y′ with x′ = y′ � x1 = y1. Suppose
now, for the purpose of obtaining a contradiction, that R does entail some
equation x′ = y′ with x′ = y′ � x = y. It then follows that either x′ � x
or else x′ = x and y′ � y. If x′ � x, then we would have x′ � x � y
and x′ � x � x′′ � y′′ for all (x′′, y′′) in R1 by condition (N4). In that
case neither R1 nor the equation x = y can contain any occurrences of x′,
so R = R1 + {x = y} cannot entail any equation involving x′. This is a
contradiction and we conclude that x′ � x is impossible. It must therefore
be the case that x′ and x are identical and x � y′ � y. By induction, no
implicant of φ1 can entail any equation x′′ = y′′ with x′′ = y′′ � x1 = y1.
Hence R1 can entail neither x = y nor x′ = y′ (because x′ = y′ � x = y by
hypothesis and x = y � x1 = y1 by condition (N4)).
If x′ = y′ is entailed by R = R1 + {x = y}, then there are just three possi-
bilities:
(a) x′ = y′ is already entailed by R1. We have already argued that this case

is impossible.
(b) R1 entails x′ = y; that is, x′ is in the R1-equivalence class of y. This is

also impossible, because we have already argued that x′ and x are the
same variable and that R1 cannot entail x = y.

(c) R1 entails y′ = y; that is, y′ is in the R1-equivalence class of y. By
condition (N3), y does not occur in φ1, hence it is impossible for the
implicant R1 of φ1 to entail any equation involving y. So this case is
impossible as well.

12

Since all three possibilities lead to contradictions, we conclude that R does
not entail any equation x′ = y′ with x′ = y′ � x = y.

ut

The following result is a direct consequence of (N5).

Lemma 9. Suppose φ is a normal form (x = y ∧φ1)∨φ2. If R |=min φ, then R
satisfies precisely one of x = y and φ2.

Proof. Suppose φ is a normal form (x = y∧φ1)∨φ2 such that R |=min φ. Suppose
further, for the purpose of obtaining a contradiction, that R satisfies both x = y
and φ2. By Lemma 5, there exists some implicant R′ of φ2 such that R′ ⊆ R.
Since then also R′ |= φ, from the assumption that R |=min φ it follows that
R′ = R. But this means that that R is an implicant of φ that entails x = y and
also satisfies φ2, contradicting (N5). ut

We denote the equivalence relation consisting of all and only those equations
in R that do not involve variable y by R \ y. The following facts are related to
notation R \ y.

Lemma 10. If R′ ⊆ R, then R′ \ y ⊆ R \ y.

Proof. Suppose equation x′ = y′ is entailed by R′ \ y. Then x′ = y′ is entailed
by R′ and does not involve y. Since R′ ⊆ R, equation x′ = y′ is also entailed by
R, hence is in R \ y. ut

Lemma 11. If R entails x = y then R \ y + {x = y} = R.

Proof. We show that for any equation x′ = y′, R \ y + {x = y} entails x′ = y′ if
and only if R entails x′ = y′.

First, assume R \ y + {x = y} entails x′ = y′. Since R entails x = y and
R \ y ⊆ R, we have that R \ y + {x = y} ⊆ R. It then follows that R entails
x′ = y′.

Now, assume R entails x′ = y′. There are two cases:

1. x′ = y′ is entailed by R \ y. It is then obvious that R \ y + {x = y} also
entails x′ = y′.

2. x′ = y′ is not entailed by R \ y. It then follows that x′ = y′ involves variable
y. This leaves two possibilities:
(a) x′ = y′ is x′ = y. Since R entails x′ = y and x = y, it follows that R

entails x′ = x (or x = x′). Since x′ = x (or x = x′) does not involve
y, R \ y also entails x′ = x (or x = x′). Consequently, R \ y + {x = y}
entails x′ = y, which by assumption is the same as x′ = y′.

(b) x′ = y′ is y = y′. Since R entails y = y′ and x = y, it follows that R
entails x = y′. Since x = y′ does not involve y, R \ y also entails x = y′.
Consequently, R \ y+{x = y} entails y = y′, which by assumption is the
same as x′ = y′.

ut

13

Lemma 12. If R does not entail any equation involving y, then (R+ {x = y})\
y = R.

Proof. If R does not entail any equation involving y, then the R-equivalence
class of y is the singleton set {y}. The equivalence classes of R + {x = y} are
therefore identical to those of R, except for the equivalence class of x, which now
contains one additional element y. Thus, every equation entailed by R+{x = y}
is either already an equation entailed by R or it is an equation that relates y to
an element of the R-equivalence class of x. That is, (R+ {x = y}) \ y = R. ut

Lemma 13. Suppose φ is a positive equational formula of the form x = y ∧ φ1,
where φ1 contains no occurrences of y. Then R |= φ if and only if R entails
x = y and R \ y |= φ1.

Proof. First, suppose R |= φ. Then R entails x = y. In addition, since any
equation that does not involve y and is entailed by R is also entailed by R \ y,
we have that R \ y |= φ1.

Conversely, suppose R entails x = y and R \ y |= φ1. Clearly, R \ y ⊆ R.
Since by hypothesis, R \ y |= φ1, it follows that R |= φ1. Since R entails x = y
and R |= φ1, we have R |= φ. ut

In contrast to decision forms in general, normal forms satisfy the converse of
Lemma 6.

Lemma 14. Suppose φ is a normal form. If R is an implicant of φ, then R |=min

φ.

Proof. By structural induction. It is easy to verify that the lemma is true in
case φ is T or F. Now, suppose φ is (x = y ∧φ1)∨φ2, and the lemma is true for
subformulas φ1 and φ2. There are two cases:

1. R is an implicant of φ2. By induction, R |=min φ2. Since φ is a normal form,
by condition (N5) R does not entail x = y. It then follows that if R′ is any
equivalence relation such that R′ ⊆ R and R′ |= φ then R′ |= φ2. Since
R |=min φ2, R′ = R. Hence, R |=min φ.

2. R is R1+{x = y}, where R1 is an implicant of φ1. By induction, R1 |=min φ1.
Suppose R′ is any equivalence relation such that R′ ⊆ R and R′ |= φ. We first
claim that R′ does not satisfy φ2. Suppose, to the contrary, that R′ |= φ2.
Then R′ + {x = y} |= φ2, and since R′+{x = y} ⊆ R, it follows that R |= φ2.
But this contradicts (N5), which states that no implicant of φ that entails
x = y can satisfy φ2. Thus R′ does not satisfy φ2, so instead R′ |= x = y ∧ φ1.
Now, since R′ |= x = y ∧ φ1 and φ1 contains no occurrences of y, we have
R′ \ y |= φ1 by Lemma 13. Since R1 is an implicant of φ1, which contains
no occurrences of y, R1 entails no equations involving y, hence R \ y =
(R1 + {x = y}) \ y = R1 by Lemma 12. Since R \ y = R1 and R′ ⊆ R,
it follows that R′ \ y ⊆ R1 by Lemma 10. Since R1 |=min φ1, we have
R′ \ y = R1, hence also (R′ \ y) + {x = y} = R1 + {x = y}. By Lemma 11,
R′ = (R′ \ y) + {x = y} and (R \ y) + {x = y} = R. It follows that R′ = R.
We have shown that if R′ ⊆ R is such that R′ |= φ, then R′ = R. Thus,
R |=min φ.

14

ut

Corollary 1. Suppose φ and φ′ are equivalent normal forms. Then every im-
plicant of φ is an implicant of φ′ and vice versa.

Proof. Suppose R is an implicant of φ. By Lemma 14, we have R |=min φ. Since
φ and φ′ are equivalent, it follows that R |=min φ

′. By Lemma 6 it follows that
R is also an implicant of φ′. Thus, every implicant of φ is also an implicant of
φ′. Symmetric reasoning shows that every implicant of φ′ is also an implicant of
φ. ut

A structural induction using the properties we have established now shows
that normal forms are canonical.

Theorem 1. Normal forms φ and φ′ are equivalent if and only if they are iden-
tical.

Proof. If φ and φ′ are identical then it is obvious that they are equivalent.
Conversely, we show by induction that if φ and φ′ are equivalent then they are
identical. First, consider the case in which at least one of φ or φ′ is either F or
T. In this case, if φ and φ′ are equivalent, then they are identical by Lemma 7.

Now, suppose φ is (x = y∧φ1)∨φ2, φ′ is (x′ = y′∧φ′1)∨φ′2, and φ is equivalent
to φ′. Suppose further, as the induction hypothesis, that if φ1 is equivalent to
φ′1, then φ1 and φ′1 are identical, and if φ2 is equivalent to φ′2, then φ2 and φ′2
are identical. We will show that φ and φ′ are identical.

We first show that (x, y) = (x′, y′). By Lemma 7, every normal form that is
not identical to F is not equivalent to F, which means that it is satisfiable and
has a nonempty set of implicants. In particular this is true for φ1, so that there
exists some implicant R1 of φ1. Then R = R1 + {x = y} is an implicant of φ
that entails x = y. By Corollary 1, R is also an implicant of φ′. But by Lemma
8, no implicant of φ′ can entail any equation x = y such that (x, y) � (x′, y′).
Symmetric reasoning shows that (x′, y′) � (x, y) is likewise impossible, hence
(x, y) = (x′, y′) as asserted.

We next show that if an equivalence relation R minimally satisfies φ2 then it
minimally satisfies φ′2 and vice versa. Assume R |=min φ2. Then R is an implicant
of φ2 by Lemma 6, hence R is also an implicant of φ. Since φ is a normal form,
by condition (N4) R does not entail x = y. Since φ and φ′ have the same set of
implicants by Corollary 1, it follows that R is also an implicant of φ′. Since R
does not entail x = y, it also does not entail x′ = y′, which is the same equation
as x = y. Thus, R cannot satisfy x′ = y′ ∧ φ′1, hence it must be an implicant of
φ′2. Then R |=min φ

′
2 by Lemma 14. Symmetric reasoning show that if R |=min φ2

then R |=min φ
′
2.

Since φ2 and φ′2 are minimally satisfied by the same set of equivalence rela-
tions, they are equivalent. By induction hypothesis, φ2 and φ′2 are identical.

We next show that if an equivalence relation R minimally satisfies φ1 then
R satisfies φ′1 and vice versa. Assume R |=min φ1. Then R is an implicant of φ1

by Lemma 6, hence R + {x = y} is an implicant of φ. Moreover, according to

15

condition (N3), R does not entail any equation that involves y since y does not
appear in φ1. Now, by Corollary 1, R+ {x = y} is also an implicant of φ′. Also,
R + {x = y} = R + {x′ = y′} since x = y and x′ = y′ are the same equation.
By condition (N5), we cannot have R+ {x′ = y′} |= φ′2, hence it must be the
case that R+ {x′ = y′} |= x′ = y′ ∧ φ′1. Since y′ does not appear in φ′1, we have
(R+ {x′ = y′}) \ y′ |= φ′1 by Lemma 13. Since R does not entail any equation
involving y′, (R+ {x′ = y′}) \ y′ = R by Lemma 12. Hence, R |= φ′1. Symmetric
reasoning shows that if R |=min φ

′
1 then R |= φ1.

Since φ1 and φ′1 are minimally satisfied by the same set of equivalence rela-
tions, they are equivalent. By induction hypothesis, φ1 and φ′1 are identical.

We have shown that x = y and x′ = y′ are identical, that φ1 and φ′1 are
identical, and that φ2 and φ′2 are identical. It then follows that φ and φ′ are
identical, completing the proof. ut

The fact that normal forms are canonical representatives of their logical
equivalence class gives us a way to represent equivalence relations as normal
forms. This will be useful in the next section. Formally, given an equivalence
relation R, it is clear that the conjunction of all the equations entailed by R
is a positive equational formula φ with the property that R′ |= φ if and only
if R ⊆ R′. There is therefore a unique normal form with the same property.
Thus, we define the characteristic formula of an equivalence relation R to be the
unique normal form χR such that R′ |= χR if and only if R ⊆ R′.

We close this section by considering a variant of algorithm Sat that exploits
the ordering properties of a normal form. We say that x = y is the top-level
equation of normal form (x = y ∧ φ1) ∨ φ2. By condition (N4), if x1 = y1 is the
top-level equation of φ1 then x = y � x1 = y1 and if x2 = y2 is the top-level
equation of φ2, then x = y � x2 = y2. This property of normal forms suggests
a variant of algorithm Sat, called Sat′, which is shown in Figure 3. Function
Sat′ takes as arguments an equivalence relation R and a set Ψ of formulas
which is sorted by top-level equation, and it returns true if R |=

∨
Ψ or false if

R 6|=
∨
Ψ . At each iteration, the set Ψ is examined. If Ψ is empty then false is

returned, since
∨
∅ is equivalent to F. If Ψ contains T then true is returned since∨

{T} = T. If Ψ 6= ∅ and Ψ does not contain T then only nontrivial formulas are
contained in Ψ and they are sorted by their top-level equations. Let x = y be the
top-level equation of the first formula in Ψ . For each formula ψ = (x = y∧ψ1)∨ψ2

in Ψ , we remove ψ from Ψ , add ψ2 to Ψ , and if (x, y) ∈ R then also add ψ1 to Ψ .
Then we go on to the next iteration. It is obvious that each “query” (x, y) ∈ R
need be made at most once in Sat′. Moreover, if the formulas in Ψ are stored in
a structure-sharing form in which multiple occurrences of the same subformula
share a single representation in storage, then it is possible to avoid considering
each multiply occurring subformula more than once during the course of the
algorithm.

16

fun Sat′(R,Ψ) =
if Ψ = ∅ then false
else if T ∈ Ψ then true
else

// Ψ is kept sorted by top-level equation
let (x = y ∧ φ1) ∨ φ2 be the first formula in Ψ

b = if (x, y) ∈ R then true else false

fun Process(Ψ ′) =
if Ψ ′ contains some formula ψ with top-level equation x = y then

let (x = y ∧ ψ1) ∨ ψ2 be ψ
Ψ ′′ = (Ψ ′ \ ψ)

∪ (if b then {ψ1} else ∅)
∪ (if ψ2 6= F then {ψ2} else ∅)

in
Process(Ψ ′′)

end
else
Ψ ′

in
Sat′(R,Process(Ψ))

end

Fig. 3. Function Sat′

5 Recursive Conditions for Normality

The defining properties (N1)–(N5) of normal forms do not directly suggest an
algorithm for converting a decision form into an equivalent normal form. In this
section we obtain recursively defined conditions sufficient to guarantee that a
decision form is a normal form. In the next section we use these conditions as
the basis for constructing an algorithm for reducing a decision form to a normal
form.

We begin by defining the notion of a “decision context”, which is essentially
a “decision form with a hole.” Formally, the set of decision contexts (or just
contexts) is defined inductively as follows:

– [] is a context, called the empty context.
– If Γ is a context, x = y is an equation, and ψ is a decision form, then
Γ [(x = y ∧ []) ∨ ψ] is a context.

We define the notion “substitution of formula φ in context Γ ,” denoted Γ{φ},
recursively as follows:

– If Γ is the empty context [], then Γ{φ} = φ.
– If Γ is ∆[(x = y ∧ []) ∨ ψ], then Γ{φ} is ∆{(x = y ∧ φ) ∨ ψ}.

To each context Γ we associate an equivalence relation RΓ , defined recursively
as follows:

17

– R[] is the identity relation.
– If Γ is ∆[(x = y ∧ []) ∨ ψ], then RΓ = R∆ + {x = y}.

That is, RΓ is just the equivalence relation generated by the set of equations
appearing along the “spine” of context Γ .

If Γ is a context and φ and φ′ are formulas, then we say that φ implies φ′ in
context Γ if Γ{φ} implies Γ{φ′}. If φ implies φ′ in context Γ and also φ′ implies
φ in context Γ , then we say that φ and φ′ are equivalent in context Γ . We say
that φ is subsumed by Γ if φ is equivalent to F in context Γ . If T is subsumed by
Γ , then the context Γ is called degenerate, otherwise it is called nondegenerate.
It will be convenient for us to extend the concept of subsumption to equivalence
relations by saying that an equivalence relation R is subsumed by Γ precisely
when the characteristic formula χR is subsumed by Γ .

Lemma 15. If φ implies φ′, then Γ{φ} implies Γ{φ′}.

Proof. By induction on contexts. If Γ is [], the result is immediate. Sup-
pose Γ is Γ ′[(x = y ∧ []) ∨ ψ]. Then Γ{φ} is Γ ′{(x = y ∧ φ) ∨ ψ}. Since
(x = y∧φ)∨ψ implies (x = y∧φ′)∨ψ, by induction Γ ′{(x = y ∧ φ) ∨ ψ} implies
Γ ′{(x = y ∧ φ′) ∨ ψ}. But Γ ′{(x = y ∧ φ′) ∨ ψ} is just Γ{φ′}. ut

Lemma 16. For all contexts Γ and formulas φ1 and φ2, Γ{φ1 ∨ φ2} is equiva-
lent to Γ{φ1} ∨ Γ{φ2}, and Γ{φ1 ∧ φ2} is equivalent to Γ{φ1} ∧ Γ{φ2}.

Proof. By induction on contexts. If Γ is [], the result is immediate. Suppose Γ
is Γ ′[(x = y ∧ []) ∨ ψ]. Then Γ{φ1 ∨ φ2} is Γ ′{(x = y ∧ (φ1 ∨ φ2)) ∨ ψ}. Since
(x = y ∧ (φ1 ∨ φ2)) ∨ ψ is equivalent to ((x = y ∧ φ1) ∨ ψ) ∨ ((x = y ∧ φ2) ∨ ψ),
by induction, Γ ′{(x = y ∧ (φ1 ∨ φ2)) ∨ ψ} is equivalent to

Γ ′{(x = y ∧ φ1) ∨ ψ} ∨ Γ ′{(x = y ∧ φ2) ∨ ψ};

that is, to Γ{φ1}∨Γ{φ2}. Similarly, Γ{φ1 ∧ φ2} is Γ ′{(x = y ∧ (φ1 ∧ φ2)) ∨ ψ}.
Since (x = y∧(φ1 ∧ φ2))∨ψ is equivalent to ((x = y∧φ1)∨ψ)∧((x = y∧φ2)∨ψ),
by induction, Γ ′{(x = y ∧ (φ1 ∧ φ2)) ∨ ψ} is equivalent to

Γ ′{(x = y ∧ φ1) ∨ ψ} ∧ Γ ′{(x = y ∧ φ2) ∨ ψ};

that is, to Γ{φ1} ∧ Γ{φ2}. ut

Corollary 2. Suppose φ1 implies φ′1 in context Γ and φ2 implies φ′2 in context
Γ . Then φ1 ∨ φ2 implies φ′1 ∨ φ′2 in context Γ , and φ1 ∧ φ2 implies φ′1 ∧ φ′2 in
context Γ .

Proof. By Lemma 16, Γ{φ1 ∨ φ2} is equivalent to Γ{φ1} ∨ Γ{φ2}. Since φ1

implies φ′1 in context Γ and φ2 implies φ′2 in context Γ , Γ{φ1} implies Γ{φ′1}
and Γ{φ2} implies Γ{φ′2}, hence Γ{φ1} ∨ Γ{φ2} implies Γ{φ′1} ∨ Γ{φ′2}. But
Γ{φ′1}∨Γ{φ′2} is equivalent to Γ{φ′1 ∨ φ′2} by Lemma 16. Similarly, By Lemma
16, Γ{φ1 ∧ φ2} is equivalent to Γ{φ1}∧Γ{φ2}. Moreover, Γ{φ1}∧Γ{φ2} implies
Γ{φ′1} ∧ Γ{φ′2}. But Γ{φ′1} ∧ Γ{φ′2} is equivalent to Γ{φ′1 ∧ φ′2} by Lemma 16.

ut

18

Lemma 17. For all contexts Γ , Γ{φ} is equivalent to Γ{F} ∨ (χRΓ
∧ φ).

Proof. By induction on contexts. Suppose Γ is []. Then Γ{φ} = φ, Γ{F} = F,
and χRΓ

= T. Clearly, φ is equivalent to F ∨ (T ∧ φ).
Suppose Γ is Γ ′[(x = y ∧ []) ∨ ψ]. Then Γ{φ} = Γ ′{(x = y ∧ φ) ∨ ψ}. By

induction, Γ ′{(x = y ∧ φ) ∨ ψ} is equivalent to Γ ′{F}∨(χRΓ ′ ∧((x = y∧φ)∨ψ)).
But χRΓ ′ ∧ ((x = y∧φ)∨ψ) is equivalent to (χRΓ ′ ∧ψ)∨ (χRΓ ′ ∧x = y∧φ). By
induction Γ ′{F}∨ (χRΓ ′ ∧ψ) is equivalent to Γ ′{ψ}, which is in turn equivalent
to Γ{F}. Also, (χRΓ ′ ∧ x = y ∧ φ) is equivalent to (χRΓ

∧ φ). Thus, Γ{φ} is
equivalent to Γ{F} ∨ (χRΓ

∧ φ), as asserted. ut

Lemma 18. Suppose φ implies φ′ in context Γ [(x = y∧ [])∨ψ]. Then (x = y∧
φ) ∨ ψ implies (x = y ∧ φ′) ∨ ψ in context Γ .

Proof. By definition, if φ implies φ′ in context Γ [(x = y ∧ []) ∨ ψ], then
Γ{(x = y ∧ φ) ∨ ψ} implies Γ{(x = y ∧ φ′) ∨ ψ}. But this exactly says that
(x = y ∧ φ) ∨ ψ implies (x = y ∧ φ′) ∨ ψ in context Γ . ut

Lemma 19. Suppose ψ implies ψ′ in context Γ . Then (x = y ∧ φ) ∨ ψ implies
(x = y ∧ φ) ∨ ψ′ in context Γ .

Proof. Since ψ is equivalent to F ∨ ψ, by Lemma 16, Γ{(x = y ∧ φ) ∨ ψ} is
equivalent to

Γ{(x = y ∧ φ) ∨ F} ∨ Γ{ψ}.
Since ψ implies ψ′ in context Γ , the displayed formula implies

Γ{(x = y ∧ φ) ∨ F} ∨ Γ{ψ′},

which is equivalent to Γ{(x = y ∧ φ) ∨ ψ′}. ut

Lemma 20. If R is an equivalence relation such that RΓ ⊆ R and R |= φ then
R |= Γ{φ}.

Proof. By induction on contexts. Suppose Γ is []. Then Γ{φ} = φ. By hypoth-
esis, R |= φ. Thus, R |= Γ{φ}.

Suppose Γ is Γ ′[(x = y ∧ []) ∨ ψ]. Then Γ{φ} = Γ ′{(x = y ∧ φ) ∨ ψ}. Since
RΓ ⊆ R and RΓ = RΓ ′ + {x = y}, it follows that R |= x = y. By hypoth-
esis, R |= φ, it then follows that R |= (x = y ∧ φ) ∨ ψ. By induction, R |=
Γ ′{(x = y ∧ φ) ∨ ψ}. Thus, R |= Γ{φ}, as asserted. ut

Lemma 21. Equivalence relation R is subsumed by Γ if and only if RΓ + R
satisfies Γ{F}.

Proof. Suppose R is subsumed by Γ . Then Γ{χR} is equivalent to Γ{F}. Since
RΓ +R satisfies Γ{χR}, it follows that RΓ +R satisfies Γ{F}.

Conversely, suppose RΓ +R satisfies Γ{F}. By Lemma 17, Γ{χR} is equiv-
alent to Γ{F}∨ (χRΓ

∧χR), which in turn is equivalent to Γ{F}∨ (χRΓ +R). So,
if R′ satisfies Γ{χR}, then either R′ satisfies Γ{F} or R′ satisfies χRΓ +R. But
if R′ satisfies χRΓ +R, then it satisfies Γ{F} by hypothesis. Hence if R′ satisfies
Γ{χR} then it also satisfies Γ{F}, thus showing that Γ{χR} implies Γ{F}; that
is, R is subsumed by Γ .

19

fun Degenerate(Γ) =
let fun SatAny(R,Γ) =

if Γ = [] then false
else

let Γ ′[(x = y ∧ []) ∨ ψ] be Γ
in

Sat′(R, {ψ}) orelse SatAny(R,Γ ′)
end

in
SatAny(RΓ , Γ)

end

Fig. 4. Function Degenerate

Corollary 3. Context Γ is degenerate if and only if RΓ satisfies Γ{F}.

Proof. Context Γ is degenerate if and only if Γ{T} is equivalent to Γ{F}. Since
T is the characteristic formula of the identity relation I, Γ{T} is equivalent to
Γ{F} if and only if I is subsumed by Γ . By Lemma 21, I is subsumed by Γ if
and only if RΓ + I satisfies Γ{F}. But RΓ + I = RΓ , so I is subsumed by Γ if
and only if RΓ satisfies Γ{F}. Thus, Γ is degenerate if and only if RΓ satisfies
Γ{F}. ut

Lemma 22. Suppose Γ = Γ ′[(x = y ∧ [])∨ψ] and R is an equivalence relation
such that RΓ ′ ⊆ R. Then R |= Γ{F} if and only if either R |= ψ or else
R |= Γ ′{F}.

Proof. Note that Γ{F} is equivalent to Γ ′{ψ}, and by Lemma 17, Γ ′{ψ} is
equivalent to Γ ′{F}∨(χRΓ ′∧ψ). Thus R |= Γ{F} if and only if either R |= Γ ′{F}
or R |= χRΓ ′ ∧ ψ. Since RΓ ′ ⊆ R by hypothesis, R |= χRΓ ′ ∧ ψ holds if and only
if R |= ψ. ut

Based on Corollary 3 and Lemma 22, algorithm Degenerate for testing
whether a context is degenerate, is presented in Figure 4.

Lemma 23 (Correctness of Degenerate). If Γ is a context, then a call
Degenerate(Γ) terminates and returns a value b which is true if and only if
context Γ is degenerate.

Proof. Immediate from Corollary 3 and Lemma 22. ut

A decision form φ is called reduced in context Γ if either φ = F, or else Γ is
nondegenerate and the following three conditions are satisfied if φ has the form
(x = y ∧ φ1) ∨ φ2:

R1: φ1 is reduced in context Γ [(x = y ∧ []) ∨ φ2] and is not F.
R2: φ2 is reduced in context Γ and is not T;

20

R3: x and y are the greatest elements (with respect to the ordering �) of their
respective equivalence classes of RΓ .

A decision form φ is called ordered below x = y (resp. ordered strictly below
x = y) if φ is either T or F or else it has the form (x′ = y′ ∧ φ1) ∨ φ2 and the
following three conditions are satisfied:

O1: φ1 is ordered strictly below x′ = y′.
O2: φ2 is ordered strictly below x′ = y′.
O3: x = y � x′ = y′ (resp. x = y � x′ = y′).

A decision form φ is called ordered if it is either T or F or else it has the form
(x′ = y′ ∧ φ1) ∨ φ2 and is ordered below its top-level equation x′ = y′. Clearly,
if φ is ordered strictly below x = y, then it is ordered below x = y, and if it is
ordered below x = y, then it is ordered.

Theorem 2. Suppose decision form φ is ordered and reduced in some context
Γ . Then φ is a normal form, which has the following additional properties:

1. No implicant of φ is subsumed by Γ .
2. No variable on the right-hand side of any equation in RΓ occurs in φ.

Proof. By structural induction on decision forms.
We first consider the basis cases in which φ is either F or T. In either case,

it is obvious that φ is a normal form. Since no variables occur in φ, property
(2) holds vacuously. If φ = F, then φ has no implicants, so property (1) holds
vacuously in that case. If φ = T and R is an implicant of φ, then R is the identity
relation I. Since φ is T and is assumed reduced in context Γ , the context Γ must
be nondegenerate, hence I cannot be subsumed by Γ . Thus, property (1) holds
in this case as well.

Suppose now that φ = (x = y ∧ φ1) ∨ φ2. We assume as the induction hy-
pothesis that the result has already been established for φ1 and φ2 and we show
that conditions (N1)–(N5) are satisfied by φ:

(N1) By conditions (R1) and (O1), φ1 is ordered and reduced in context
Γ [(x = y ∧ []) ∨ φ2], and it is not F. It follows by induction that φ1 is a
normal form and is not F. Hence, condition (N1) is satisfied by φ.

(N2) By conditions (R2) and (O2), φ2 is ordered and reduced in context Γ ,
and it is not T. It follows by induction that φ2 is a normal form and is not
T. Hence, condition (N2) is satisfied by φ.

(N3) By induction, φ1 satisfies property (2) with RΓ replaced by RΓ ′ , where
Γ ′ = Γ [(x = y ∧ []) ∨ φ2]. Since RΓ ′ = RΓ + {x = y}, this means that no
variable on the right-hand side of any equation in RΓ +{x = y} occurs in φ1.
In particular, y does not occur in φ1, thus establishing that (N3) is satisfied
by φ.

(N4) Suppose that R is an implicant of φ1 and that x′ = y′ is an equation
entailed by R. Then φ1 is not F because F has no implicants, and it is not
T because the only implicant of T is the identity relation, which entails

21

no equations. So, φ1 has a top-level equation, say x1 = y1. By Lemma 8
and the fact that (by induction) φ1 is a normal form, x1 = y1 � x′ = y′.
Since by condition (O1) φ1 is ordered strictly below x = y, we have that
x = y � x1 = y1, from which it follows that x = y � x′ = y′, establishing
(N4) in this case. Essentially the same reasoning applies to an implicant R
of φ2.

(N5) Suppose R is an implicant of φ that entails x = y. We have shown that
condition (N4) is satisfied by φ, hence no implicant of φ2 can entail x = y.
From this, it follows that R must have the form R1 + {x = y}, where R1 is
an implicant of φ1. By induction, φ1 satisfies property (1) with Γ replaced
by Γ ′ = Γ [(x = y ∧ []) ∨ φ2]; that is to say, no implicant of φ1 is subsumed
by Γ ′. In particular, the implicant R1 of φ1 is not subsumed by Γ ′, from
which it follows by Lemma 21 that RΓ ′ + R1 does not satisfy Γ ′{F}. But
Γ ′{F} = Γ{(x = y ∧ F) ∨ φ2}, which is equivalent to Γ{φ2}. Thus, RΓ ′ +R1

does not satisfy Γ{φ2}. Since RΓ ′ + R1 contains RΓ , by Lemma 20, if it
satisfies φ2 then it also satisfies Γ{φ2}. Hence RΓ ′ +R1 does not satisfy φ2.
Since RΓ ′ +R1 = (RΓ + {x = y}) +R1 = RΓ + (R1 + {x = y}) = RΓ +R,
it follows that RΓ + R does not satisfy φ2. Consequently, R also does not
satisfy φ2, thus establishing that condition (N5) is satisfied by φ.

Finally, we show that properties (1)–(2) are satisfied by φ.

1. Suppose R is an implicant of φ. Then either R is an implicant of φ2 or else
R = R1+{x = y}, where R1 is an implicant of φ1. Suppose R is an implicant
of φ2. By induction, φ2 satisfies property (1), hence R is not subsumed by Γ .
Now supposeR = R1+{x = y}, whereR1 is an implicant of φ1. By induction,
φ1 satisfies property (1) with Γ replaced by Γ ′ = Γ [(x = y∧ [])∨φ2]. Thus,
implicant R1 of φ1 is not subsumed by Γ ′. By Lemma 21, RΓ ′ +R1 does not
satisfy Γ ′{F}. But RΓ ′ +R1 = RΓ +R, so RΓ +R does not satisfy Γ ′{F}.
Also, Γ ′{F} is equivalent to Γ{φ2}, so RΓ + R does not satisfy Γ{φ2}. By
Lemma 17, Γ{φ2} is equivalent to Γ{F} ∨ (χRΓ

∧ φ2). Thus RΓ + R does
not satisfy Γ{F}; that is, R is not subsumed by Γ .

2. By induction, no variable on the right-hand side of any equation in R occurs
in φ2, and no variable on the right-hand side of any equation in R+{x = y}
occurs in φ1. Moreover, by condition (R3), x and y are the greatest elements
in their respective R-equivalence classes. Hence, neither x nor y can appear
on the right-hand side of any equation in R. Since every variable occurring in
φ occurs either in φ1, in φ2, or is one of x or y, we conclude that no variable
occurring in φ can be on the right-hand side of any equation in R. Hence
property (2) is satisfied by φ.

ut

We conclude this section with some additional results about implication in
context that will be needed in the next section. These involve a notion of en-
tailment between contexts. Formally, we say that Γ entails Γ ′ if RΓ ⊆ RΓ ′ and
Γ{φ} implies Γ ′{φ} for all formulas φ. We say that that Γ and Γ ′ are equivalent
if Γ entails Γ ′ and Γ ′ entails Γ .

22

Lemma 24. If ψ implies ψ′ in context Γ , then Γ [(x = y ∧ []) ∨ ψ] entails
Γ [(x = y ∧ []) ∨ ψ′].

Proof. Let ∆ = Γ [(x = y ∧ []) ∨ ψ] and let ∆′ = Γ [(x = y ∧ []) ∨ ψ′]. Then
R∆ = RΓ +{x = y} = R∆′ . Since ψ implies ψ′ in context Γ , Γ{ψ} implies Γ{ψ′}.
But Γ{ψ} is equivalent to ∆{F} and Γ{ψ′} is equivalent to ∆′{F}, hence ∆{F}
implies ∆′{F}. Let φ be a formula, then by Lemma 17,∆{φ} = ∆{F}∨(χR∆

∧φ)
and ∆′{φ} = ∆′{F} ∨ (χR∆′ ∧ φ). Since R∆ = R∆′ and ∆{F} implies ∆′{F}, it
follows that ∆{φ} implies ∆′{φ}. Since this is true for an arbitrary formula φ,
∆ entails ∆′. ut

Lemma 25. If Γ entails Γ ′, then Γ [(x = y∧ [])∨ψ] entails Γ ′[(x = y∧ [])∨ψ].

Proof. Let∆ = Γ [(x = y∧[])∨ψ] and let∆′ = Γ ′[(x = y∧[])∨ψ]. Since Γ entails
Γ ′, it follows that RΓ ⊆ RΓ ′ . Then R∆ = RΓ +{x = y} ⊆ RΓ ′ +{x = y} = R∆′ .
Also, since Γ entails Γ ′, we have Γ{φ} implies Γ ′{φ} for all formulas φ. In
particular, Γ{(x = y ∧ φ) ∨ ψ} implies Γ ′{(x = y ∧ φ) ∨ ψ} for all formulas φ.
But Γ{(x = y ∧ φ) ∨ ψ} = ∆{φ} and Γ ′{(x = y ∧ φ) ∨ ψ} = ∆′{φ}. Thus for all
formulas φ we have that ∆{φ} implies ∆′{φ}.

We have shown that R∆ ⊆ R∆′ and ∆{φ} implies ∆′{φ} for all formulas φ.
Thus, ∆ entails ∆′. ut

Inductive application of Lemmas 24 and 25 shows that if Γ and Γ ′ have the
same structure, with the same equations at the same positions, except that the
formulas ψ in Γ imply their counterparts ψ′ in Γ ′, then Γ entails Γ ′.

Lemma 26. Suppose Γ entails Γ ′. Then:

1. If Γ is degenerate then so is Γ ′.
2. If φ is reduced in context Γ ′, then φ is also reduced in context Γ .

Proof. 1. If Γ is degenerate, then by Corollary 3, RΓ satisfies Γ{F}. Since
RΓ ⊆ RΓ ′ by hypothesis, RΓ ′ satisfies Γ{F} by monotonicity. Since Γ entails
Γ ′, Γ{F} implies Γ ′{F}. Hence RΓ ′ satisfies Γ ′{F}, thus showing Γ ′ is
degenerate by Corollary 3.

2. By induction on formulas. If φ is F, then φ is reduced in any context, so
the result holds. Suppose φ is T and φ is reduced in context Γ ′. Then Γ ′

is nondegenerate. Hence Γ is nondegenerate by (1). Thus φ is reduced in
context Γ .
Suppose φ is (x = y ∧ φ1) ∨ φ2 and φ is reduced in context Γ ′. Then Γ ′ is
nondegenerate. Hence Γ is nondegenerate by (1). By (R1), φ1 is reduced in
context Γ ′[(x = y ∧ []) ∨ φ2]. Since Γ entails Γ ′, it follows by Lemma 25
that Γ [(x = y ∧ [])∨ φ2] entails Γ ′[(x = y ∧ [])∨ φ2], hence φ1 is reduced in
context Γ [(x = y ∧ []) ∨ φ2] by induction.
By (R2), φ2 is reduced in context Γ ′. Then φ2 is reduced in context Γ by
induction.
By (R3), x and y are the greatest elements of their respectiveRΓ ′ -equivalence
classes. Since RΓ ⊆ RΓ ′ , x and y are also the the greatest elements of their
respective RΓ -equivalence classes.

23

fun Reduce(φ, Γ) =
if φ = F orelse Degenerate(Γ) then F
else if φ = T then T
else

let (x = y ∧ φ1) ∨ φ2 be φ
ψ2 = Reduce(φ2, Γ)
(x′, y′) = if maxRΓ [x] � maxRΓ [y] then

(maxRΓ [x],maxRΓ [y])
else

(maxRΓ [y],maxRΓ [x])
in

if x′ = y′ then Or(Reduce(φ1, Γ), ψ2, Γ)
else

let ψ1 = Reduce(φ1, Γ [(x′ = y′ ∧ []) ∨ ψ2])
in

Reorder(x′ = y′, ψ1, ψ2, Γ)
end

end

Fig. 5. Function Reduce

We have shown that Γ is nondegenerate, φ1 is reduced in context Γ [(x = y∧
[])∨ φ2], that φ2 is reduced in context Γ , and that x and y are the greatest
elements of their respective RΓ -equivalence classes. Hence φ is reduced in
context Γ .

ut

Corollary 4. If Γ and Γ ′ are equivalent, then φ is reduced in context Γ if and
only if it is reduced in context Γ ′.

Proof. Immediate from Lemma 26. ut

6 Reduction Algorithm

In this section we present an algorithm for reducing an arbitrary decision form
to a normal form, and we sketch the proof of correctness of this algorithm.

Code for function Reduce is presented in Figure 5 in an ML-like functional
style. Reduce takes a decision form φ and a context Γ , and it returns a decision
form φ′, which is ordered and reduced in context Γ and which is therefore a
normal form. In general, it is not the case that φ′ is equivalent to φ. However,
what is true is that φ′ is equivalent to φ in context Γ .

Function Reduce makes use of three auxiliary functions: Sat′, Or, and
Reorder. Function Sat′ (shown in Figure 3) takes an equivalence relation R
and a normal form φ and returns true if and only if R |= φ holds. Function
Or (shown in Figure 8) takes as arguments two decision forms φ1 and φ2 and
a nondegenerate context Γ , where φ1 and φ2 are assumed to be ordered and

24

reduced in context Γ . It returns a decision form φ, which is ordered and reduced
in context Γ , and which is equivalent to φ1∨φ2 in context Γ . Function Reorder
(shown in Figure 9) takes as arguments an equation x = y, a decision form φ1,
a decision form φ2, and a nondegenerate context Γ , where φ2 is assumed to be
ordered and reduced in context Γ , and φ1 is assumed to be ordered and reduced
in context Γ [(x = y∧ [])∨φ2]. It returns a decision form φ, which is ordered and
reduced in context Γ , and which is equivalent to (x = y ∧ φ1) ∨ φ2 in context
Γ . That is, Reorder “fixes up” any problems that occur in the construction of
(x = y ∧ φ1) ∨ φ2 in case one or both of φ1 and φ2 fails to be ordered strictly
below x = y. Function Or makes use of an additional auxiliary function Filter
(shown in Figure 7). The purpose of a call to Filter(φ, Γ) is to “filter out” any
branches of φ whose associated implicants are subsumed by Γ . Finally, both Or
and Reorder make use of auxiliary function Build, which builds a decision
form equivalent to (x = y ∧ φ1) ∨ φ2 such that (R1) and (R2) are satisfied.

The following results formally state the correctness conditions for function
Reduce and the auxiliary functions.

Lemma 27 (Correctness of Build). If x = y is an equation, and φ1 and φ2

are decision forms, such that φ1 and φ2 are ordered strictly below x = y, φ2 is
reduced in some nondegenerate context Γ , φ1 is reduced in context Γ [(x = y∧[])∨
φ2], and x and y are the greatest elements in their respective equivalence classes
of RΓ , then Build(x = y, φ1, φ2) terminates and returns a decision form φ that
is ordered below x = y, reduced in context Γ , and equivalent to (x = y ∧φ1)∨φ2

in context Γ .

Proof. Termination of Build is obvious. If φ1 = F or φ2 = T, then φ = φ2. In
this case, since φ2 is assumed to be ordered strictly below x = y and reduced in
context Γ , it is clear that φ is ordered below x = y and reduced in context Γ . In
addition, φ is (unconditionally) equivalent to (x = y ∧F)∨ φ2, hence equivalent
to it in context Γ .

Otherwise, φ1 is not F, φ2 is not T, and φ is (x = y ∧ φ1) ∨ φ2. Obviously,
φ is then equivalent to (x = y ∧ φ1) ∨ φ2 in context Γ . Since φ2 is assumed to
be ordered strictly below x = y, reduced in context Γ , and it is not T, and φ1

is assumed to be ordered strictly below x = y, reduced in context Γ [(x = y ∧
[]) ∨ φ2], and is not F, φ satisfies conditions (R1), (R2), (O1), and (O2). Since
x and y are assumed to be the greatest elements of their respective equivalence
classes of RΓ , it follows that φ also satisfies condition (R3). Since Γ is assumed
nondegenerate, φ is reduced in context Γ . Since φ clearly also satisfies (O3) it is
ordered below x = y. ut

Lemma 28 (Correctness of Filter). If φ is a normal form and Γ is a con-
text, then Filter(φ, Γ) terminates and returns a decision form φ′ that is ordered,
reduced in context Γ , and equivalent to φ in context Γ . Moreover, if φ is ordered
below (resp. strictly below) some equation x′ = y′, then φ′ is as well.

Proof. Since Build and Degenerate have already been shown to terminate,
and since each recursive call to Filter is made on a proper subformula of φ, the
termination of Filter is clear.

25

fun Build(x = y, φ1, φ2) =
if φ1 = F orelse φ2 = T then φ2

else (x = y ∧ φ1) ∨ φ2

Fig. 6. Function Build

fun Filter(φ, Γ) =
if φ = F orelse Degenerate(Γ) then F
else if φ = T then T
else

let
(x = y ∧ φ1) ∨ φ2 be φ
φ′

2 = Filter(φ2, Γ)
φ′

1 = Filter(φ1, Γ [(x = y ∧ []) ∨ φ′
2])

in
Build(x = y, φ′

1, φ
′
2)

end

Fig. 7. Function Filter

The proof of partial correctness of Filter is by induction on the depth of
recursive calls. We first consider the cases in which there are no recursive calls. If
φ = F or Degenerate(Γ) holds, then φ′ = F. Clearly F is ordered and reduced
in context Γ . If φ = F or Degenerate(Γ) holds, then clearly φ′ is reduced in
context Γ and equivalent to φ in context Γ . Obviously also in this case φ′ is
ordered strictly below an arbitrary equation x′ = y′.

If φ = T and Degenerate(Γ) does not hold, then φ′ = T. Clearly then φ′

is ordered and equivalent to φ in any context. Since Γ is nondegenerate, φ is
reduced in context Γ . Obviously also in this case φ′ is ordered strictly below an
arbitrary equation x′ = y′.

Otherwise, φ = (x = y ∧ φ1)∨ φ2 and Degenerate(Γ) does not hold. Since
φ is assumed to be a normal form, it follows that φ1 and φ2 are normal forms
ordered strictly below x = y. By induction, φ′2 = Filter(φ2, Γ) is ordered
strictly below x = y, reduced in context Γ , and equivalent to φ2 in context Γ .
Also by induction, φ′1 = Filter(φ1, Γ [(x = y∧ [])∨φ′2]) is ordered strictly below
x = y, reduced in context Γ [(x = y ∧ []) ∨ φ′2], and equivalent to φ1 in context
Γ [(x = y ∧ []) ∨ φ′2]. Since Γ is nondegenerate, it follows that φ′ = Build(x =
y, φ′1, φ

′
2) is ordered, reduced in context Γ , and equivalent to (x = y ∧ φ1) ∨ φ2,

i.e. to φ, in context Γ . Moreover, in this case if φ is ordered below (resp. strictly
below) x′ = y′, then x′ = y′ � x = y (resp. x′ = y′ � x = y) and φ′ is ordered
below (resp. strictly below) x′ = y′ as well. ut

Lemma 29 (Correctness of Or). Suppose decision forms φ1 and φ2 are or-
dered and reduced in the nondegenerate context Γ . Then Or(φ1, φ2, Γ) termi-
nates and returns a decision form φ that is ordered, reduced in context Γ , and

26

equivalent to φ1∨φ2 in context Γ . Moreover, if φ1 and φ2 are both ordered below
(resp. strictly below) some equation x = y, then φ is as well.

Proof. Since Filter and Build have already been shown to terminate, and each
recursive call within Or is made on a proper subformula of either φ1 or φ2, or
both, the termination of Or is clear.

The proof of partial correctness of Or is by induction on the depth of re-
cursive calls. We first consider the cases in which there are no recursive calls.
In these cases, either one of φ1 or φ2 is T, or φ1 is F, or φ2 is F. If one of φ1

or φ2 is T, then the formula φ′ returned by Or(φ1, φ2, Γ) is T, which is clearly
ordered strictly below an arbitrary equation x = y and is equivalent to φ1 ∨ φ2

in context Γ . Moreover, since Γ is assumed nondegenerate, it follows that φ′ is
reduced in context Γ .

If φ1 is F, then φ′ is φ2, which is then clearly equivalent to φ1∨φ2 in context
Γ . By hypothesis, φ′ is ordered and reduced in context Γ . Moreover, if φ1 and φ2

are both ordered below (resp. strictly below) some equation x = y, then clearly
φ′ is as well. If φ2 is F, then symmetric reasoning applies.

Otherwise, we are in the main body of Or, φ1 = (x1 = y1 ∧ φ11) ∨ φ12, and
φ2 = (x2 = y2 ∧ φ21) ∨ φ22. By hypothesis, Γ is nondegenerate. Moreover, from
(R3), x1, y1, x2, and y2 are each the �-maximum elements of their respective
RΓ -equivalence classes. There are now three cases:

1. (x1, y1) = (x2, y2). In this case, φ1 ∨ φ2 is (unconditionally) equivalent to
(x1 = y1∧(φ11 ∨ φ21))∨(φ12 ∨ φ22), hence these formulas are also equivalent
in context Γ . Since φ1 and φ2 are assumed ordered and reduced in context Γ ,
it follows that φ12 is ordered strictly below x1 = y1, φ22 is ordered strictly
below x2 = y2 (which is the same as x1 = y1), and both are reduced in
context Γ . Thus, by induction, ψ2 = Or(φ12, φ22, Γ) is ordered strictly below
x1 = y1, reduced in context Γ , and equivalent to φ12∨φ22 in context Γ . Also,
since φ1 and φ2 are assumed ordered and reduced in context Γ , it follows
that φ11 and φ21 are normal forms ordered strictly below x1 = y1. Thus,
φ′11 = Filter(φ11, Γ

′) and φ′21 = Filter(φ21, Γ
′) are ordered strictly below

x1 = y1, reduced in context Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2], and equivalent to
φ11 and φ21, respectively, in context Γ ′. It then follows by induction that
ψ1 = Or(φ′11, φ

′
21, Γ

′) is ordered strictly below x1 = y1, reduced in context
Γ ′, and equivalent to φ′11 ∨ φ′21 in context Γ ′. Since φ′11 is equivalent to φ11

in context Γ ′ and φ′21 is equivalent to φ21 in context Γ ′, by Corollary 2, ψ1

is equivalent to φ11 ∨ φ21 in context Γ ′. The preconditions for Build are
therefore satisfied, and we have that φ′ = Build(x1 = y1, ψ1, ψ2) is ordered
below x1 = y1, reduced in context Γ , and equivalent to (x1 = y1 ∧ ψ1) ∨ ψ2

in context Γ . Since ψ1 is equivalent to φ11 ∨ φ21 in context Γ ′, and ψ2 is
equivalent to φ12 ∨ φ22 in context Γ , it follows by Lemmas 18 and 19 that
φ is equivalent in context Γ to (x1 = y1 ∧ (φ11 ∨ φ21)) ∨ (φ12 ∨ φ22); hence
also equivalent in context Γ to (x1 = y1 ∧ φ1) ∨ φ2. Moreover, if φ1 and φ2

are both ordered below (resp. strictly below) some equation x = y, then
x = y � x1 = y1 (resp. x = y � x1 = y1), from which it follows that φ′ is
ordered below (resp. strictly below) x = y as well.

27

2. (x1, y1) � (x2, y2). In this case, φ1 ∨ φ2 is (unconditionally) equivalent to
(x1 = y1∧φ11)∨(φ12 ∨ φ2). Now by assumption, φ1 is ordered below x1 = y1
and reduced in context Γ , so φ12 is ordered strictly below x1 = y1 and is
reduced in context Γ . Also by assumption, φ2 is ordered below x2 = y2
and reduced in context Γ , so since x1 = y1 � x2 = y2, it is also ordered
strictly below x1 = y1. Then by induction ψ2 = Or(φ12, φ2, Γ) is ordered
strictly below x1 = y1, reduced in context Γ , and equivalent to φ12 ∨ φ2

in context Γ . Also, φ11 is a normal form ordered strictly below x1 = y1,
hence ψ1 = Filter(φ11, Γ

′) is ordered strictly below x1 = y1, reduced in
context Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2], and equivalent to φ11 in context Γ ′.
The preconditions for Build are therefore satisfied, and we have that φ′ =
Build(x1 = y1, ψ1, ψ2) is ordered, reduced in context Γ , and equivalent to
(x1 = y1 ∧ ψ1) ∨ ψ2. Since ψ1 is equivalent to φ11 in context Γ ′, and ψ2

is equivalent to φ12 ∨ φ2 in context Γ , it follows by Lemmas 18 and 19
that φ is equivalent in context Γ to (x1 = y1 ∧ φ11) ∨ (φ12 ∨ φ2); hence also
equivalent in context Γ to φ1 ∨ φ2. Moreover, if both φ1 and φ2 are ordered
below (resp. strictly below) some equation x = y, then x = y � x1 = y1
(resp. x = y � x1 = y1), hence φ′ is ordered below (resp. strictly below)
x = y as well.

3. (x2, y2) � (x1, y1). This case is symmetric to case (2).
ut

Lemma 30. Suppose x and y are each the greatest elements of their respective
R-equivalence classes, that x1 and y1 are each the greatest elements in their
respective (R + {x = y})-equivalence classes, that x � y, x1 � y1, and that
x1 = y1 � x = y. Let R′ = R + {x1 = y1}. Then maxR′ [y] = y and either
maxR′ [x] = x1 or maxR′ [x] = x.

Proof. Since x1 = y1 � x = y, either x1 � x or else x1 = x and y1 � y.
First, consider the case in which x1 = x and y1 � y. Since x1 � y1 and x � y by
hypothesis, it follows that y, x1, and y1 are in distinct R-equivalence classes. But
then the R′-equivalence class of y is the same as its R-equivalence class, so that
maxR′ [y] = y. Also, the R′-equivalence class of x is the union of its R-equivalence
class (i.e. the R-equivalence class of x1) and the R-equivalence class of y1. Since
by assumption x is the greatest element of its R-equivalence class, x = x1 � y1,
and y1 is the greatest element of its (R+ {x = y})-equivalence class, hence also
of its R-equivalence class, it follows that x � y′ for every element y′ of the R-
equivalence class of y1. Thus, x is the greatest element of its R′-equivalence class
and we have maxR′ [x] = x.

Now, suppose x1 � x. We distinguish two sub-cases: y1 = y and y1 6= y. If
y1 = y, then since x � y we would have a contradiction with the assumption that
y1 is the greatest element of its (R+{x = y})-equivalence class. This case is there-
fore impossible. Suppose y1 6= y. In this case, since x1 � y1, the R-equivalence
classes of x1, y1, and y are all distinct, from which it follows that the R′-
equivalence class of y is the same as its R-equivalence class, hence maxR′ [y] = y.

28

If x and y1 are in the same R-equivalence class, then maxR′ [x] = x1, other-
wise the R′-equivalence class of x is the same as its R-equivalence class and
maxR′ [x] = x. ut

Lemma 31 (Correctness of Reorder). If x = y is an equation, φ1 and φ2

are decision forms, and Γ is a nondegenerate context, such that φ1 and φ2 are
ordered, φ2 is reduced in context Γ , φ1 is reduced in context Γ [(x = y∧ [])∨φ2],
and x and y are the greatest elements of their respective RΓ -equivalence classes,
then

– Reorder(x = y, φ1, φ2, Γ) terminates and returns a decision form φ that is
ordered, reduced in context Γ , and equivalent to (x = y ∧ φ1)∨ φ2 in context
Γ .

– If φ2 is ordered strictly below x = y, then Reorder1(x = y, φ1, φ2, Γ) ter-
minates and returns a decision form φ that is ordered, reduced in context Γ
and equivalent to (x = y ∧ φ1) ∨ φ2 in context Γ .

Moreover, in either of the above two cases, if x′ = y′ is any equation such that
x′ = y′ � x = y (resp. x′ = y′ � x = y) and such that both φ1 and φ2 are ordered
strictly below x′ = y′, then φ is ordered below (resp. strictly below) x′ = y′.

Proof. Since Build and Or have already been shown to terminate, the only po-
tential sources of nontermination are the recursive calls from Reorder to itself
and the mutually recursive calls between Reorder and Reorder1. However,
it is easy to verify that each in each call to Reorder either from itself or from
Reorder1, either φ2 is replaced by one of its proper subformulas (if we regard
F as a proper subformula of any formula of the form (x2 = y2∧φ21)∨φ22), or else
leaves φ2 alone and replaces φ1 by one of its proper subformulas. Thus, the argu-
ments to each successive call to Reorder decrease according to a lexicographic
order on pairs (φ1, φ2) with φ2 in the “most significant” position. Termination
of Reorder and Reorder1 is thus guaranteed.

The proof of partial correctness of Reorder and Reorder1 is by induc-
tion on the depth of recursive calls. As the induction hypothesis we assume the
correctness of recursive calls to Reorder and Reorder1, and prove the cor-
rectness of a main call to Reorder or Reorder1. In each case, the structure
of the correctness proof is a case analysis that follows the case structure of the
code.

First, consider Reorder. If φ2 = T, then φ = φ2. By hypothesis, φ is
ordered and reduced in context Γ . Moreover, φ is (unconditionally) equivalent
to (x = y ∧ φ1) ∨ φ2, hence it is equivalent to (x = y ∧ φ1) ∨ φ2 in context Γ .
Obviously, in this case, φ is ordered strictly below x′ = y′ for any equation
x′ = y′. Next, suppose φ2 = F. Then φ2 is ordered strictly below x = y, so the
preconditions for the recursive call to Reorder1(x = y, φ1, φ2, R) are satisfied.
By induction, the formula returned by this call has the properties asserted of
the formula φ returned by the main call.

Now suppose that φ2 has the form (x2 = y2 ∧ φ21) ∨ φ22. We consider three
cases:

29

– Suppose (x, y) = (x2, y2). Let ψ1 = Or(φ1, φ21, Γ
′), where Γ ′ is the context

Γ [(x = y∧[])∨φ22]). Since φ22 implies φ2, it follows by Lemma 24 that Γ ′ en-
tails Γ [(x = y∧ [])∨φ2]. Since φ1 is assumed ordered and reduced in context
Γ [(x = y∧ [])∨φ2], by Lemma 26, φ1 is also ordered and reduced in context
Γ ′. Additionally, φ2 is assumed ordered and reduced in context Γ , hence by
(O1) and (R1) φ21 is ordered and reduced in context Γ [(x2 = y2 ∧ [])∨φ22],
which is the same as Γ ′. The preconditions for the call to Or(φ1, φ21, Γ

′)
are therefore satisfied, and it follows that the formula ψ1 returned is ordered
and reduced in context Γ ′, and it is equivalent to φ1 ∨ φ21 in context Γ ′.
Moreover, for any equation x′ = y′ such that φ1 and φ21 are both ordered
strictly below x′ = y′, we have that ψ1 is ordered strictly below x′ = y′ as
well.
Since x and y are the greatest elements in their respective RΓ -equivalence
classes and φ22 is ordered and reduced in context Γ , the preconditions for
the recursive call to Reorder(x = y, ψ1, φ22, Γ) are therefore satisfied. It
then follows by induction that φ = Reorder(x = y, ψ1, φ22, Γ) is ordered,
reduced in context Γ , and equivalent to (x = y∧ψ1)∨φ22 in context Γ . Since
ψ1 is equivalent to φ1 ∨φ21 in context Γ [(x = y ∧ [])∨φ22], by Lemma 18 it
follows that φ is equivalent to (x = y∧(φ1 ∨ φ21))∨φ22 in context Γ . Since by
assumption x2 = y2 is the same equation as x = y, (x = y∧ (φ1 ∨ φ21))∨φ22

is equivalent to (x = y∧φ1)∨((x2 = y2 ∧ φ21) ∨ φ22), hence by Lemma 15, φ
is equivalent to to (x = y∧φ1)∨((x2 = y2 ∧ φ21) ∨ φ22) in context Γ ; that is,
it is equivalent to (x = y ∧ φ1)∨ φ2 in context Γ . Moreover, suppose x′ = y′

is any equation such that x′ = y′ � x = y (resp. x′ = y′ � x = y) and such
that φ1 and φ2 are ordered strictly below x′ = y′. Then φ21 and φ22 are
also ordered strictly below x′ = y′. As we have noted above, it then follows
that ψ1 is ordered strictly below x′ = y′. By induction, φ = Reorder(x =
y, ψ1, φ22, R) is ordered below (resp. strictly below) x′ = y′.

– Suppose (x2, y2) � (x, y). Since φ2 is assumed ordered and reduced in con-
text Γ , by (R3) it follows that x2 and y2 are the greatest elements in their
respective RΓ -equivalence classes, by (R1) and (O1) φ21 is ordered strictly
below x2 = y2 and reduced in context Γ [(x2 = y2∧ [])∨φ22]. Because F im-
plies φ22, context Γ [(x2 = y2∧ [])∨F] entails context Γ [(x2 = y2∧ [])∨φ22]
by Lemma 24, from which it follows by Lemma 26 that φ21 is also reduced in
context Γ [(x2 = y2 ∧ [])∨F]. Obviously, F is ordered strictly below x2 = y2
and reduced in context Γ . The preconditions for Build are therefore satis-
fied, and we have that ψ1 = Build(x2 = y2, φ21,F) is ordered below x2 = y2,
reduced in context Γ , and equivalent to (x2 = y2 ∧ φ21) ∨ F in context Γ .
Also, φ1 is assumed ordered and reduced in context Γ [(x = y ∧ []) ∨ φ2], so
because φ22 implies φ2, Γ [(x = y ∧ []) ∨ φ22] entails Γ [(x = y ∧ []) ∨ φ2] by
Lemma 24, hence by Lemma 26 φ1 is also reduced in context Γ [(x = y ∧
[]) ∨ φ22]. Since φ2 is assumed ordered and reduced in context Γ , φ22 is
also reduced in context Γ . The preconditions for Reorder are therefore
satisfied, and we have by induction that ψ2 = Reorder(x = y, φ1, φ22, Γ)
is ordered, reduced in context Γ , and equivalent to (x = y ∧ φ1) ∨ φ22 in
context Γ .

30

Now, suppose x′ = y′ is any equation such that x′ = y′ � x = y (resp. x′ =
y′ � x = y) and such that φ1 and φ2 are ordered strictly below x′ = y′.
Since φ2 is ordered strictly below x′ = y′, we know that x′ = y′ � x2 = y2
and that φ22 is ordered strictly below x′ = y′, hence ψ2 is also ordered below
(resp. strictly below) x′ = y′. We have already noted that ψ1 is ordered
below x2 = y2, so ψ1 is ordered strictly below x′ = y′. Thus, by Lemma 29,
φ = Or(ψ1, ψ2, Γ) is ordered below (resp. strictly below) x′ = y′, is reduced
in context Γ , and is equivalent to ψ1 ∨ ψ2 in context Γ . Thus by Corollary
2, φ is equivalent in context Γ to ((x2 = y2∧φ21)∨F)∨ ((x = y∧φ1)∨φ22),
hence by Lemma 15 to (x = y ∧ φ1) ∨ ((x2 = y2 ∧ φ21) ∨ φ22); that is, to
(x = y ∧ φ1) ∨ φ2.

– Suppose (x, y) � (x2, y2). In this case, φ2 is ordered strictly below x = y. The
preconditions for Reorder1 thus hold, and by induction the formula φ =
Reorder1(x = y, φ1, φ2) is ordered, reduced in context Γ , and equivalent
to (x = y ∧ φ1) ∨ φ2 in context Γ . Moreover, if x′ = y′ is an equation such
that x′ = y′ � x = y (resp. x′ = y′ � x = y) and both φ1 and φ2 are ordered
strictly below x′ = y′, then φ is ordered below (resp. strictly below) x′ = y′.

Now, consider Reorder1. If φ1 = F, then φ = φ2. By hypothesis, φ is
ordered and reduced in context Γ . Moreover, φ is (unconditionally) equivalent
to (x = y ∧ φ1) ∨ φ2, hence it is equivalent to (x = y ∧ φ1) ∨ φ2 in context Γ .
Obviously, in this case, φ is ordered strictly below x′ = y′ for any equation
x′ = y′ such that x′ = y′ � x = y and such that both φ1 and φ2 are ordered
strictly below x′ = y′.

Suppose now that φ1 = T. In this case, φ is given by Build(x = y, φ1, φ2),
and it is clear that φ1 is ordered strictly below x = y and that the remaining
preconditions for the call to Build are implied by the preconditions for the main
call. Thus, φ is ordered below x = y, reduced in context Γ , and equivalent to
(x = y ∧ φ1) ∨ φ2 in context Γ . Clearly then φ is ordered below (resp. strictly
below) x′ = y′ for any equation x′ = y′ such that x′ = y′ � x = y (resp. x′ =
y′ � x = y).

It remains to consider the case in which φ1 has the form (x1 = y1∧φ11)∨φ12.
Note that it is impossible in this case to have (x1, y1) = (x, y), because φ1 is
assumed reduced in context Γ [(x = y ∧ []) ∨ φ2], hence it cannot contain any
occurrences of y. If (x, y) � (x1, y1), then both φ1 and φ2 are ordered strictly
below x = y and the result is established as in the case that φ1 = T.

If (x1, y1) � (x, y), then the argument is as follows:

– Since φ1 is assumed ordered and reduced in context Γ [(x = y ∧ []) ∨ φ2], it
follows that φ12 is also ordered and reduced in context Γ [(x = y ∧ []) ∨ φ2].
By assumption, x and y are the greatest elements in their respective RΓ -
equivalence classes. The preconditions for the recursive call to Reorder(x =
y, φ12, φ2, Γ) are therefore satisfied, and it follows by induction that ψ2 is
ordered, reduced in context Γ , and equivalent to (x = y∧φ12)∨φ2 in context
Γ . Moreover, since φ1 is ordered, φ12 is ordered strictly below x1 = y1. By
hypothesis, φ2 is ordered strictly below x = y, thus since (x1, y1) � (x, y), it

31

follows that φ2 is ordered strictly below x1 = y1. But then ψ2 is also ordered
strictly below x1 = y1.

– By hypothesis, x and y are the greatest elements of their respective RΓ -
equivalence classes. Let Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2] and let R′ = RΓ ′ ; then
R′ = RΓ +{x1 = y1}. Since φ1 is assumed reduced in context Γ [(x = y∧[])∨
φ2], it follows that x1 and y1 are the greatest elements of their respective
(RΓ + {x = y})-equivalence classes. By Lemma 30, maxR′ [y] = y and either
maxR′ [x] = x1 or maxR′ [x] = x, so that maxR′ [x] � y and x1 = y1 �
maxR′ [x] = y.
Since φ1 is assumed reduced in context Γ [(x = y ∧ []) ∨ φ2], it follows by
(R1) that φ11 is reduced in context Γ [(x = y ∧ [(x1 = y1 ∧ []) ∨ φ12]) ∨ φ2],
hence by Corollary 4 also in the equivalent context

Γ [(x1 = y1 ∧ [(x = y ∧ []) ∨ F]) ∨ ((x = y ∧ φ12) ∨ φ2)].

Since ψ2 is equivalent to (x = y ∧ φ12) ∨ φ2 in context Γ , by Lemma 24 we
have that φ11 is reduced in context

Γ [(x1 = y1 ∧ [(x = y ∧ []) ∨ F]) ∨ ψ2];

that is, in context
Γ ′[(x = y ∧ []) ∨ F].

Since R′ + {x = y} = R′ + {maxR′ [x] = y}, context Γ ′[(x = y ∧ []) ∨ F] is
equivalent to Γ ′[(maxR′ [x] = y∧ [])∨F], hence φ11 is also reduced in context
Γ ′[(maxR′ [x] = y ∧ []) ∨ F] by Corollary 4. Clearly F is reduced in context
Γ ′. By definition maxR′ [x] is the greatest element in its R′-equivalence class,
and we have established above that maxR′ [y] = y. The preconditions for the
recursive call to Reorder(maxR′ [x] = y, φ11,F, Γ ′) are therefore satisfied,
and it follows by induction that ψ1 is ordered, reduced in context Γ ′, and
equivalent to (x = y ∧ φ11) ∨ F in context Γ ′. Moreover, if x′ = y′ is any
equation for which x′ = y′ � maxR′ [x] = y and such that φ11 and F are
ordered strictly below x′ = y′, then ψ1 is ordered strictly below x′ = y′. In
particular, take x′ = y′ to be x1 = y1. Then both φ11 and F are ordered
strictly below x1 = y1, and we have already argued above that x1 = y1 �
maxR′ [x] = y. Hence ψ1 is ordered strictly below x1 = y1.

– We have established that ψ1 is ordered strictly below x1 = y1, reduced in
context Γ ′, and equivalent to (x = y ∧ φ11) ∨ F in context Γ ′. Also ψ2 is
ordered strictly below x1 = y1, reduced in context Γ , and equivalent to
(x = y ∧ φ12) ∨ φ2 in context Γ . Since φ1 is assumed reduced in context Γ ,
it follows that x1 and y1 are the greatest elements in their respective RΓ -
equivalence classes. The preconditions for the call to Build are therefore
satisfied, and it follows that φ = Build(x1 = y1, ψ1, ψ2) is ordered strictly
below x1 = y1, reduced in context Γ , and equivalent to (x1 = y1 ∧ ψ1) ∨ ψ2

in context Γ . Since ψ1 is equivalent to (x = y ∧ φ11) ∨ F in context Γ ′, and
ψ2 is equivalent to (x = y ∧ φ12)∨ φ2 in context Γ , it follows by Lemmas 18
and 19 that φ is equivalent in context Γ to (x1 = y1∧ ((x = y ∧ φ11) ∨ F))∨

32

((x = y ∧ φ12) ∨ φ2); hence by Lemma 15 to (x = y ∧ φ1) ∨ φ2. Moreover,
suppose x′ = y′ is any equation such that x′ = y′ � x = y and such that φ1

and φ2 are ordered strictly below x′ = y′. Then x′ = y′ � x1 = y1, and since
φ is ordered strictly below x1 = y1, it is also ordered strictly below x′ = y′.

This completes the induction step and the proof. ut

Theorem 3 (Correctness of Reduce). If φ is a decision form and Γ is a
context, Reduce(φ, Γ) terminates and returns a decision form φ′ that is ordered,
reduced in context Γ and equivalent to φ in context Γ .

Proof. Since Or, Degenerate, and Reorder have already been shown to ter-
minate, and each recursive call within Reduce is made on a proper subformula
of φ, the termination of Reduce is clear.

The proof of partial correctness of Reduce is by induction on the depth of
recursive calls. We first consider the case in which there are no recursive calls. If
Degenerate(Γ) holds, then φ′ = F and clearly φ′ is equivalent in context Γ to
φ. Since it is also clear that F is ordered and reduced in context Γ , the returned
formula φ′ has the required properties in this case. If Degenerate(Γ) does not
hold, φ = T or φ = F, and φ′ = φ, then it is clear that φ′ is ordered, reduced in
context Γ , and equivalent to φ in context Γ . (Note that if Degenerate(Γ) did
hold, then in case φ = T it would not be the case that φ is reduced in context
Γ ; this is why the Degenerate check is required first.)

If there is a recursive call, then we are in the main body of Reduce and
φ = (x = y∧φ1)∨φ2. In this case, by induction ψ2 = Reduce(φ2, Γ) is ordered,
reduced in context Γ and equivalent to φ2 in context Γ . The variables x′ and
y′ are, by definition, the maximum elements of their respective RΓ -equivalence
classes, and are such that RΓ +{x′ = y′} = RΓ +{x = y}. We consider separately
the two cases represented in the main body of Reduce.

1. If x′ = y′, then x and y are in the same RΓ -equivalence class, and φ is
equivalent in context Γ to (T ∧ φ1) ∨ φ2; that is, to φ1 ∨ φ2. Now, by in-
duction Reduce(φ1, Γ) returns ψ1 which is ordered, reduced in context Γ ,
and equivalent to φ1 in context Γ . Hence φ′ = Or(ψ1, ψ2, Γ) is ordered,
reduced in context Γ , and equivalent to ψ1 ∨ ψ2 in context Γ . Since ψ1 is
equivalent to φ1 in context Γ and ψ2 is equivalent to φ2 in context Γ , it
follows by Corollary 2 that ψ1 ∨ ψ2 is equivalent to φ1 ∨ φ2 in context Γ ,
which is equivalent to φ in context Γ . Thus φ′ is equivalent to φ in context
Γ .

2. Otherwise, by induction ψ1 = Reduce(φ1, Γ [(x′ = y′ ∧ [])∨ψ2]) is ordered,
reduced in context Γ ′ = Γ [(x′ = y′ ∧ []) ∨ ψ2], and equivalent to φ1 in con-
text Γ ′. Moreover, x′ and y′ are the greatest elements of their respective
RΓ -equivalence classes and Γ is nondegenerate. Then φ′ = Reorder(x′ =
y′, ψ1, ψ2, Γ) is ordered, reduced in context Γ , and equivalent to (x′ = y′ ∧
ψ1) ∨ ψ2 in context Γ . Since RΓ + {x′ = y′} = RΓ + {x = y}, context
Γ [(x = y ∧ []) ∨ ψ2] is equivalent to Γ ′. Since ψ1 is equivalent to φ1 in

33

context Γ ′, it follows that Γ ′{ψ1} is equivalent to Γ ′{φ1}. Since Γ [(x = y ∧
[]) ∨ ψ2] is equivalent to Γ ′, we have that (x = y ∧ ψ1) ∨ ψ2 is equivalent to
(x = y∧φ1)∨ψ2, hence ψ1 is equivalent to φ1 in context Γ [(x = y∧ [])∨ψ2]
Moreover, since ψ2 is equivalent to φ2 in context Γ , it follows by Lemmas
18 and 19 that φ′ is equivalent in context Γ to (x = y ∧ φ1) ∨ φ2.

ut

7 Operations on Normal Forms

Note that once we have Reduce, any algorithm that produces a decision form as
a result can be modified to produce a normal form simply by applying Reduce
as the last step. However, it is possible to adapt the ideas underlying Reduce to
code algorithms for some common operations in such a way that they preserve
normal forms without the reordering performed by a full application of Reduce.
In particular, in this section we present an algorithm for conjunction of normal
forms (note that disjunction is directly implemented by function Or presented
in the previous section), an algorithm for permuting variables in a normal form,
algorithms for existentially or universally quantifying a variable in a normal
form, and an algorithm to determine whether a formula implies another.

Function And (shown in Figure 10) takes as arguments two decision forms
φ1 and φ2 and a nondegenerate context Γ , where φ1 and φ2 are assumed to
be ordered and reduced in the context Γ . It returns a decision form φ, which
is ordered and reduced in the context Γ , and which is equivalent to φ1 ∧ φ2 in
context Γ .

Lemma 32 (Correctness of And). Suppose decision forms φ1 and φ2 are
ordered and reduced in the nondegenerate context Γ . Then And(φ1, φ2, Γ) ter-
minates and returns a decision form φ that is ordered, reduced in context Γ , and
equivalent to φ1∧φ2 in context Γ . Moreover, if φ1 and φ2 are both ordered below
(resp. strictly below) some equation x = y, then φ is as well.

Proof. Since Build, Filter and Or have already been shown to terminate, the
only potential sources of nontermination are the recursive calls from And to
itself. Define the depth of a decision form recursively as follows: the depth of T
and F is zero, and the depth of (x = y ∧ φ1)∨ φ2 is the maximum of the depths
of φ1 and φ2. It is easy to verify by inspection of the code for Filter that the
depth of the formula φ′ returned by a call of Filter(φ, Γ) is no greater than that
of the argument formula φ. Therefore, the sum of the depths of the arguments
to each recursive call to And is strictly less than the sum of the depths of the
arguments to the main call, and termination of And is thus guaranteed.

The proof of partial correctness of And is by induction on the depth of
recursive calls. We first consider the case in which there are no recursive calls.
In these cases, either one of φ1 or φ2 is F, or φ1 is T, or φ2 is T. If one of φ1 or
φ2 is F, then the formula φ′ returned by And(φ1, φ2, Γ) is F, which is clearly
ordered strictly below an arbitrary equation x = y, reduced in any context, and

34

is (unconditionally) equivalent to φ1 ∧ φ2, hence is also equivalent to φ1 ∧ φ2 in
context Γ .

If φ1 is T, then φ′ is φ2, which is then clearly equivalent to φ1∧φ2 in context
Γ . By hypothesis, φ′ is ordered and reduced in context Γ . Moreover, if φ1 and φ2

are both ordered below (resp. strictly below) some equation x = y, then clearly
φ′ is as well. If φ2 is T, then symmetric reasoning applies.

Otherwise, we are in the main body of And, φ1 = (x1 = y1 ∧ φ11) ∨ φ12 and
φ2 = (x2 = y2 ∧ φ21) ∨ φ22. By hypothesis, Γ is nondegenerate. Moreover, from
(R3), x1, y1, x2, and y2 are each the �-maximum elements of their respective
RΓ -equivalence classes. There are now three cases:

1. (x1, y1) = (x2, y2). In this case, φ1 ∧ φ2 is (unconditionally) equivalent to
(x1 = y1∧((φ11 ∧ φ21) ∨ (φ11 ∧ φ22) ∨ (φ12 ∧ φ21)))∨(φ12 ∧ φ22), hence these
formulas are also equivalent in context Γ . Since φ1 and φ2 are assumed
ordered and reduced in context Γ , it follows that φ12 is ordered strictly
below x1 = y1, φ22 is ordered strictly below x2 = y2 (which is the same
as x1 = y1), and both are reduced in context Γ . Thus, by induction, ψ2 =
And(φ12, φ22, Γ) is ordered strictly below x1 = y1, reduced in context Γ ,
and equivalent to φ12 ∧ φ22 in context Γ . Let Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2].
By Lemma 28, φ′12 = Filter(φ12, Γ

′) is ordered strictly below x1 = y1,
reduced in context Γ ′, and equivalent to φ12 in context Γ ′. Similarly, φ′22 =
Filter(φ22, Γ

′) is ordered strictly below x1 = y1, reduced in context Γ ′, and
equivalent to φ22 in context Γ ′. Since φ2 is assumed ordered and reduced in
context Γ , it follows that φ21 is ordered strictly below x2 = y2 (which is the
same as x1 = y1) and reduced in context Γ [(x2 = y2∧ [])∨φ22] (which is the
same as Γ [(x1 = y1 ∧ []) ∨ φ22]). Additionally, ψ2 is equivalent to φ12 ∧ φ22

in context Γ ; that is, ψ2 implies φ22 in context Γ . Hence, by Lemma 24, Γ ′

entails Γ [(x1 = y1 ∧ []) ∨ φ22], and then by Lemma 26, φ21 is also reduced
in context Γ ′. Similarly, since φ1 is assumed ordered and reduced in context
Γ , it follows that φ11 is ordered strictly below x1 = y1 and reduced in
context Γ [(x1 = y1 ∧ []) ∨ φ12]. Additionally, ψ2 is equivalent to φ12 ∧ φ22

in context Γ ; that is, ψ2 implies φ12 in context Γ . Hence, by Lemma 24, Γ ′

entails Γ [(x1 = y1 ∧ []) ∨ φ12], and then by Lemma 26, φ11 is also reduced
in context Γ ′. It then follows by induction that:
(a) ψ3 = And(φ11, φ21, Γ

′) is ordered strictly below x1 = y1, reduced in
context Γ ′, and equivalent to φ21 ∧ φ21 in context Γ ′.

(b) ψ4 = And(φ11, φ
′
22, Γ

′) is ordered strictly below x1 = y1, reduced in
context Γ ′, and equivalent to φ11 ∧φ′22 in context Γ ′. Thus by Corollary
2, ψ4 is equivalent to φ11 ∧ φ22 in context Γ ′ since φ′22 is equivalent to
φ22 in context Γ ′.

(c) ψ5 = And(φ′12, φ21, Γ
′) is ordered strictly below x1 = y1, reduced in

context Γ ′, and equivalent to φ′12 ∧φ21 in context Γ ′. Thus by Corollary
2, ψ5 is equivalent to φ12 ∧ φ21 in context Γ ′ since φ′12 is equivalent to
φ12 in context Γ ′.

Therefore, by Lemma 29, ψ1 = Or(Or(ψ3, ψ4, Γ
′), ψ5, Γ

′) is ordered strictly
below x1 = y1, reduced in context Γ ′, and equivalent to ψ3∨ψ4∨ψ5 in context

35

Γ ′. Thus, by Corollary 2, ψ1 is equivalent to (φ11∧φ21)∨ (φ11∧φ22)∨ (φ12∧
φ21) in context Γ ′. The preconditions for Build are therefore satisfied, and
we have that φ′ = Build(x1 = y1, ψ1, ψ2) is ordered below x1 = y1, reduced
in context Γ , and equivalent to ψ1 ∧ ψ2 in context Γ . Since ψ1 is equivalent
to (φ11 ∧ φ21) ∨ (φ11 ∧ φ22) ∨ (φ12 ∧ φ21) in context Γ ′, and ψ2 is equivalent
to φ12 ∧ φ22 in context Γ , it follows by Lemmas 18 and 19 that φ is equiv-
alent in context Γ to (x1 = y1 ∧ ((φ11 ∧ φ21) ∨ (φ11 ∧ φ22) ∨ (φ12 ∧ φ21))) ∨
(φ12 ∧ φ22); hence is also equivalent to φ1 ∧φ2 in context Γ . Moreover, if φ1

and φ2 are both ordered below (resp. strictly below) some equation x = y,
then x = y � x1 = y1 (resp. x = y � x1 = y1), from which it follows that φ′

is ordered below (resp. strictly below) x = y as well.
2. (x1, y1) � (x2, y2). In this case, φ1 ∧ φ2 is (unconditionally) equivalent to

(x1 = y1 ∧ (φ11 ∧ φ2)) ∨ (φ12 ∧ φ2), hence these formulas are also equivalent
in context Γ . Since φ1 and φ2 are assumed ordered and reduced in context
Γ and (x1, y1) � (x2, y2), it follows that φ12 and φ2 are both ordered strictly
below x1 = y1, and both are reduced in context Γ . Thus, by induction,
ψ2 = And(φ12, φ2, Γ) is ordered strictly below x1 = y1, reduced in context
Γ , and equivalent to φ12∧φ2 in context Γ . Also, since φ1 is assumed ordered
and reduced in context Γ , it follows that φ11 is ordered strictly below x1 = y1
and reduced in context Γ [(x1 = y1 ∧ []) ∨ φ12]. Since ψ2 is equivalent to
φ12 ∧ φ2 in context Γ , it follows that ψ2 implies φ12 in context Γ . Hence,
by Lemma 24, Γ [(x1 = y1 ∧ []) ∨ ψ2] entails Γ [(x1 = y1 ∧ []) ∨ φ12], and
then by Lemma 26, φ11 is also reduced in context Γ [(x1 = y1 ∧ []) ∨ ψ2].
By Lemma 28, φ′2 = Filter(φ2, Γ [(x1 = y1 ∧ []) ∨ ψ2]) is ordered strictly
below x1 = y1, reduced in context Γ [(x1 = y1 ∧ []) ∨ ψ2], and equivalent
to φ2 in context Γ [(x1 = y1 ∧ []) ∨ ψ2]. It then follows by induction that
ψ1 = And(φ11, φ

′
2, Γ [(x1 = y1 ∧ []) ∨ ψ2]) is ordered strictly below x1 = y1,

reduced in context Γ [(x1 = y1 ∧ []) ∨ ψ2], and equivalent to φ11 ∧ φ′2 in
context Γ [(x1 = y1 ∧ []) ∨ ψ2]. Thus by Corollary 2, ψ1 is equivalent to
φ11 ∧ φ2 in context Γ [(x1 = y1 ∧ []) ∨ ψ2] since φ′2 is equivalent to φ2 in
context Γ [(x1 = y1 ∧ []) ∨ ψ2]. The preconditions for Build are therefore
satisfied, and we have that φ′ = Build(x1 = y1, ψ1, ψ2) is ordered below
x1 = y1, reduced in context Γ , and equivalent to ψ1∧ψ2 in context Γ . Since
ψ1 is equivalent to φ11 ∧ φ2 in context Γ ′, and ψ2 is equivalent to φ12 ∧ φ2

in context Γ , it follows by Lemmas 18 and 19 that φ is equivalent in context
Γ to (x1 = y1 ∧ (φ11 ∧ φ2)) ∨ (φ12 ∧ φ2); hence is also equivalent to φ1 ∧ φ2

in context Γ . Moreover, if φ1 and φ2 are both ordered below (resp. strictly
below) some equation x = y, then x = y � x1 = y1 (resp. x = y � x1 = y1),
from which it follows that φ′ is ordered below (resp. strictly below) x = y as
well.

3. (x2, y2) � (x1, y1). This case is symmetric to case (2).
ut

We now consider existential quantification of a variable in a PEF. Formally,
if φ is a PEF and z is a variable, then a formula ψ is called an existential

36

quantification of φ with respect to z if and only if the following condition is
satisfied:

– For all equivalence relations R, we have R |= ψ if and only if there exists
an equivalence relation R′ such that R′ |= φ and R′ agrees with R on all
variables other than z.

This condition uniquely determines ψ up to logical equivalence, if in fact some
such formula ψ exists.

Lemma 33 below shows that existential quantifications always exist. For its
formal statement, we introduce a notation for substitution of variables: If φ
is a PEF and u and v are distinct variables, then φ[u/v] denotes the result
of replacing each occurrence of the variable v by the variable u, making those
adjustments necessary to ensure that each equation in the resulting formula is
oriented. Specifically, each equation u = v or v = u is replaced by T and other
equations v = u′ or u′ = v become either u = u′ or u′ = u, depending on whether
u � u′ or u′ � u.

Lemma 33. Suppose φ is a formula, z is a variable, and {x1, x2, . . . , xn} are all
the variables other than z that appear in φ. If n = 0 then φ itself is an existential
quantification of φ with respect to z. If n > 0 then the formula

φ[x1/z] ∨ φ[x2/z] ∨ . . . ∨ φ[xn/z]

is an existential quantification of φ with respect to z.

Proof. First consider the case n = 0. Then φ contains no variables other than z.
In this case, it is easily verified that either φ is equivalent to T or φ is equivalent
to F. In either case, given an equivalence relation R, if R |= φ then in fact φ = T,
hence taking R′ = R we obtain an equivalence relation R′ that agrees with R
on all variables other than z and is such that R′ |= φ. Conversely, if R′ |= φ
holds for some equivalence relation R′ that agrees with R on all variables other
than z, then φ = T, hence R |= φ holds as well. Thus, φ itself is an existential
quantification of φ with respect to z.

Now suppose n > 0. Let ψ be the formula

φ[x1/z] ∨ φ[x2/z] ∨ . . . ∨ φ[xn/z].

We show that ψ satisfies the conditions required of an existential quantification
of φ with respect to z. Suppose R |= ψ. Then R |= φ[xi/z] for some i. Since
φ[xi/z] has no occurrences of z, it is also the case that R \ z |= φ[xi/z]. Let
R′ = (R \ z)+{z = xi}; then R′ |= φ holds and R′ agrees with R on all variables
other than z.

Conversely, let R be an equivalence relation and suppose R′ |= φ for some
equivalence relation R′ that agrees with R on all variables but z. Then either z
is in the R′-equivalence class of some xi, or it is not in the R′-equivalence class
of any xi. If z is in the R′-equivalence class of xi, then since R′ |= φ it follows
that R |= φ[xi/z], hence R |= ψ. Suppose z is not in the R′-equivalence class of

37

any xi. In this case, R′ does not satisfy any oriented equation involving z, and
since R′ agrees with R on all variables other than z, it follows that R |= φ, hence
R |= φ[xi/z] for all i. Since n > 0, in fact we have R |= φ[xi/z] for some i. Thus,
R |= ψ. ut

We will write ∃z.φ to denote the unique normal form ψ that is an existential
quantification of φ with respect to z.

Existential quantification of normal forms can be implemented by function
Exists (shown in Figure 11). This function takes as arguments a variable z and
a normal form φ such that z is the least variable (with respect to the ordering �)
in φ, and returns ∃z.φ. Function Exists is basically computing the disjunction
of φ[x1/z]∨φ[x2/z]∨ . . .∨φ[xn/z] for all the variables {x1, x2, ..., xn} other than
z that occur in φ, while Reduce(φ, [(xi = z∧ [])∨F]) computes φ[xi/z] for each
xi in {x1, x2, ..., xn}.

Later we will show that the assumption that z is the �-least variable in φ
is not restrictive, since we can always arrange (via function Rename shown in
Figure 14) for z to be replaced by a variable z′ that is smaller than all the
variables occurring in φ.

Lemma 34. Suppose φ is a PEF and v and z are variables with v � z. If R is
an equivalence relation, then R |= φ[v/z] if and only if (R \ z) + {v = z} |= φ
(resp. (R \ z) + {z = v} |= φ).

Proof. By induction on φ. If φ = T then clearly we have R |= φ[v/z] and
(R \ z) + {v = z} |= φ for any equivalence relation R. If φ = F then no equiva-
lence relation satisfies φ[v/z] and the lemma holds vacuously.

Next, suppose φ is a single equation x = y. There are three cases:

1. x = y does not involve z. Then (x = y)[v/z] is x = y. If R |= (x = y)[v/z],
then R |= x = y. But x = y does not involve z, hence R \ z |= x = y, from
which it follows by monotonicity that (R \ z) + {v = z} |= x = y. Conversely,
suppose (R \ z) + {v = z} |= x = y. Then R\z contains no equations involv-
ing z, so (R \ z)+{v = z} agrees with R\z, hence also with R, on equations
that do not involve z. Since (R \ z) + {v = z} |= x = y and equation x = y
does not involve z, it follows that R |= x = y and also R |= (x = y)[v/z].

2. x is z. Then (x = y)[v/z] is either v = y or y = v, depending on which of the
two is oriented. If R |= (x = y)[v/z], then R satisfies either v = y or y = v.
But neither v = y nor y = v involves z, henceR\z satisfies either v = y or y =
v. Thus, either (R \ z) + {v = z} |= z = y or (R \ z) + {v = z} |= y = z. But
since x is z, we in fact have (R \ z) + {v = z} |= x = y. Conversely, suppose
(R \ z) + {v = z} |= x = y. Since x is z, it follows that (R \ z) + {v = z}
equals (R \ z)+ {v = x}, which therefore satisfies either v = y or y = v. But
neither v = y nor y = v involves z, hence ((R \ z) + {v = z}) \ z (that is,
R \ z) satisfies either v = y or y = v. By monotonicity, R satisfies either
v = y or y = v; that is, R |= (x = y)[v/z].

3. y is z. This case is symmetric to case (2).

38

Now, suppose φ is φ1 ∧φ2. Then R |= φ[v/z] if and only if both R |= φ1[v/z]
and R |= φ2[v/z]. By induction, R |= φ1[v/z] if and only if (R \ z) + {v = z} |=
φ1, and R |= φ2[v/z] if and only if (R \ z) + {v = z} |= φ2. Thus, R |= φ[v/z] if
and only if both (R \ z) + {v = z} |= φ1 and (R \ z) + {v = z} |= φ2; that is, if
and only if (R \ z) + {v = z} |= φ1 ∧ φ2.

Finally, suppose φ is φ1 ∨ φ2. Then R |= φ[v/z] if and only if either
R |= φ1[v/z] or R |= φ2[v/z]. By induction, R |= φ1[v/z] if and only if
(R \ z) + {v = z} |= φ1, and R |= φ2[v/z] if and only if (R \ z) + {v = z} |=
φ2. Thus, R |= φ[v/z] if and only if either (R \ z) + {v = z} |= φ1 or
(R \ z) + {v = z} |= φ2; that is, if and only if (R \ z) + {v = z} |= φ1 ∨ φ2. ut

Lemma 35. Suppose φ is a PEF and suppose V = {v1, v2, . . . , vn} and Z =
{z1, z2, . . . , zn} are sets of variables, with vi � zj for 1 ≤ i ≤ n and 1 ≤ j ≤ n.
If R is an equivalence relation, then R |= φ[v1/z1, v2/z2, . . . , vn/zn] if and only
if

(R \ {z1, z2, . . . , zn}) + {v1 = z1, v2 = z2, . . . , vn = zn} |= φ.

Proof. Since vi � zj for 1 ≤ i ≤ n and 1 ≤ j ≤ n, the sets V and Z
are disjoint. The simultaneous substitution φ[v1/z1, v2/z2, . . . , vn/zn] is there-
fore the same as the iterated substitution φ[v1/z1, v2/z2, . . . , vn−1/zn−1][vn/zn]
and the relation (R \ {z1, z2, . . . , zn}) + {v1 = z1, v2 = z2, . . . , vn = zn} is the
same as (((R \ {z1, z2, . . . , zn−1}) + {v1 = z1, v2 = z2, . . . , vn−1 = zn−1}) \ zn)+
{vn = zn}. The result can now be established by an induction using Lemma 34
and these recursive relationships. ut

Lemma 36 (Correctness of Exists). Suppose z is the least variable (with
respect to the ordering �) in a normal form φ. Then Exists(z, φ) terminates
and returns ∃z.φ.

Proof. Since Reduce and Or have already been shown to terminate, and each
recursive call to the auxiliary function Ex is on a smaller set of variables V than
the main call, the termination of Exists is clear.

If φ = T then ϕ = φ. Clearly, by Lemma 33, ϕ is is an existential quan-
tification of φ with respect to z, and since φ is ordered and reduced in context
[], it is a normal form, hence is ∃z.φ. If φ 6= T then ϕ = Ex(F, V), where
V is the set of all variables other than z that occur in φ. Since z is the least
variable in φ, each equation v = z with v ∈ V is oriented, hence each call of
Reduce(φ, [(v = z ∧ []) ∨F]) returns a formula ψ′ that is ordered and reduced
in context [(v = z ∧ []) ∨ F], and equivalent to φ in context [(v = z ∧ []) ∨ F].
It follows that ψ′ is a normal form in which the variable z does not occur, such
that v = z ∧ ψ′ is equivalent to v = z ∧ φ. Then given an arbitrary equivalence
relation R, we have R |= ψ′ iff R \ z |= ψ′ iff (R \ z) + {v = z} |= v = z ∧ ψ′ iff
(R \ z) + {v = z} |= v = z ∧ φ iff (R \ z) + {v = z} |= φ. By Lemma 34 the last
assertion holds if and only if R |= φ[v/z]. Thus R |= ψ′ if and only R |= φ[v/z];
that is, ψ′ is logically equivalent to φ[v/z].

It then follows that Ex(F, V) returns a normal form ϕ that is equivalent to
φ[x1/z] ∨ φ[x2/z] ∨ . . . ∨ φ[xn/z], where {x1, x2, ..., xn} = V . Thus, by Lemma
33, ϕ is ∃z.φ. ut

39

We now consider universal quantification of a variable in a PEF. Formally, if
φ is a PEF and z is a variable, then a formula ψ is called a universal quantification
of φ with respect to z if and only if the following condition is satisfied:

– For all equivalence relations R, we have R |= ψ if and only if R′ |= φ holds
for all equivalence relations R′ that agree with R on all variables but z.

This condition uniquely determines ψ up to logical equivalence, and Lemma 37
shows that such a formula ψ always exists.

Lemma 37. Suppose φ is a normal form and z is a variable. Let ψ be obtained
from φ by replacing each equation involving z by F. Then ψ is a universal quan-
tification of φ with respect to z.

Proof. Suppose R |= ψ, and let R′ be an equivalence relation that agrees with
R on all variables but z. Since ψ contains no occurrences of z, and R′ agrees
with R on all variables but z, it follows that R′ |= ψ. Since ψ is obtained from φ
by replacing each equation involving z by F, it follows that ψ implies φ. Thus,
R′ |= φ.

Conversely, suppose R′ |= φ for all equivalence relations R′ that agree with
R on all variables but z. Then in particular R \ z |= φ. But R\z does not satisfy
any equation involving z (recall that equations are oriented, hence each equation
relates two distinct variables) and it agrees with R on all other equations, hence
it must also be the case that R \ z |= ψ. But then R |= ψ holds by monotonicity.

ut

We will write ∀z.φ to denote the unique normal form ψ that is a universal
quantification of φ with respect to z.

Lemma 38. Suppose φ is a normal form and z is a variable. Then ∀z.φ contains
no occurrences of z and no variables that are not in φ.

Proof. By induction on φ. If φ is T or F, then ∀z.φ is φ, and the result clearly
holds. If φ is (z = y ∧ φ1) ∨ φ2 or (x = z ∧ φ1) ∨ φ2, then ∀z.φ is equivalent
to the normal form ∀z.φ2, hence equal to it, and by induction the result holds
in this case as well. If φ is (x = y ∧ φ1) ∨ φ2, where neither x nor y is z, then
∀z.φ is equivalent to (x = y ∧ (∀z.φ1)) ∨ (∀z.φ2). By induction, ∀z.φ1 contains
no occurrences of z and no variables that are not in φ1, and ∀z.φ2 contains no
occurrences of z and no variables that are not in φ2. Since φ1 and φ2 are ordered
strictly below x = y, so are ∀z.φ1 and ∀z.φ2. If ∀z.φ1 is F, then ∀z.φ is equivalent
to ∀z.φ2, hence equal to it. If ∀z.φ2 is T, then ∀z.φ is equivalent to T, hence equal
to it. Otherwise ∀z.φ is equivalent to the normal form (x = y∧(∀z.φ1))∨(∀z.φ2),
hence equal to it. In all these cases, ∀z.φ contains no occurrences of z and no
variables that are not in φ. ut

Universal quantification of normal forms can be implemented by function
Forall (shown in Figure 12). This function takes as arguments a variable z
and a normal form φ, and returns ∀z.φ.

40

Lemma 39 (Correctness of Forall). Suppose z is a variable and φ is a
normal form. Then Forall(z, φ) terminates and returns ∀z.φ.

Proof. Since Build always terminates and each recursive call within Forall is
made on a proper subformula of φ, the termination of Forall is clear.

The proof of partial correctness of Forall is by induction on the depth of
recursive calls. We first consider the case in which there are no recursive calls.
In these cases, φ is either T or F, and φ is the formula returned. Clearly then,
by Lemma 37, φ is ∀z.φ.

Otherwise, we are in the main body of Forall, and φ is (x = y ∧ φ1) ∨ φ2.
There are now two cases:

1. x = y involves z. The formula returned in this case is φ′ = Forall(z, φ2),
which by induction is ∀z.φ2. But in this case, ∀z.φ is equivalent to (F ∧
∀z.φ1)∨∀z.φ2, hence to ∀z.φ2, which is a normal form. Thus, ∀z.φ = ∀z.φ2.

2. x = y does not involve z. By induction, φ′1 = Forall(z, φ1) is ∀z.φ1 and
φ′2 = Forall(z, φ2) is ∀z.φ2. Since φ is a normal form, by conditions (O1)
and (O2), φ1 and φ2 are both ordered strictly below x = y. By Lemma 38,
∀z.φ1 contains no occurrences of z and no variables that are not in φ1. Thus,
∀z.φ1 is also ordered strictly below x = y. Similarly, ∀z.φ2 is ordered strictly
below x = y. The preconditions of Build are therefore satisfied, and if
φ′ = Build(x = y, φ′1, φ

′
2), then φ′ is equivalent to (x = y∧(∀z.φ1))∨(∀z.φ2),

which is a normal form. By Lemma 37, φ′ is also equivalent to ∀z.φ. Hence
φ′ = ∀z.φ. But φ′ is the formula returned by Forall(z, φ) in this case,
completing the proof.

ut

It is useful to determine whether a formula φ implies another formula ψ.
Formally, formula φ implies another formula ψ if every equivalence relation R
that satisfies φ also satisfies ψ. It is easy to check that this definition is equivalent
to the condition that every implicant of φ satisfies ψ. Thus, determining whether
φ implies ψ reduces to the problem of determining whether every implicant of φ
satisfies ψ. But the statement that every implicant of φ satisfies ψ is equivalent
to the statement that every implicant of φ is subsumed by a suitable context.
This observation leads to function Implies shown in Figure 13, which takes as
arguments a normal form φ and a normal form ψ, and returns true if and only
if φ implies ψ.

Lemma 40 (Correctness of Implies). Suppose φ and ψ are normal forms.
Then Implies(φ, ψ) terminates and returns true if and only if φ implies ψ.

Proof. Since Filter has already been shown to terminate, the termination of
Implies is clear.

Let Γ be [(x = y ∧ []) ∨ (x = y ∧ ψ) ∨ F], where x and y are variables such
that x � y and y � v for all variables v appearing in either φ or ψ. Let ϕ =
Filter(φ, Γ); then ϕ is ordered, reduced in context Γ , and equivalent to φ
in context Γ . Now, ϕ equivalent to φ in context Γ means that (x = y ∧ ϕ) ∨

41

((x = y ∧ ψ) ∨ F) is equivalent to (x = y ∧φ)∨ ((x = y ∧ ψ) ∨ F), which in turn
is equivalent to x = y ∧ (φ ∨ ψ).

If ϕ = F, then (x = y∧ϕ)∨((x = y ∧ ψ) ∨ F) is equivalent to x = y∧ψ. Since
neither x nor y appear in either φ or ψ, from x = y∧ψ equivalent to x = y∧(φ∨ψ)
we may conclude that ψ is equivalent to φ ∨ ψ. But ψ is equivalent to φ ∨ ψ if
and only if φ implies ψ.

On the other hand, if ϕ is not F, then ϕ has some implicant R. Let R′ =
R + {x = y}, then R′ is an implicant of (x = y ∧ ϕ) ∨ ((x = y ∧ ψ) ∨ F), and
since (x = y ∧ ϕ) ∨ ((x = y ∧ ψ) ∨ F) is equivalent to x = y ∧ (φ ∨ ψ), it follows
that R′ |= x = y ∧ (φ ∨ ψ), hence R′ |= φ ∨ ψ. Since ϕ is reduced in context Γ ,
no implicant of ϕ can satisfy ψ, hence in particular R 6|= ψ, thus also R′ 6|= ψ
because x and y do not occur in ψ. But if R′ |= φ ∨ ψ and R′ 6|= ψ, it must
be that R′ |= φ. We have thus exhibited an equivalence relation R′ such that
R′ |= φ but R′ 6|= ψ, which shows that φ does not imply ψ. ut

A renaming of variables is a function f : V → V such that x 6= f(x) for
at most finitely many x ∈ V. Function Rename, shown in Figure 14, performs
renaming of variables in normal forms, as expressed by Lemma 41 below. Func-
tion Rename assumes that the set V of variables is partitioned into subsets of
unbarred and barred variables, which are in one-to-one correspondence. That is,
to each unbarred variable x, there corresponds a unique barred variable x̄. Fur-
ther, it is assumed that if x and y are unbarred variables such that x � y, then
x � y � x̄ � ȳ.

Function Rename makes use of a particular context Γf,V , associated with
renaming of variables f and set of unbarred variables V . The context Γf,V is
defined recursively as follows:

– If V = ∅, then Γf,V = [].
– If V 6= ∅, and v is the �-minimal element of V , then

Γf,V = Γf,V \{v}[(f(v) = v̄ ∧ []) ∨ F].

That is, the context Γf,V is the context in which each barred variable v̄ is equated
to the variable f(v).

Lemma 41 (Correctness of Rename). Suppose φ is a normal form that does
not contain any barred variables and f is a renaming of variables such that
f−1(v̄) = {v̄} for all unbarred variables v. Let V = {v1, v2, . . . , vn} be the vari-
ables occurring in φ. Then Rename(f, φ) terminates and returns a normal form
φ′ that is equivalent to φ[f(v1)/v1, f(v2)/v2, . . . , f(vn)/vn].

Proof. The auxiliary function Bar used in Rename takes an argument formula
φ that contains no barred variables and makes a copy φ̄ of φ in which each un-
barred variable has been replaced by the corresponding barred variable. Function
Bar clearly terminates, and since the relative ordering of barred variables is the
same as their unbarred counterparts, if the argument to Bar is a normal form,
then the returned formula will be a normal form as well.

42

The termination of Rename is immediate from the fact that Bar and
Reduce have already been shown to terminate. The formula φ′ returned by
Rename(φ, f) is given by Reduce(φ̄, Γf,V). By Theorem 3, φ′ is ordered, re-
duced in context Γf,V , and is equivalent to φ̄ in context Γf,V . Since φ is reduced
in context Γf,V , and RΓf,V

contains an equation f(v) = v̄ for each variable
v ∈ V , it follows that φ′ contains no occurrences of v̄ for any variable v in V .
But since V is the set of all variables occurring in φ, every variable occurring in
φ̄ is v̄ for some v ∈ V . Since Reduce(φ̄, Γf,V) does not contain any variables
that do not already occur in φ̄ or Γf,V , it follows that φ′ contains no barred
variables.

We have thus shown that φ′ is a normal form that contains no barred variables
and is equivalent to φ̄ in context Γf,V . That is to say,

f(v1) = v̄1 ∧ f(v2) = v̄2 ∧ . . . ∧ f(vn) = v̄n ∧ φ′

is equivalent to

f(v1) = v̄1 ∧ f(v2) = v̄2 ∧ . . . ∧ f(vn) = v̄n ∧ φ̄.

We claim that φ′ is in fact equivalent to φ̄[f(v1)/v̄1, f(v2)/v̄2, . . . , f(vn)/v̄n].
Suppose R is any equivalence relation. Then since φ′ contains no barred variables,
R |= φ′ holds if and only if R \ {v̄1, v̄2, . . . , v̄n} |= φ′ hence if and only if

(R \ {v̄1, v̄2, . . . , v̄n}) + {f(v1) = v̄1, f(v2) = v̄2, . . . , f(vn) = v̄n}

satisfies
f(v1) = v̄1 ∧ f(v2) = v̄2 ∧ . . . ∧ f(vn) = v̄n ∧ φ′,

hence if and only if

(R \ {v̄1, v̄2, . . . , v̄n}) + {f(v1) = v̄1, f(v2) = v̄2, . . . , f(vn) = v̄n}

satisfies
f(v1) = v̄1 ∧ f(v2) = v̄2 ∧ . . . ∧ f(vn) = v̄n ∧ φ̄.

By Lemma 35, this holds if and only if

R |= φ̄[f(v1)/v̄1, f(v2)/v̄2, . . . , f(vn)/v̄n].

Since all this is true for arbitrary R, it follows that φ′ is in fact equivalent
to φ̄[f(v1)/v̄1, f(v2)/v̄2, . . . , f(vn)/v̄n]. But φ̄[f(v1)/v̄1, f(v2)/v̄2, . . . , f(vn)/v̄n]
is the same as φ[f(v1)/v1, f(v2)/v2, . . . , f(vn)/vn]. Thus, φ′ is equivalent to
φ[f(v1)/v1, f(v2)/v2, . . . , f(vn)/vn], completing the proof. ut

8 Implementation

Extending a BDD package that we had previously built, we have coded a proto-
type implementation of our normal form algorithms under the Standard ML of

43

New Jersey (SML/NJ) language system. Below we discuss briefly several issues
about the implementation.

In our implementation, as in other BDD implementations, we achieve max-
imally structure-shared storage of normal forms using a hash table, called the
node table, to ensure that each normal form is represented by a unique node.
Before adding a node into the node table for a normal form φ, we first check the
table. If a node for φ already exists then we do nothing, otherwise we add a new
entry for it. Therefore, each node in the node table represents a unique normal
form. Additional hash tables, called operation caches, are used to avoid repeating
the calculation of an operation on particular arguments after it has been done
once. In order to avoid swamping the system through overly aggressive memory
allocation, our implementation applies a heuristic that automatically monitors
garbage-collection activity to determine when to adjust the maximal sizes of the
node table and operation caches.

Equivalence relations are implemented as hash tables as well. A hash table
that represents an equivalence relation R maps an element x to a ref-variable
that refers to maxR[x]. For the purpose of efficiency, we do not make x as a key
if {x} is a singleton set in R. The frequently used operations for equivalence
relations are: (1) add an equation x = y to an equivalence relation R; (2) check
whether an equation x = y is in equivalence relation R; (3) return maxR[x]. We
denote the hash table for equivalence relation R by table(R), denote the value
(ref-variable) of a key x by value(x), and denote the element that is referred by
a ref-variable v by deref(v). To add an equation x = y to equivalence relation R,
we consider the following cases:

1. Neither x nor y is a key in table(R). Then we add entries for x and y, and
map both x and y to a new ref-variable v that refers to x.

2. x is a key in table(R) and y is not. Then we add an entry for y and map y
to value(x).

3. y is a key in table(R) and x is not. Then we refer value(y) to x so that
deref(value(y)) = x, add an entry for x, and map x to value(y).

4. x and y both are keys in table(R). Then we refer value(y) to deref(value(x))
so that deref(value(y)) = deref(value(x)).

To determine whether an equation x = y is in R, we first check table(R). If
x and y are not both keys in table(R) then we return false, since in that case
either {x} or {y} is a singleton set in R. If x and y are both keys in table(R)
then there are two cases: (1) value(x) and value(y) refer to the same element;
(2) value(x) and value(y) refer to different elements. We return true for case
(1) since maxR[x] = maxR[y] and return false for case (2). Note that x and
y are in the same R-equivalence class if and only if maxR[x] = maxR[y]. To
compute maxR[x], we first check table(R). If x is a key in the table then we
return deref(value(x)), otherwise we return x directly. It is obvious that the above
operations are all performed in constant time. Another important operation is
to make a copy T of table(R). Since the values for the keys in table(R) are ref-
variables, simply copying all entries in table(R) to T would cause interference

44

between table(R) and T . The correct way to handle this is to create a new ref-
variable v′ for each ref-variable v in table(R) and refer v′ to deref(v). For each
key x in table(R) such that value(x) = v, we add an entry for x in T and map x
to v′.

9 Conclusion

We have presented a normal form for positive equational formulas, such that
logically equivalent normal forms are identical. Based on a characterization of
normal forms as decision forms that are ordered and “reduced in context,” we
devised an algorithm for reducing an arbitrary decision form to normal form.
The algorithm builds normal forms in a bottom-up fashion that is well-suited to
BDD-based implementation. We have constructed such an implementation that
includes, besides the reduction algorithm, additional algorithms for performing
various logical operations on normal forms.

In developing the ideas presented in this paper, we have primarily focused on
pure equational formulas. However, it now seems to us that the ideas will extend
readily to formulas that include propositional variables as well as equations. Pre-
vious techniques that represent equational formulas as decision diagrams have
made use of the Shannon expansion, which involves negation and is therefore
not naturally applicable to positive formulas. Our notion of “decision form,”
which does not use negation, provides a different way to represent positive equa-
tional formulas as decision diagrams. An interesting question we are currently
considering is whether negation can be “retro-fitted” into this apparently novel
representation, thereby providing a canonical normal form for equational formu-
las with negation.

References

[BGV99] Randal E. Bryant, Steven M. German, and Miroslav N. Velev. Exploiting
positive equality in a logic of equality with uninterpreted functions. In CAV
’99: Proceedings of the 11th International Conference on Computer Aided
Verification, pages 470–482, London, UK, 1999. Springer-Verlag.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Comput., 35(8):677–691, 1986.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv., 24(3):293–318, 1992.

[BV00] Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with transi-
tivity constraints. In CAV ’00: Proceedings of the 12th International Con-
ference on Computer Aided Verification, pages 85–98, London, UK, 2000.
Springer-Verlag.

[BvdP05] Bahareh Badban and Jaco van de Pol. Zero, successor and equality in BDDs.
Annals of Pure and Applied Logic, 133(1-3):101–123, 2005.

[GSZ+98] Anuj Goel, Khurram Sajid, Hai Zhou, Adnan Aziz, and Vigyan Singhal.
BDD based procedures for a theory of equality with uninterpreted functions.
In CAV ’98: Proceedings of the 10th International Conference on Computer
Aided Verification, pages 244–255, London, UK, 1998. Springer-Verlag.

45

[GvdP00] Jan Friso Groote and Jaco van de Pol. Equational binary decision diagrams.
In Logic Programming and Automated Reasoning, pages 161–178, 2000.

[PRSS99] Amir Pnueli, Yoav Rodeh, Ofer Shtrichman, and Michael Siegel. Deciding
equality formulas by small domains instantiations. In CAV ’99: Proceedings
of the 11th International Conference on Computer Aided Verification, pages
455–469, London, UK, 1999. Springer-Verlag.

[vdPT05] Jaco van de Pol and Olga Tveretina. A BDD-representation for the logic
of equality and uninterpreted functions. In Mathematical Foundations of
Computer Science 2005, volume 3618 of Lecture Notes in Computer Science,
pages 769–780. Springer, 2005.

46

fun Or(φ1, φ2, Γ) =
if φ1 = T orelse φ2 = T then T
else if φ1 = F then φ2

else if φ2 = F then φ1

else
let (x1 = y1 ∧ φ11) ∨ φ12 be φ1

(x2 = y2 ∧ φ21) ∨ φ22 be φ2

in
if (x1, y1) = (x2, y2) then

let ψ2 = Or(φ12, φ22, Γ)
Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2]
φ′

11 = Filter(φ11, Γ
′)

φ′
21 = Filter(φ21, Γ

′)
ψ1 = Or(φ′

11, φ
′
21, Γ

′)
in

Build(x1 = y1, ψ1, ψ2)
end

else if (x1, y1) � (x2, y2) then
let ψ2 = Or(φ12, φ2, Γ)

Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2]
ψ1 = Filter(φ11, Γ

′)
in

Build(x1 = y1, ψ1, ψ2)
end

else // (x2, y2) � (x1, y1)
let ψ2 = Or(φ1, φ22, Γ)

Γ ′ = Γ [(x2 = y2 ∧ []) ∨ ψ2]
ψ1 = Filter(φ21, Γ

′)
in

Build(x2 = y2, ψ1, ψ2)
end

end
end

Fig. 8. Function Or

47

fun Reorder(x = y, φ1, φ2, Γ) =
if φ2 = T then φ2

else if φ2 = F then
Reorder1(x = y, φ1, φ2, Γ)

else // φ2 is neither T nor F.
let (x2 = y2 ∧ φ21) ∨ φ22 be φ2

in
if (x, y) = (x2, y2) then

Reorder(x = y,Or(φ1, φ21, Γ [(x = y ∧ []) ∨ φ22]), φ22, Γ)
else if (x2, y2) � (x, y) then

Or(Build(x2 = y2, φ21,F),Reorder(x = y, φ1, φ22, Γ), Γ)
else // (x, y) � (x2, y2)

Reorder1(x = y, φ1, φ2, Γ)
end

and Reorder1(x = y, φ1, φ2, Γ) =
if φ1 = F then φ2

else if φ1 = T then Build(x = y, φ1, φ2)
else // φ1 is neither T nor F.

let (x1 = y1 ∧ φ11) ∨ φ12 be φ1

in
if (x, y) � (x1, y1) then Build(x = y, φ1, φ2)
else // (x1, y1) � (x, y)

// Note: (x1, y1) = (x, y) is impossible,
// since φ1 is reduced in context Γ [(x = y ∧ []) ∨ φ2].
let ψ2 = Reorder(x = y, φ12, φ2, Γ)

Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2]
ψ1 = Reorder(maxRΓ ′ [x] = y, φ11,F, Γ

′)
in

Build(x1 = y1, ψ1, ψ2)
end

end

Fig. 9. Mutually Recursive Functions Reorder and Reorder1

48

fun And(φ1, φ2, Γ) =
if φ1 = F orelse φ2 = F then F
else if φ1 = T then φ2

else if φ2 = T then φ1

else // φ1 and φ2 are not T or F
let (x1 = y1 ∧ φ11) ∨ φ12 be φ1

(x2 = y2 ∧ φ21) ∨ φ22 be φ2

in
if (x1, y1) = (x2, y2) then

let ψ2 = And(φ12, φ22, Γ)
Γ ′ = Γ [(x1 = y1 ∧ []) ∨ ψ2]
φ′

12 = Filter(φ12, Γ
′)

φ′
22 = Filter(φ22, Γ

′)
ψ3 = And(φ11, φ21, Γ

′)
ψ4 = And(φ11, φ

′
22, Γ

′)
ψ5 = And(φ′

12, φ21, Γ
′)

ψ1 = Or(Or(ψ3, ψ4, Γ
′), ψ5, Γ

′)
in

Build(x1 = y1, ψ1, ψ2)
end

else if (x1, y1) � (x2, y2)
let ψ2 = And(φ12, φ2, Γ)

φ′
2 = Filter(φ2, Γ [(x1 = y1 ∧ []) ∨ ψ2])
ψ1 = And(φ11, φ

′
2, Γ [(x1 = y1 ∧ []) ∨ ψ2])

in
Build(x1 = y1, ψ1, ψ2)

end
else // (x2, y2) � (x1, y1)

let ψ2 = And(φ1, φ22, Γ)
φ′

1 = Filter(φ1, Γ [(x2 = y2 ∧ []) ∨ ψ2])
ψ1 = And(φ′

1, φ21, Γ [(x2 = y2 ∧ []) ∨ ψ2])
in

Build(x2 = y2, ψ1, ψ2)
end

end

Fig. 10. Function And

49

fun Exists(z, φ) =
let fun Ex(ψ, V) =

if V is empty then ψ
else

let v be an element of V
ψ′ = Reduce(φ, [(v = z ∧ []) ∨ F])

in
Ex(Or(ψ′, ψ, []), V \ v)

end
V be the set of all variables other than z that occur in φ

in
if φ = T then φ else Ex(F, V)

end

Fig. 11. Function Exists

fun Forall(z, φ) =
if φ = T orelse φ = F then φ
else // φ 6= T and φ 6= F

let (x = y ∧ φ1) ∨ φ2 be φ
in

if x = y involves z then Forall(z, φ2)
else Build(x = y,Forall(z, φ1),Forall(z, φ2))

end

Fig. 12. Function Forall

fun Implies(φ, ψ) =
let
x and y be variables such that x � y and y � v

for all variables v that occur in φ or ψ
ϕ = Filter(φ, [(x = y ∧ []) ∨ ((x = y ∧ ψ) ∨ F)])

in
if ϕ = F then true else false

end

Fig. 13. Function Implies

50

fun Rename(f, φ) =
let fun Bar(φ) =

if φ = T orelse φ = F then φ
else

let (x = y ∧ φ1) ∨ φ2 be φ
in

Build(x̄ = ȳ,Bar(φ1),Bar(φ2))
end

V = the set of variables occurring in φ
in

Reduce(Bar(φ), Γf,V)
end

Fig. 14. Function Rename

51

