
UNPUBLISHED 2010

A Cartesian Bicategory of Nondeterministic
Arrows between Domains

Eugene W. Stark1

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400, USA

Abstract

We show how a simple intuitive conception of nondeterministic computation leads to a construction, given a
locally ordered bicategory D having finite bicategorical products (for example, a bicategory of domains and
continuous functions with extensionally ordered homs), of a bicategory ND of “nondeterministic arrows”
that embeds D as a locally full sub-bicategory. The cartesian product on D extends to a pseudofunctorial
tensor product on ND. We show that, in case the homs of D are bounded-complete directed complete
partial orders with composition respecting local directed colimits, then a nondeterministic arrow in ND is
a left adjoint (i.e. a “map”) if and only if it is isomorphic to a strict, sup-preserving arrow of D. Under the
additional assumption that D has local terminal objects (i.e each hom has a “top”), then ND is a cartesian
bicategory in the sense of Carboni, et al. In addition, we note that the “trace” that exists on D via the
fixed point theorem extends in a natural way to ND, thus pointing the way to the use of ND for defining
the semantics of nondeterministic programming constructs.

Keywords: cartesian bicategory, denotational semantics, domain, nondeterminism, trace

1 Introduction

Traditional denotational semantics takes place in a category D of “domains,” which
typically has as objects some kind of complete partially ordered sets (cpos), with
continuous functions as morphisms. The category D comes with sufficient structure
to permit the construction of various kinds of domains to be used as the targets
of semantic maps. Such structure typically includes finite products, various kinds
of lifting and sum constructions, construction of function spaces, and the ability to
solve recursive domain equations as well as to solve recursive specifications on an
individual domain [4]. Such a setting has been very successful as a framework for
defining the meaning of deterministic, “function-like” programs, which perform a
unique computation on each input. It has not been so successful at defining the
meaning of nondeterministic programs, which have the potential to perform many
different computations on a single input.

1 Email: stark@cs.sunysb.edu

mailto:stark@cs.sunysb.edu

Stark

The traditional approach to defining the meaning of a nondeterministic program
P taking inputs in domain A and producing outputs in domain B is to define the
meaning of P to be a function f : A → P(B), where P(-) is a powerdomain con-
struction on D that has been devised so as to be compatible with the other available
constructions [8]. Although this approach is adequate for defining the meanings of
first-order nondeterministic programs on “flat” domains, it is not as satisfactory
for higher-order programs or programs that operate on structured domains. The
requirements imposed by the setting of cpos and continuous functions seem some-
how at odds with the desire to describe programs with multiple execution paths. In
essence, a shoehorn is used to cast non-functional programs in a functional mold.

An alternative way of thinking about nondeterministic programs is in terms of
relations, rather than functions. This approach also works very well for first-order
programs on non-structured domains. However, an attempt to extend relational se-
mantics to programs whose inputs and outputs are in non-flat domains immediately
reveals serious problems. Dataflow networks (i.e. networks of stream-processing
programs) [7] make a good test case. In such networks, each individual program,
running asynchronously, reads data “tokens” from input streams and emits tokens
to output streams. As is well-known, if the individual programs are deterministic
in the sense of having functional input/output behavior, then the entire network is
as well, and the behavior of the network is determined by the behaviors of the com-
ponents according to a least fixed point principle (the so-called “Kahn principle”).
This is handled quite well in a traditional denotational semantic setting using do-
mains of finite and infinite sequences to model the input and output streams. If one
introduces non-functional programs, though, such as programs capable of nondeter-
ministically merging tokens arriving on multiple input streams into a single output
stream, then naive attempts to apply denotational semantics fail to assign mean-
ings that agree with the intuitive operational model. Such programs can no longer
be modeled in a direct way as continuous functions, attempts to shoehorn them
into the functional mold by defining their meanings as continuous functions into a
powerdomain produces “unrealistic” infinite results, and attempting to model non-
deterministic stream-processing programs as ordinary relations does not even lead
to a compositional semantics [1].

If one considers further the failure of powerdomains and ordinary relations to
provide a proper semantics for nondeterministic programs, a conclusion one can
reach is that it is not enough to simply keep track, as ordinary relations do, of which
inputs are related to which outputs; it is necessary to incorporate information about
the ways in which inputs are related to outputs. This idea suggests attempting to
view nondeterministic programs as denoting generalized relations, which permit a
given input and output to be related in more than one way and to even permit the
set of ways of relating an input and output to have algebraic structure, rather than
just being a simple set. This kind of approach has been investigated in the context
of non-deterministic dataflow [5,9,11,12,13].

In recent years, there has been a great deal of progress in the use of category
theory to study theories of generalized relations. One appealing approach looks
at a relation r from A to B as an arrow (1-cell) in a bicategory, whose 2-cells
generalize the inclusion relations that hold between ordinary set-theoretic relations.

2

Stark

The theory of “cartesian bicategories” developed by Carboni, Walters, and their
colleagues [2,3] is an elegant example of the study of relations from this point of
view. It is significant that traditional categories of domains, equipped as they are
with an ordering on their homs, are already bicategories.

If one accepts the ideas: (1) that nondeterministic programs should be treated as
generalized relations; and (2) that generalized relations occur as the 1-cells in some
kind of a bicategory, then it becomes natural to look for a bicategorical setting that
generalizes the classical approach based on cpos, continuous functions, and least
fixed points. In particular, one would like to have a bicategory that embeds as
a sub-bicategory a category of cpos and continuous functions and in addition has
arrows representing generalized relations that can be used to define the semantics
of nondeterministic programs.

To explore a bit further, suppose that we are working with a particular category
D of “domains.” We don’t need to know exactly what “domains” or their morphisms
are, but we do assume that D has partially ordered homs and that composition
respects the ordering. That is, we assume that D is a locally ordered bicategory. In
addition, we assume that D has a terminal object I and finite products (denoted by
×), both in the bicategorical sense, which implies that each hom-category D(X, I) is
equivalent to the one-object, one-arrow category, and each hom-category D(X,A×
B) is equivalent to the product category D(X,A) × D(X,B). As a motivating
example, D could be the category of bounded-complete directed-complete partial
orders (dcpos) with continuous functions as arrows, though we don’t need to make
use of bounded-completeness or continuity just yet.

Now, suppose we want to extend D from a bicategory of “function-like” arrows
to a bicategory ND of “relation-like” arrows that can serve as denotations for non-
deterministic programs. Our intention is to keep the same objects but expand the
collection of arrows (as well as the 2-cells). The question is, where are going to use
for these new, “nondeterministic arrows”? One idea is to think of nondeterministic
arrows as functions that produce sets of results, but that leads to the powerdomain
approach with its attendant difficulties. Another idea is to think of a nondetermin-
istic arrow from A to B as a span A ← U → B in D, as spans nicely capture the
idea of generalized relations that permit inputs to be related to outputs in multiple
ways, possibly with structure. However, we are then faced with the problems of
trying to determine precisely which spans we should use (i.e how generalized should
our generalized relations be?) and how they should compose (the composition of
general spans by pullback does not immediately lead to a way of nicely embed-
ding D into our new bicategory). Instead of doing this, we are going to describe
a different approach, which leads in the end to a result that could also have been
described in terms of spans, but which provides solutions to the above problems
more automatically.

Our approach is based on a key revision to the way we think about how non-
determinism is related to computation: instead of thinking of nondeterminism as
presenting choices that unfold from time to time as computation progresses, we
think of a complete possible resolution of the nondeterministic choices as being sup-
plied in advance, essentially as an additional input. This is much like the idea of
an “oracle,” except that, unlike the usual input-only conception of an oracle, our

3

Stark

nondeterministic arrows will also output this kind of information as well as input it.
In more detail, we think of a nondeterministic program P taking inputs in A and
producing outputs in B as a function p : A × U → U × B, where U is an “object
of computations”. Such a function takes an input a ∈ A and a target computation
u ∈ U and produces, in addition to a result b ∈ B, a computation u′ ∈ U that
constitutes an accessible approximation of the given computation u. The intuition
is that u′ represents that portion of the given target computation that it is possible
for P to perform, given that the input available is a. By assuming that a target
computation u is given in advance, and that computation proceeds toward this tar-
get computation, we avoid failures of continuity that arise when we try to think
of the nondeterministic choices as being resolved incrementally as the computation
unfolds.

Some conditions on p are necessary in order to accurately capture the above
intuition. In particular, if p takes 〈a, u〉 to 〈u′, b〉, then if u′ is to be regarded as
an accessible approximation to target computation u it should be the case that
u′ v u. In addition, the notion of accessible approximation ought in some sense to
be “stable”: if u′ is the approximation that can be reached, given input a, to target
computation u, then u′ ought also to be the approximation that can be reached,
given input a, if the target computation is u′ itself. We are therefore led to make
the following definition.

Definition 1.1 [Nondeterministic Arrow] Let A and B be objects of D. A nonde-
terministic arrow from A to B consists of an ordinary arrow p : A × U → U × B
such that the following conditions hold:

(i) πU
U,B · p v πU

A,U .

(ii) p · 〈πA
A,U , π

U
U,B · p〉 = p.

Here πA
A,U : A × U → A and πU

U,B : U × B → B denote projections, and ·
denotes composition. We refer to U as the object of computations of p, and we write
p : A −→

U
B to assert that p is a nondeterministic arrow from A to B, with object

of computations U .
At this point and in the sequel it is extremely useful to visualize expressions

denoting arrows of D as “schematic diagrams.” For example, condition (ii) of
Definition 1.1 can be visualized as shown in Fig. 1. The properties of D (in particular
the fact that it is a cartesian category) enable us to perform sound reasoning using
these schematic diagrams rather than having to work with complex terms or even
traditional commutative diagrams.

Note that the concept of nondeterministic arrow generalizes that of ordinary
arrows, in the sense that an ordinary arrow f : A → B can be identified with
the nondeterministic arrow f : A × I → I × B, where I is the terminal object in
D (i.e. the one-point domain). Aside from placing a subscript under the arrow,
we won’t bother to make any notational distinction between an ordinary arrow
f : A→ B and the corresponding nondeterministic arrow f : A −→

I
B.

Nondeterministic arrows p : A −→
U

B and q : B −→
V

C can be composed in a way

that generalizes composition of ordinary arrows. The intuition is to think of p and
q as each working separately toward their respective target computations, except

4

Stark

B

U

A U

Bp U

A U

Bp

U

A U

Bp

=

U B

A U A U

U

Fig. 1. Condition (ii) of Definition 1.1

p

B

A U V

A U

U B

V C

V

V CU

q

A

p p

U U

A U U

U U B B

U B U B

2

1 2 2

2

2

11 2 2

11

1

1

1A 1 A 2

2

Fig. 2. Composite and Tensor Product of Nondeterministic Arrows

that the output produced by p is consumed by q.

Definition 1.2 [Composition] Suppose p : A −→
U

B and q : B −→
V

C are non-

deterministic arrows. The composite of p and q is the nondeterministic arrow
q ◦ p : A −→

U×V
C defined by:

q ◦ p = (1U × q) · (p× 1V)

(see Fig. 2).

Note that ordinary identity arrows 1A : A → A determine nondeterministic
arrows 1A : A −→

I
A that are “almost” left and right units for the generalized

notion of composition, except that if p : A −→
U

V then 1B ◦ p : A −→
U×I

B and

p ◦ 1A : A −→
I×U

B. But I × U ' U ' U × I, so in some sense p, 1B ◦ p, and p ◦ 1A

are “isomorphic,” but this has yet to be made precise. Similarly, composition of
nondeterministic arrows is “almost” associative: if p : A −→

U
B, q : B −→

V
C, and

r : C −→
W

D, then r ◦ (q ◦ p) : A −→
(U×V)×W

D, whereas (r ◦ q) ◦ p : A −→
U×(V×W)

D.

In any case, the situation in which unit and associativity laws hold only up to
isomorphism is characteristic of a bicategory.

The category D has a cartesian structure derived from the terminal object I
and products ×. As is well-known, this structure can be axiomatized in terms
of equations between terms constructed using identities (1A : A → A), diagonals
(δA : A→ A×A), terminals (τA : A→ I), symmetries (σA,B : A×B → B×A), left
and right unit isomorphisms (λA : I×A ' A and ρA : A×I ' A), and associativities
(αA,B,C : (A × B) × C ' A × (B × C) and their inverses α−1

A,B,C), using · and ×.

5

Stark

Pairing and projections can then be recovered from this structure via the definitions

〈f, g〉 = (f × g) · δX πA
A,B = ρA · (1A × τB) πB

A,B = λA · (τA × 1B)

Since it is very tedious to keep track of associativity and left and right unit iso-
morphisms, it will be convenient for us to assume that these are in fact identities
(i.e. that the monoidal structure determined by the product is strict). There is
no real harm in this assumption, since it can always be arranged by a suitable
choice of products. So we will generally not bother about differences in bracketing
of products, and when there is no loss in clarity we will also drop factors of I in
products.

Since all of the above arrows are also nondeterministic arrows, and equational
laws that hold between ordinary arrows clearly also hold up to isomorphism between
nondeterministic arrows, the cartesian structure on D will induce (assuming that the
necessary coherence conditions hold) a symmetric monoidal structure (and more)
on ND, if we can define a suitable generalization ⊗ of the product × on arrows of
D. This we do as follows:

Definition 1.3 [Tensor Product] Suppose p : A1 −→
U1

A2 and q : A2 −→
U2

B2 are

nondeterministic arrows. The tensor product of p and q is the nondeterministic
arrow p⊗ q : A1 ×A2 −→

U1×U2

B1 ×B2 defined by:

p⊗ q = (1U1 × σB1,U2 × 1B2) · (p× q) · (1A1 × σA2,U1 × 1U2)

(see Fig. 2).

We now wish to show that nondeterministic arrows are the 1-cells of a bicategory
ND that embeds D, but in order to do so we have to find the right notion of 2-cell;
i.e. of morphism of nondeterministic arrows. To motivate the definition, we need to
explore in a bit more detail the intuition behind our definition of nondeterministic
arrow.

2 Morphisms

Suppose p : A −→
U

B is a nondeterministic arrow. As an ordinary arrow, p :

A × U → U × B, hence p can be written as 〈pU , pB〉 where pU : A × U → U

and pB : A × U → B. In addition, p determines, for each a ∈ A, an arrow
pU

a : U → U , defined by pU
a (u) = pU (〈a, u〉). From Definition 1.1 it follows that pU

a

is decreasing (pU
a v 1U) and idempotent (pU

a · pU
a = pU

a). It is therefore a coreflexive
(or “coclosure”).

Let us temporarily assume that the D is in fact the category of bounded complete
dcpos and continuous functions. Then the image Im(pU

a) of pU
a (which also happens

to be the set {u : pU
a (u) = u} of fixed points of pU

a) is a coreflective subobject of
U (in domain-theoretic terminology this would be called a “normal subdomain”
or “retract” [4]). We will refer to Im(pU

a) as the fiber of p over a, suggesting
a connection with fibrations which is in fact the motivation for our definition of
morphism. If u is an element of the fiber of p over a, then u is also an element of the

6

Stark

fiber of p over a′ for any a′ with a v a′. This is because pU
a (u) = u, hence u v pU

a′(u)
by monotonicity, but also pU

a′(u) v u because pU
a′ is decreasing. Conversely, if u′ is

the fiber of p over a′, then for each a ∈ A such that a v a′ the fiber of p over a′

contains a greatest u v u′ such that u is in the fiber of p over a.
For our specific choice of D, then, a nondeterministic arrow p : A −→

U
B therefore

determines an A-indexed collection {Ua : a ∈ A} of coreflective subdomains of U ,
such that whenever a v a′ then the domain Ua is a coreflective subdomain of Ua′ .
Each subdomain Ua consists of those computations u ∈ U that are accessible given
input a ∈ A. In addition, p determines, for each a ∈ A, an output map pB

a : Ua → B.
By the monotonicity of p we have the following relations:

a v a′ implies pB
a (u) v pB

a′(u), for all u ∈ Ua.

a v a′ implies pB
a (pU

a (u)) v pB
a′(u), for all u ∈ Ua′ .

That is, the embeddings and reflectors between the fibers preserve output in a lax
sense. To summarize the above discussion, a nondeterministic arrow p : A −→

U
B

determines a functor p̂ from A to the category of B-labeled coreflective subdomains
of U , where the latter is equipped with morphisms that are lax output-preserving
embeddings.

The above structure is in accordance with our intuition about nondeterministic
arrows. When presented with input a ∈ A, a nondeterministic program can proceed
toward any target computation u in the fiber Ua. Associated with each such com-
putation is a corresponding output. If the input should increase from a to a′, then
additional computations in Ua′ become available, along with additional output. The
maximal elements of Ua represent possible computations on input a that are fully
developed, or “completed.”

We now present our definition of “morphism of nondeterministic arrow,” which
is intended to capture that the above structure of inputs, fibers, and output maps is
preserved in a suitable way. At this point we drop our temporary assumption about
the concrete structure of D, as it is not required in order to state the definition.

Definition 2.1 Suppose p : A −→
U

B and q : A −→
V

B are nondeterministic arrows.

A morphism from p to q is an arrow µ : A×U → V of D that satisfies the following
conditions (see Fig. 3):

(i) qU · 〈πA
A,U , µ〉 = µ.

(ii) µ · 〈πA
A,U , p

U 〉 = µ.

(iii) pB v qB · 〈πA
A,U , µ〉.

We write µ : p⇒ q to assert that µ is a morphism from p to q.

It is convenient to introduce one further bit of notation: if f : A×U → V is any
arrow, then f#A

denotes the arrow 〈πA
A,U , f〉 : A×U → A×V . Using this notation,

together with the abbreviations pU = πU
U,B · p and pB = πB

U,B · p, we can write the
above conditions in the less-cluttered form: (i) qU · µ#A

= µ; (ii) µ · pU
#A

= µ; and
(iii) pB v qB · µ#A

.

7

Stark

V

A

V

V

V

B

A U

V

A U A U

=V

µ

q

µ

A U

VV

V

A U

V

U A U

= µ

U

A µ U

A

U B
p

A

B

A U

V

µA U

A U

A

V

V

B
p

B

A

V

V

B
q

Fig. 3. Morphism Conditions

U

A

A V

µ

U

A

V

W

υ

W

A

B W

A Uµ

V BU

A U
p

X

υ

W

X

U

V

Fig. 4. Vertical and Horizontal Composite of Morphisms

In the context of our intuitive motivation, conditions (i) and (ii) express the
idea that µ essentially “acts fiberwise,” so that for each a ∈ A, the mapping µ〈a, - 〉
is the least extension to all of U of a mapping that takes the fiber of p over a to
the fiber of q over a. Condition (iii) expresses the idea that a morphism preserves
output in a lax fashion.

Proposition 2.2 Suppose f, g : A −→
I
B are nondeterministic arrows correspond-

ing to the ordinary arrows f, g : A→ B. Then f v g in D if and only if there exists
a morphism µ : f ⇒ g. Moreover, if such a morphism µ exists, then it is unique.

Note that the only possible choice for an arrow µ : A × I → I is the terminal
arrow τA×I . For such an arrow, conditions (i) and (ii) in Definition 2.1 are trivial.
Condition (iii) is satisfied if and only if f v g.

Definition 2.3 [Composition, Identities] Suppose p : A −→
U

B, q : A −→
V

B, and

r : A −→
W

B are nondeterministic arrows. If µ : p ⇒ q and ν : q ⇒ r, then the

(vertical) composite of µ and ν is the morphism ν∗µ : p⇒ r defined by ν∗µ = ν ·µ#A

(see Fig. 4). The identity morphism on p is the morphism 1p : p⇒ p corresponding
to the arrow pU : A× U → U .

Proposition 2.4 Composition of morphisms is associative, with identity morphisms
as units. Thus for each pair of objects (A,B) the set ND(A,B) of nondeterministic
arrows from A to B, equipped with the morphisms between them and the specified
identities, is a category.

As usual, an isomorphism from p to q is a morphism µ : p⇒ q that is invertible.
We say that p and q are isomorphic if there exists an isomorphism µ : p⇒ q. Note
that, because of the choice we have made for identity morphisms, nondeterministic

8

Stark

arrows p : A −→
U

B and q : A −→
V

B can be isomorphic in ND without necessarily

having U and V be isomorphic objects of D.

Proposition 2.5 Suppose p : A −→
U

B and q : B −→
V

U are nondeterministic

arrows. Then arrow µ : A × U → V of D determines an isomorphism µ : p ' q if
and only if there exists an arrow ν : A × V → U of D such that ν · µ#A

= pU and
µ · ν#A

= qV hold in D.

In order for nondeterministic arrows to be the 1-cells of a bicategory, with mor-
phisms as the 2-cells, we need composition of nondeterministic arrows to be functo-
rial; i.e. for each triple of objects (A,B,C) sequential composition should determine
a functor

◦ : ND(B,C)×ND(A,B)→ ND(A,C).
Such a functor will need to produce, given morphisms µ : p ⇒ q and ν : r ⇒ s

of nondeterministic arrows p, q ∈ ND(A,B) and r, s ∈ ND(B,C) a horizontal
composite

ν ◦ µ : r ◦ p⇒ s ◦ q.

Definition 2.6 Suppose p : A −→
U

B, q : A −→
V

B, r : B −→
W

C, and s : B −→
X

C

are nondeterministic arrows, and µ : p ⇒ q and ν : r ⇒ s are morphisms. The
horizontal composite of µ and ν is the morphism ν ◦ µ : r ◦ p ⇒ s ◦ q defined as
follows (see Fig. 4):

ν ◦ µ = (1V × ν) · (µ× pB × 1W) · (δA×U × 1W)

It is not immediately obvious that this definition of horizontal composite works
properly. In order to verify that the horizontal composite of morphisms is again a
morphism requires some key observations.

Lemma 2.7 Suppose p : A −→
U

B is a nondeterministic arrow. Then u : X → U

and a v a′ : X → A implies pU · 〈a′, pU · 〈a, u〉〉 = pU · 〈a, u〉.

Corollary 2.8 Suppose p : A −→
U

B and q : A −→
V

B are nondeterministic arrows,

and µ : p⇒ q is a morphism. Then u : X → U and a v a′ : X → A implies

qV · 〈a′, µ · 〈a, u〉〉 = qV · 〈a, µ · 〈a, u〉〉

Corollary 2.9 ν ◦ µ satisfies condition (i) of Definition 2.1.

Proposition 2.10 The horizontal composite of morphisms is again a morphism,
the horizontal composite of identity morphisms is again an identity morphism, and
horizontal composite satisfies the interchange law: (ρ ∗ π)◦(ν ∗ µ) = (ρ ◦ ν)∗(π ◦ µ).
Composition of nondeterministic arrows therefore determines a family of functors:

◦ : ND(B,C)×ND(A,B)→ ND(A,C).

The interchange law can be verified by comparing the schematic diagrams for
(ρ ◦ ν) ∗ (π ◦ µ), and (ρ ∗ π) ◦ (ν ∗ µ), using Corollary 2.9 and making an additional
application of Corollary 2.8.

We can now establish:

9

Stark

Theorem 2.11 There is a bicategory ND having the objects of D as 0-cells, the
nondeterministic arrows as 1-cells, and the morphisms of nondeterministic arrows
as 2-cells, with the indicated identities and composition, and evident associativity
and unit isomorphisms. The correspondence between ordinary arrows f : A → B

and nondeterministic arrows f : A −→
I

B extends to an equivalence of D with a

locally full sub-bicategory of ND.

3 Maps

Recall that an adjunction in a bicategory consists of a pair of 1-cells g : A→ B (the
left adjoint) and f : B → A (the right adjoint), together with 2-cells η : 1A ⇒ f · g
(the unit) and ε : g ·f ⇒ 1B such that the so-called “triangle identities” are satisfied:

(εg) · (gη) = 1g (fε) · (ηf) = 1f .

Work of Carboni, Walters et al on cartesian bicategories [2,3] indicates the important
role played by the maps, which are arrows that are left adjoints. In particular, in a
bicategory whose 1-cells are some kind of generalized relation one expects the maps
to be the relations that are in some sense “functional.”

Proposition 3.1 Every map g : A −→
V

B in ND is isomorphic to an arrow of the

form ĝ : A −→
I
B.

Proposition 3.2 Suppose g : A → B is an arrow of D and g : A −→
I

B is the

corresponding nondeterministic arrow in ND. If g has a right adjoint f : B → A

in D, then g : A −→
I
B has f : B −→

I
A as a right adjoint in ND.

Proposition 3.3 Suppose g : A→ B is an arrow of D. If 〈g, 1A〉 : A→ B×A has
a right adjoint left inverse f : B×A→ A in D, then g : A −→

I
B is a map in ND,

with right adjoint g∗ : B −→
A

A given by the arrow δA · f : B ×A→ A×A of D.

Corollary 3.4 Each nondeterministic arrow τA : A −→
I

I is a map in ND, with

right adjoint τ∗A : I −→
A

A given by the arrow δA · πA
I,A : I ×A→ A×A of D.

We can further characterize the maps in ND if we impose additional conditions
on D.

Assumption 3.5 Suppose D has homs that are bounded complete dcpos with least
element, such that composition preserves directed suprema.

Proposition 3.6 Under Assumption 3.5, a nondeterministic arrow g : A −→
V

B

in ND is a map if and only if as an arrow g : A × V → V × B of D it is strict
(g · ⊥A = ⊥B) and sup-preserving g · (f1 t f2) = (g · f1) t (g · f2) whenever f1 t f2

exists).

Corollary 3.7 Under Assumption 3.5, the following are maps in ND:

(i) All nondeterministic arrows δA : A −→
I
A×A.

10

Stark

(ii) All nondeterministic arrows πA
A,B : A×B −→

I
A and πB

A,B : A×B −→
I

B

determined by projections in D.

The right adjoint to δA : A −→
I

A×A is the arrow δ∗A : A×A −→
I

A cor-

responding to the arrow δ∗A : A × A → A which is right adjoint to δA in D. If
f1, f2 : X → A, then δ∗A · 〈f1, f2〉 is the meet f1 u f2 of f1 and f2 in D(X,A). A
right adjoint to πA

A,B : A×B −→
I

A is the nondeterministic arrow A −→
B

A×B
corresponding to the arrow

(σB,A × 1B) · (1A × δB) : A×B → B ×A×B

of D. Intuitively, this nondeterministic arrow takes its argument a and pairs it with
a nondeterministically chosen element of B to produce its output.

4 Cartesian Structure

In Definition 1.3 we defined a binary operation ⊗ that takes nondeterministic
arrows p1 : A1 −→

U1

B1 and p2 : A2 −→
U2

B2 to a nondeterministic arrow p1 ⊗ p2 :

A1 ×A2 −→
U1×U2

B1 ×B2. This operation can be extended to morphisms. Suppose

p1 : A1 −→
U1

B1, q1 : A1 −→
V1

B1, p2 : A2 −→
U2

B2, and q2 : A2 −→
V2

B2 and suppose

µ1 : p1 ⇒ q1 and µ2 : p2 ⇒ q2. Let µ1 ⊗ µ2 be the arrow

µ1 ⊗ µ2 : A1 ×A2 × U1 × U2 → V1 × V2

defined by
µ1 ⊗ µ2 = (µ1 × µ2) · (1A1 × σA2,U1 × 1U2).

It is then straightforward to verify that µ1 ⊗ µ2 satisfies the conditions for a mor-
phism µ1 ⊗ µ2 : p1 ⊗ p2 ⇒ q1 ⊗ q2, that 1p1 ⊗ 1p2 = 1p1⊗p2 , and that (ν1 ∗ µ1) ⊗
(ν2 ∗ µ2) = (ν1 ⊗ ν2) ∗ (µ1 ⊗ µ2), so that ⊗ determines a family of functors

⊗ : ND(A1, B1)×ND(A2, B2)→ ND(A1 ×A2, B1 ×B2).

For each pair of objects (A1, A2) there is an isomorphism φ : 1A1×A2 ' 1A1⊗1A2 .
In addition, given pairs of objects (A1, A2), (B1, B2), and (C1, C2), and pairs of
nondeterministic arrows (p1, p2) : (A1, A2) → (B1, B2), and (q1, q2) : (B1, B2) →
(C1, C2), there is an evident isomorphism ψ : (q1 ⊗ q2) ◦ (p1 ⊗ p2) ' (q1 ◦ p1) ⊗
(q2 ◦ p2), and the isomorphisms ψ can be shown to be the components of natural
transformations that behave sensibly with respect to associativity and unit isomor-
phisms of ND. This is somewhat messy, because the isomorphisms involved are
not simply isomorphisms in D, but rather are constructed from identities between
nondeterministic arrows. However, if p → q is any of these isomorphisms, then it
can be expressed in a normal form qV · (1A × γ), where γ : U → V is a canonical
isomorphism in D. Such normal forms are unique due to coherence in D. Moreover,
any isomorphism constructed by pasting together isomorphisms in normal form can
again be reduced to normal form by permuting the pU and qV terms with the iso-
morphisms in D and using Definition 1.1 (ii) to cancel out excess pU and qV terms
that accumulate. We therefore have:

11

Stark

Proposition 4.1 ⊗ extends to a pseudofunctor ⊗ : ND×ND→ ND.

Proposition 4.2 Under Assumption 3.5, ND has local binary products, given by
the formula

p u q ' δ∗B ◦ (p⊗ q) ◦ δA
which defines, for each pair of objects (A,B) a functor

u : ND(A,B)×ND(A,B)→ ND(A,B).

Tensor product ⊗ can be recovered from local product u in the sense that the formula

P (p1, p2) = ((πB1
B1,B2

)∗ ◦ p1 ◦ πA1
A1,A2

) u ((πB2
B1,B2

)∗ ◦ p2 ◦ πA2
A1,A2

) (1)

defines a functor P : ND(A1, B1)×ND(A2, B2)→ ND(A1 ×A2, B1 ×B2) that is
naturally isomorphic to ⊗ .

In the terminology of [2], a bicategory B is called precartesian if the locally full
subbicategory of maps has bicategorical products, denoted by ×, and biterminal,
denoted by I, and in addition each hom-category B(A,B) has local products, de-
noted by u, and terminal, denoted by >. In that case, the bicategory B admits
certain lax functors

B × B ⊗−→ B I←− I
derived from the product structure on the subbicategory of maps. The functor ⊗
is defined via formula (1) of Proposition 4.2. The functor I selects a monad in B,
consisting of the object I (the terminal object in the subbicatgory of maps), the
endo-1-cell > : I → I, equipped with the terminal 2-cells 1I ⇒ > and >> ⇒ > as
unit and multiplication, respectively. A precartesian bicategory is called cartesian
if ⊗ and I are in fact pseudofunctors [2,14].

Note that in view of Proposition 4.2, the tensor product in ND derived via the
formula (1) is naturally isomorphic to the tensor product we have defined explicitly.
We have already observed (Proposition 4.1) that this tensor product is pseudofunc-
torial. In addition, the monad in ND selected by the functor I defined above is
precisely that consisting of the object I, the endo-1-cell 1I : I −→

I
I and the iden-

tity 2-cell on this 1-cell as both unit and multiplication, because in ND the identity
1I : I → I is also the local terminal. We therefore obtain:

Theorem 4.3 Suppose Assumption 3.5, and in addition suppose that D has local
terminals. Then ND is a cartesian bicategory whose locally full subbicategory of
maps is equivalent to the locally full subbicategory of D determined by the strict,
sup-preserving arrows.

It is shown in [2] that every cartesian bicategory is a symmetric monoidal bicat-
egory. Thus we also have:

Corollary 4.4 Under the conditions of Theorem 4.3, ND is a symmetric monoidal
bicategory.

The assumption that D has local terminals can always be arranged by artificially
adding a top element to each of the homs, and suitably extending composition to
include it. However, requiring the existence of top elements tends to be somewhat

12

Stark

UA C

A U

U B

U B
p

C

Fig. 5. Trace of a Nondeterministic Arrow

awkward for use in denotational semantics. Since we are able to define tensor
product ⊗ (and its unit, I) on ND without needing to refer to local terminals, it
seems clear that ND “ought to be” a symmetric monoidal bicategory (though not
quite a cartesian bicategory in the sense of [2]) even without the assumption that
D has local terminals.

5 Trace

The category D is traced (in the sense of [6]), which means that it is equipped with
a family of functions TC

A,B : D(A×C,B×C)→ D(A,B) subject to conditions that
express naturality and the idea that TC

A,B(f) is a fixed point of the “feedback loop”
obtained by connecting the C-output of f back to its C-input. We can use the cpo
structure on the homs to explicitly define the trace on D. In particular, suppose
f : A×C → B×C is an arrow. Define the functor Φ : D(A,B×C)→ D(A,B×C)
by

Φ(g) = f · (1A × (πC
B,C · g)) · δA.

Let µΦ be the least fixed point of Φ. Then TC
A,B(f) is defined to be the arrow

πB
B,C · (µΦ).

The trace TC
A,B on D can be extended to a similar operation T C

A,B on nondeter-
ministic arrows.

Definition 5.1 [Trace] Suppose p : A× C −→
U

B × C is a nondeterministic arrow.

The trace of p by C is the nondeterministic arrow T C
A,B(p) : A −→

U
B defined by:

T C
A,B(p) = TC

A×U,U×B(p · (1A × σU,C))

(see Fig. 5).

To see whether the above definition is sensible, we need to invoke our original
intuition for the definition of nondeterministic arrows. Given a nondeterministic
arrow p : A× C −→

U
B × C, the nondeterministic arrow T C

A,B(p) will have the same

object of computations as p; i.e. T C
A,B(p) : A −→

U
B. Note that if U = I; that is, p is

the nondeterministic arrow corresponding to an ordinary arrow p : A×C → B×C,
then T C

A,B(p) will be the nondeterministic arrow corresponding to TC
A,B(p) : A→ B.

So the definition of T C
A,B extends that of TC

A,B.

13

Stark

Now, given an input a ∈ A and a target computation u ∈ U , the accessible
approximation u′ of u produced by p on input a will be the feedback accessible portion
of u. This can be described as follows. Start with c0 = ⊥C ∈ C and u0 = ⊥U ∈ U .
For k ≥ 0, if we have defined ck ∈ C, then let ck+1 = πC

B,C(pB×C(〈〈a, ck〉, u〉)) and
uk+1 = pU (〈〈a, ck〉, u〉). That is, ck+1 and uk+1 are obtained at the k+ 1st stage by
using as feedback input the output ck produced at the kth stage, but using original
target computation u. Thus uk+1 is the approximation of u that is accessible using
as input the feedback output ck generated at the previous stage. This procedure
generates a chain c0 v c1 v c2 v . . . in C. By monotonicity, the uk also form a
chain: u0 v u1 v u2 v The final accessible approximation u′ v u is the least
upper bound tk≥0uk.

Definition 5.1 is essentially the same as the definition of “feedback” that was
studied in [10]. In that paper, the definition was shown to be reasonable in the
sense that it gives results consistent with a more operational definition of feedback.
The following result is in essence the same as Lemma 6.1 of that paper, though
the axiomatic definition of “nondeterministic arrow” used in the present paper is
an improvement over the more cumbersome technical setup of the previous paper,
in which “objects of computations” were obtained as domains of computations of a
certain kind of automaton.

Proposition 5.2 Suppose p : A× C −→
U

B × C is a nondeterministic arrow. Then

T C
A,B(p) : A −→

U
B is again a nondeterministic arrow.

The proof of Proposition 5.2 uses the characterization T C
A,B(p) = πU×B

U×B,C ·
(
⊔

k≥0 pk), where p0 : A× U → U ×B × C is p · 〈〈πA
A,U ,⊥A×U,C〉, πU

A,U 〉 and

pk+1 = p · (1A × (πC
B,C · pk

B×C)× 1U) · (δA × δU).

It can be shown by induction on k that each pk satisfies the conditions to be a
nondeterministic arrow pk : A −→

U
B × C, hence by continuity

⊔
k≥0 pk and T C

A,B(p)

do, as well.

Proposition 5.3 For each triple of objects (A,B,C) the mapping T C
A,B extends to

a functor
T C

A,B : ND(A× C,B × C)→ ND(A,C).

If p : A× C −→
U

B × C, q : A× C −→
V

B × C, and µ : p ⇒ q, then the functor

takes µ to the morphism T C
A,B(µ) : T C

A,B(p)⇒ T C
A,B(q) determined by the arrow

µ · (1A × (πC
U×B,C · TC

A,B(p))× 1U) · (δA × δU) : A× U → V.

6 Conclusion

We have shown how, given a locally ordered bicategory D with finite bicategorical
products, to construct a bicategory ND of nondeterministic arrows that embeds
D up to equivalence as a locally full subbicategory. Nondeterministic arrows sat-
isfy some simple axioms motivated by an intuitive conception of nondeterministic

14

Stark

computation as progressing toward an accessible approximation to a target com-
putation. With some local completeness assumptions on D, the bicategory ND
provides a right adjoint for each strict, sup-preserving arrow of D; i.e. for each
arrow of D that qualifies to have such an adjoint. In this case, ND is a cartesian
bicategory that is determined by its subbicategory of left adjoints (the “maps”),
which is equivalent to the subbicategory of strict, sup-preserving arrows of D. We
showed how a notion of trace derived from local cpo structure on D extends to ND.

There are many questions that remain to be investigated. One is to see if/how
cartesian-closed structure on D transfers to ND, thereby providing the latter with
a notion of higher-order nondeterministic arrows. A general study of how local
limits and/or colimits in ND can be used to solve recursive specifications is also
needed if ND is to be of general utility as a bicategory of semantic domains. The
results about trace need to be strengthened: we have only established that trace
determines a family of functors on the homs of ND, but what should be shown is
that ND is in some sense a “traced monoidal bicategory.” That would require a
study of coherence issues for trace. It is also clear, assuming suitable completeness
conditions for D, that ND can be described as a bicategory of fibrations in D. A
full explication of this would be helpful.

References

[1] Brock, J. D. and W. B. Ackerman, Scenarios: A model of non-determinate computation, in:
Formalization of Programming Concepts, Lecture Notes in Computer Science 107, Springer-Verlag,
1981 pp. 252–259.

[2] Carboni, A., G. M. Kelly, R. F. C. Walters and R. J. Wood, Cartesian bicategories II, arXiv:0708.1921v1
[math.CT] (2007), pp. 1–32.

[3] Carboni, A. and R. F. C. Walters, Cartesian bicategories I, Journal of Pure and Applied Algebra 49
(1987), pp. 11–32.

[4] Gunter, C. and D. S. Scott, Semantic domains, in: J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Lecture Notes in Computer Science Volume B: Formal Models and Semantics,
MIT Press, 1990 pp. 633–674.

[5] Hildebrandt, T. T., P. Panangaden and G. Winskel, A relational model of non-deterministic dataflow,
Math. Struct. in Comp. Science 14 (2004), pp. 613–649.

[6] Joyal, A., R. Street and D. Verity, Traced monoidal categories, Mathematical Proceedings of the
Cambridge Philosophical Society 119 (1996), pp. 447–468.

[7] Kahn, G., The semantics of a simple language for parallel programming, in: J. L. Rosenfeld, editor,
Information Processing 74 (1974), pp. 471–475.

[8] Plotkin, G., A powerdomain construction, SIAM J. Comput. 5 (1976), pp. 452–487.

[9] Stark, E. W., Compositional relational semantics for indeterminate dataflow networks, in: Category
Theory and Computer Science, Lecture Notes in Computer Science 389, Springer-Verlag, Manchester,
U. K., 1989 pp. 52–74.

[10] Stark, E. W., A simple generalization of Kahn’s principle to indeterminate dataflow networks, in: M. Z.
Kwiatkowska, M. W. Shields and R. M. Thomas, editors, Semantics for Concurrency, Leicester 1990
(1990), pp. 157–176.

[11] Stark, E. W., Dataflow networks are fibrations, in: Category Theory and Computer Science, Lecture
Notes in Computer Science 530, Springer-Verlag, Paris, France, 1991 pp. 261–281.

[12] Stark, E. W., Fibrational semantics of dataflow networks, in: D. Sangiorgi and R. de Simone, editors,
CONCUR 98, Lecture Notes in Computer Science 1466 (1998), pp. 597–612.

[13] Winskel, G., Relations in concurrency, in: Logic in Computer Science (2005), revised version available
at http://www.cl.cam.ac.uk/ gw104/InvitedTalk-revised.pdf.

[14] Wood, R. J., Cartesian bicategories as symmetric monoidal bicategories, Technical Report CT07
2007JN17-23, Dalhousie University Mathematics Department (2007), talk slides.

15

	Introduction
	Morphisms
	Maps
	Cartesian Structure
	Trace
	Conclusion
	References

