
Fighting Livelock in the i-Protocol:

A Comparative Study of Veri�cation Tools

?

Yifei Dong, Xiaoqun Du, Y.S. Ramakrishna

??

, C.R. Ramakrishnan,

I.V. Ramakrishnan, Scott A. Smolka, Oleg Sokolsky

? ? ?

, Eugene W. Stark, and

David S. Warren

Department of Computer Science, SUNY at Stony Brook

Stony Brook, NY 11794{4400, USA

Abstract. The i-protocol, an optimized sliding-window protocol for GNU

UUCP, came to our attention two years ago when we used the Con-

currency Factory's local model checker to detect, locate, and correct a

non-trivial livelock in version 1.04 of the protocol. Since then, we have

repeated this veri�cation e�ort with �ve widely used model checkers,

namely, COSPAN, Mur', SMV, Spin, and XMC. It is our contention

that the i-protocol makes for a particularly compelling case study in

protocol veri�cation and for a formidable benchmark of veri�cation-tool

performance, for the following reasons: 1) The i-protocol can be used to

gauge a tool's ability to detect and diagnose livelock errors. 2) The size of

the i-protocol's state space grows exponentially in the window size, and

the entirety of this state space must be searched to verify that the pro-

tocol, with the livelock error eliminated, is deadlock- or livelock-free. 3)

The i-protocol is an asynchronous, low-level software system equipped

with a number of optimizations aimed at minimizing control-message

and retransmission overhead. It lacks the regular structure that is often

present in hardware designs. In this sense, it provides any veri�cation

tool with a vigorous test of its analysis capabilities.

1 Introduction

Model checking [CGP99] is a veri�cation technique aimed at determining whether

a system speci�cation possesses a property expressed as a temporal logic formula.

Model checking has enjoyed wide success in verifying, or �nding design errors in

real-life systems. An interesting account of a number of these success stories can

be found in [CW96].

In this paper, we report on our experience in using model checking|as

provided by six widely used veri�cation tools|to detect and correct a non-

trivial livelock in a bidirectional sliding-window protocol. The tools in ques-

tion are the Concurrency Factory [CLSS96], COSPAN [HHK96], Mur' [Dil96],

?

Research supported in part by NSF Grants CCR-9505562 and CCR-9705998, and

AFOSR grants F49620-95-1-0508 and F49620-96-1-0087.

??

Currently at: Sun Microsystems, Mountain View, CA 94043, USA.

? ? ?

Currently at: Department of Computer and Information Sciences, University of Penn-

sylvania, Philadelphia, PA 19104, USA.

SMV [CMCHG96], Spin [HP96], and XMC [RRR

+

97], each of which supports

some variety of model checking.

The protocol that we investigate, the i-protocol, is part of the GNU UUCP

package, available from the Free Software Foundation, and is used for �le trans-

fers over serial lines. The i-protocol is part of a protocol stack; its purpose is to

ensure ordered reliable duplex communication between two sites. At its lower

interface, the i-protocol assumes unreliable (lossy) packet-based FIFO connec-

tivity. To its upper interface, it provides reliable packet-based FIFO service.

A distinguishing feature of the i-protocol is the rather sophisticated manner in

which it attempts to minimize control-message and retransmission overhead. The

GNU UUCP package also contains the g- and j-protocols, which are variants of

the i-protocol.

A problem with the i-protocol, GNU UUCP version 1.04, was �rst noticed by

Stark, while trying to transfer large �les from a remote computer to his home PC

over a modem line. In particular, it appeared that, under certain message-loss

conditions, the protocol would enter a \confused" state and eventually drop the

connection. In order to diagnose this problem, we extracted an abstract version

of the i-protocol from its source code, consisting of approximately 1500 lines

of C code. We formalized this abstraction of the protocol in VPL (Value Pass-

ing Language), the textual speci�cation language of the Concurrency Factory

speci�cation and veri�cation toolset.

The VPL source of the i-protocol was then subjected to a series of model

checking experiments using the Concurrency Factory's local model checker for

the modal mu-calculus [RS97]. This led us to the root of the problem: a livelock

that occurs when a particular series of message losses drives the protocol into

a state where the communicating parties enter into a cycle of fruitless message

exchanges without any packets being delivered to the upper layer entities. Seeing

no progress, the two sides close the connection, which must then be reestablished.

If the communication line is su�ciently noisy, or if one of the sides is slow

in emptying communication bu�ers, say due to disk waits, leading to bu�er

overows, the chances of this scenario recurring are high, and can result in

extremely poor performance.

Using the Concurrency Factory's diagnostic facility, we were able to pinpoint

and subsequently \patch" the bug in the VPL code. The �x to the protocol

consists of a simple change in the way negative acknowledgements are handled.

The livelock error was �xed independently by Ian Taylor, the i-protocol's original

developer, in GNU UUCP version 1.05.

We repeated our model-checking-based veri�cation of the i-protocol with the

COSPAN, Mur', Spin, SMV, and XMC veri�cation tools, so that we could draw

some comparisons between these tools on a real-life protocol. The i-protocol

is particularly compelling as a case study in protocol veri�cation and as a

veri�cation-tool performance benchmark for several reasons. First, the version

we originally model checked has a bug, i.e. the livelock error, and hence the

protocol can be used to gauge a tool's ability to uncover errors of this nature. In

this case, we are more interested in debugging or refutation than in veri�cation.

2

Secondly, the size of the i-protocol's state space grows exponentially in the

window size, and the entirety of this state space will need to be searched to verify

that the protocol, with the livelock error eliminated, is deadlock- or livelock-free.

Finally, the i-protocol is an asynchronous, low-level software system equipped

with a number of optimizations aimed at minimizing control-message and re-

transmission overhead. It lacks the regular structure that is often present in

hardware designs. In this sense, it provides any veri�cation tool with a vigorous

test of its analysis capabilities.

Our experimental results show that the special-purpose cycle-detection al-

gorithms of Spin and COSPAN can be used to signi�cant advantage to check

for livelocks in complex systems like the i-protocol. SMV exhibited excellent

memory-usage performance on all runs of window size 1, but failed to complete

in a reasonable amount of time on any run of window size 2. This can most likely

be attributed to exponential blowup in the BDD representation for window sizes

greater than 1. Mur' and XMC performed the best on the i-protocol. In the case

of Mur' this is due to the low-level nature of its speci�cation language (guarded

commands) and the succinct manner in which system states are encoded. XMC's

strong performance is a consequence of the e�ciency of the underlying tabled

logic programming system, XSB [XSB97], and our use of partial evaluation to

specialize the logical formula capturing livelock to the i-protocol's behavior. Our

model-checking results are described more fully in Section 5 (see Table 1).

Although the Concurrency Factory was the tool we �rst used to detect and

diagnose livelock in the i-protocol, and it was able to do this for both window

sizes 1 and 2, its CPU time usage was in general signi�cantly higher in com-

parison with the other model checkers. The new release of the Factory, planned

for January 1999, uses a more sophisticated scheme for encoding value-passing

behavior of processes. We expect its performance to be on par with the other

tools.

In related work, [CCA96,Cor96] benchmark the performance of a variety

of model checkers (including SMV and Spin) on Ada tasking programs. The

major di�erences between our study and theirs is in the application domain (a

real-life communication protocol vs. a suite of concurrency analysis benchmark

programs) and in the type of properties considered (livelock vs. reachability).

The remainder of the paper is organized as follows. Section 2 describes the

salient features of the tools used in this case study. Section 3 gives a detailed

account of the i-protocol, with an emphasis on how we modeled the protocol for

veri�cation purposes. Section 4 describes the livelock that we discovered, and

shows how a small change to the protocol e�ectively eliminates this form of live-

lock. Section 5 summarizes the results of our model-checking experiments, and

o�ers a comparison of the tools' performance. Section 6 contains our concluding

remarks.

We have constructed a web site (http://www.cs.sunysb.edu/~lmc/iproto/)

to serve as a central repository for our results. The site contains the source code

of version 1.04 of the i-protocol, the patch to the C code to �x the livelock er-

ror, the encoding of the protocol in each of the input languages of the six tools,

3

and various performance statistics generated by our benchmarking activity. For

each tool, these include the number of states explored, number of transitions

traversed, CPU time usage, and memory usage (see Table 1).

2 The Veri�cation Tools

In this section, we describe the most salient features of the tools we used in our

analysis of the i-protocol.

2.1 The Concurrency Factory

In the context of our case study, the main features of the Concurrency Fac-

tory [CLSS96] are its textual speci�cation language, VPL, and its local model

checker for the modal mu-calculus [RS97]. VPL-supported data structures in-

clude integers of limited size and arrays and records composed of such integers.

A system speci�cation in VPL is a tree-like hierarchy of subsystems. A subsystem

is either a network or a process . A network consists of a collection of subsystems

running in parallel and communicating with each other through typed channels.

Simple statements of VPL are assignments of arithmetic or boolean expressions

to variables, and input/output operations on channels. Complex statements in-

clude sequential composition, if-then-else, while-do, and nondeterministic

choice in the form of the select statement.

LMC, the Factory's local model checker, computes in an on-the-y fashion

the product of a graph representation of the formula to be checked with the

labeled transition system (guaranteed to be �nite-state) underlying the VPL

program. The number of nodes of the product graph explored by LMC is further

minimized through the use of partial-order reduction. This technique eliminates

from consideration those portions of the state space resulting from redundant in-

terleavings of independent events. LMC is also equipped with diagnostic facilities

that allows the user to request that the contents of the depth-�rst search stack

be displayed whenever a certain \signi�cant event" occurs (e.g. when the search

�rst encounters a state at which a logical variable is determined to be either true

or false) and to play interactive games for the full modal mu-calculus.

2.2 COSPAN

COSPAN [HHK96] is a model checker for synchronous systems based on the

theory of !-automata. The system to be veri�ed is speci�ed as an !-automaton

P , the task the system is intended to perform is speci�ed as an !-automaton

T , and veri�cation consists of the automata language containment test L(P) �

L(T). P is typically given as the synchronous parallel composition of component

processes, speci�ed as !-automata. Asynchronous composition can be modeled

through nondeterministic delay in the components.

Language containment can be checked in COSPAN using either a symbolic

(BDD-based) algorithm or an explicit state-enumeration algorithm. Both algo-

rithms are \on-the-y." COSPAN also supports a notion of \recur edge" and can

4

check whether in every execution of the system the recur edge occurs in�nitely

often. We used this facility to detect livelock in the i-protocol.

Systems can be speci�ed in COSPAN using the S/R language, which sup-

ports nondeterministic, conditional (i.e., if-then-else) variable assignments;

variables of type bounded integer, enumerated, Boolean, and pointer; arrays

and records; and integer and bit-vector arithmetic. Modular hierarchy, scop-

ing, parallel and sequential execution, homomorphism declaration and general

!-automaton fairness are also available. COSPAN also provides an error tracing

facility that allows the user to back-reference from the error track to the S/R

source.

2.3 Mur'

The Mur' veri�cation system consists of the Mur' compiler and the Mur'

description language. The Mur' compiler generates a special-purpose veri�er

from a Mur' description. The Mur' description language uses a set of iter-

ated guarded commands, like Chandy and Misra's Unity language [CM88]. A

Mur' description consists of constant and type declarations, variable declara-

tions, procedure declarations, rule de�nitions, a description of the start state,

and a collection of invariants. Each rule is a guarded command consisting of a

condition and an action. The condition is a boolean expression and the action

is a sequence of statements. An invariant is a boolean expression that is desired

to be true in every state. When an invariant is violated, an error message and

error trace are generated.

Mur' is able to verify liveness speci�cations written in a subset of Linear

Time Temporal Logic (LTL). Liveness speci�cations are expressed using key-

words ALWAYS, EVENTUALLY, and UNTIL, and are checked under the assumption

that every rule is weak-fair (unless declared otherwise). We used this facility of

Mur' to encode and check for livelock in the i-protocol.

2.4 SMV

SMV [CMCHG96] is an automatic tool for model checking CTL formulas. CTL

can also be used to specify simple fairness constraints. The transition relation

of the system to be veri�ed is represented implicitly by boolean formulas, and

implemented by BDDs. This allows SMV to verify models having more than

10

20

states. SMV also has a diagnostic facility that produces a counterexample

when a formula is not true.

An SMV program can be viewed as a system of simultaneous equations whose

solution determines the next state. Asynchronous systems, such as the i-protocol,

are modeled by de�ning a set of parallel processes whose actions are interleaved

arbitrarily in the execution of the program. As in Mur' liveness speci�cations,

such as absence of livelock, are given in a form of temporal logic (CTL).

5

2.5 Spin

Spin [HP96] is a model checker for asynchronous systems speci�ed in the lan-

guagePromela. Safety and liveness properties are formulated using LTL. Model

checking is performed on-the-y and with partial-order reduction, if speci�ed by

the user. Moreover, model checking can be done in a conventional exhaustive

manner, or, when this proves to be impossible due to state explosion, with an

e�cient approximation method based on bitstate hashing. With a careful choice

of hashing functions, the probability of an exhaustive proof remains very high.

Besides being able to specify correctness properties in LTL, the Promela

speci�cation language includes two types of labels that can be used to de�ne two

complementary types of liveness properties: acceptance and progress. We used

Spin's ability to check for this latter type of formula to detect livelock in the

i-protocol.

Promela is a nondeterministic guarded-command language with inuences

from Hoare's CSP and the language C. Promela includes support for data struc-

tures, interrupts, bracketing of code sections for atomic execution, the dynamic

creation of concurrent processes, and a variety of synchronous and asynchronous

message passing primitives. Message passing is via channels with arbitrary num-

bers of message parameters.

2.6 XMC

XMC [RRR

+

97] is a model checker for a value-passing process calculus and the

modal mu-calculus. It is written in under 200 lines of XSB tabled Prolog code.

XSB [XSB97] is a logic programming system developed at SUNY Stony Brook

that extends Prolog-style SLD resolution with tabled resolution. The principal

merits of this extension are that XSB terminates on programs having �nite mod-

els, avoids redundant subcomputations, and computes the well-founded model

of normal logic programs.

Systems to be veri�ed in XMC are encoded in the XL language, a value-

passing language similar in many ways to Milner's CCS. A distinguishing fea-

ture of XL is its support for a generalized process pre�x operator, which allows

arbitrary Prolog terms to appear as pre�xes. This construct allows the XL pro-

grammer to take advantage of XSB's substantial data-structuring facilities to

describe sequential computation on values.

Properties such as the possibility of livelock are expressed as modal mu-

calculus formulas. The encoding of the semantics of the mu-calculus in XMC

can be specialized [JGS93] with respect to a given formula. For the livelock

formula used in the veri�cation of the i-protocol, specialization yields a logic

program that implements an e�cient cycle-detection algorithm, and leads to

improved performance.

3 Modeling the i-Protocol

In this section we give a detailed account of the i-protocol, describing how we

modeled it for veri�cation purposes. To allow the reader to follow our description

6

of the protocol more closely, we provide (VPL-style) pseudo-code in Appendix A

and intermittently refer to line numbers from the pseudo-code.

The i-protocol is a sliding window protocol, but with some optimizations, to

be described later, aimed at reducing the acknowledgement and retransmission

tra�c. The window size, among other \steady-state" protocol parameters, such

as data packet size, line quality and error handling parameters, timeout values,

acknowledgement high watermarks, and data and message bu�er sizes, is de-

cided at the parameter negotiation stage during connection set-up. Since we are

concerned with the data transfer properties of the protocol, we do not model

the stages involved in connection set-up, parameter negotiation, error and line-

quality monitoring, and connection shutdown. In particular, the window size for

our model is a parameter that is �xed at \compile time."

The protocol is intended to provide reliable, full duplex, FIFO service to

its upper interface, given a full duplex, unreliable, FIFO packet-based commu-

nication service by its lower interface. It is convenient to imagine each side as

consisting of two halves | a sender half that sends data packets to, and re-

ceives acknowledgements from, the receiver half on the other side, and a receiver

half that receives data packets from, and sends acknowledgements to, the sender

half on the other side. To allow for communication latency, the sender can send

several packets without waiting for acknowledgements. If the window size is W ,

then the sender can have up to W contiguous packets unacknowledged at any

time. These packets are stamped with sequence numbers when received from the

upper layer; sequence numbers range from 0 to SEQ� 1.

The i-protocol, as implemented in GNU UUCP, uses a �xed value of SEQ =

32, and is intended for window sizes up to, but not exceeding, 16. As discussed

below, however, this bound is not essential, and using a sequence space of SEQ,

a window size of up to bSEQ=2c can be supported.

To cut down on the acknowledgement tra�c, the receiver can piggyback its

acknowledgements on top of normal data, or other control tra�c. When both

sides are exchanging data packets, this is often su�cient to keep the connection

going without the need for explicit acknowledgements. However, when a side is

only receiving data, it needs to send explicit acks. In this case, as an optimiza-

tion, acks are sent only at half-window boundaries, i.e., one for every dW=2e

packets received.

The \sender half" uses the following main state variables, each of which

ranges over SEQ. A variable sendseq is used to stamp the next user-level message

from the upper layer. Its value gives the upper edge (exclusive) of the sender's

\active window." The variable rack is used to keep track of acknowledgements

from the remote, and its value gives the lower edge (exclusive) of the sender's

active window. At our level of abstraction, the data contents of a packet are not

modeled, and so the sender does not explicitly bu�er unsent messages

1

.

The main data structures used by the receiver half are as follows. A variable

recseq is used to record the sequence number up to, and including which, all

packets have been successfully received from the remote, and delivered to the

1

This is a data independence abstraction [Wol86].

7

upper layer. The variable lack records the sequence number up to which an

acknowledgement, either explicit (via an ack) or implicit (via a piggybacked

acknowledgement in a data or nak packet), has been most recently sent to

the remote. The receiver's active window consists of the sequence numbers from

lack+1 through lack+W (modulo SEQ).

2

A boolean array recbuf of size SEQ

indicates the sequence numbers in this window that have been received (out of

order) and are being bu�ered for returning to the upper layer. This bu�ering

is required in order to deliver packets in the correct order to the upper layer.

Another boolean array nakd is used to remember the sequence numbers that

have recently been negatively acknowledged. As in the case of the sender, the

receiver does not explicitly bu�er packets, recording only whether a message has

been received from the remote, but not yet delivered to the upper layer.

The protocol initialization code sets lack, rack and recseq to 0, sendseq to 1,

and all entries in the arrays nakd and recbuf to false. The protocol's main loop

(lines 2{10) consists of busy waiting for one of the following events to occur, and

taking appropriate actions as described:

(E1): a packet arrival (line 31) over the communication link (lower layer in-

terface): the packet is �rst checked for header checksum errors (line 32), and

silently discarded (line 33) if it has a header error. Otherwise, if the piggybacked

acknowledgement is for a sequence number in the sender's active window, this is

used to update (lines 93{96) rack. This subsumes the handling of explicit ack

packets (line 39). If the received packet is a nak for a sequence number in the

sender's active window, the requested data packet is resent (lines 100{106). If

the received packet is a data packet, its data checksum is �rst veri�ed (line

45). If the data is found corrupted, and the packet's sequence number is in the

receiver's active window, it has not been previously received, and has not been

negatively acknowledged since the previous timeout, then a nak is sent for that

sequence number (lines 47{54). If, on the other hand, the data is valid, and

the packet number is the �rst in its active window (bears the sequence num-

ber recseq + 1), then the newly arrived packet is delivered to the upper layer

(line 59). Furthermore, any later packets that have been bu�ered, and all of

whose \predecessors" have been delivered to the upper layer, are also returned,

in order, to the upper layer (lines 61{66). At each point, recseq is appropriately

incremented, thus shifting up the active window (lines 58 and 62).

If it is subsequently found that dW=2e or more packets have been received

since the last ack (implicit or explicit) was sent, an explicit ack is generated for

recseq, and lack appropriately updated (lines 67{73). If, however, the sequence

number of the newly arrived data packet is not equal to recseq + 1, meaning

that there are some missing sequence numbers in between, the newly arrived

packet is bu�ered (in recbuf), if not already received (lines 74{75), and naks

generated for all \earlier" missing packets, for which a nak has not been sent

since the last timeout (lines 76{87).

2

Henceforth, unless explicitly speci�ed otherwise, we shall assume that all arithmetic

is modulo SEQ.

8

(E2): a user request (line 14) to send a new message (upper layer interface): The

sender �rst checks (line 15) if there is an opening in its active window (i.e., that

the active window size is less than W). If there is an opening, the new message

is transmitted, after being assigned the next new sequence number (sendseq),

and the sender's active window's \upper edge" suitably adjusted (lines 22{27).

If, however, the sender's window is full, it must wait for an opening (created by

the receipt of an ack, see above), before it can send the new message. In this

case, it busy-waits in a loop, waiting (line 17) for the arrival of a new packet

(see (E1) above), or (line 19) for the occurrence of a timeout (see (E3) below).

(E3): a timeout (line 118): The nakd bu�er is �rst cleared (line 119), signaling

that fresh naksmay need to be sent out. If there is no packet in the receive bu�er

(from the lower interface), then the receiver sends a nak for the \earliest" missing

sequence number (recseq+1) in its active window (lines 123{128). Further, the

sender resends the \oldest" message (if one exists in its active window), for which

it has not received an acknowledgement from the remote (lines 129{134). If, on

the other hand, there is a packet available from the lower interface (line 121),

we follow (E1) above.

The medium is modeled, in the usual manner, as a lossy FIFO bu�er, one for

each direction of communication. Each packet has a data and header checksum

�eld, which are nondeterministically reset by the medium to model corruption

of the data or header.

Our model of the i-protocol was derived from the C-code of the implemen-

tation, and involved a number of abstractions aimed at reducing the protocol's

state space. One such abstraction reduces the message sequence space from a

�xed value of SEQ = 32 (a de�ned constant in the GNU implementation) to

the value 2W when using a window size of W . Indeed, with a sequence space of

SEQ = 32, a system consisting of just the receiver half of the protocol on one

side and the sender half of the protocol on the other, connected by a single-bu�er

communication medium in either direction, would have an estimated state space

of about 2:7� 10

14

, even with a window size of 1. In actuality, though, many of

these con�gurations are observationally equivalent [Mil89] to one another, and

by using a sequence space of 2W , this number can be reduced. For instance, for

the caseW =1, the estimated state space shrinks dramatically to about 1:6�10

7

,

a reduction by almost a factor of 10

7

.

4 Livelock Error

The livelock error detected �rst using the Concurrency Factory, and subsequently

using COSPAN, Mur', SMV, Spin and XMC, is illustrated in Figure 1 for the

case of W = 2, medium bu�er capacity 1, and assuming that one side acts as

sender and the other as receiver. Initially, data1 sent by the sender is successfully

received by the receiver, which responds with ack1. This ack is dropped by the

medium. The sender then sends data2, which is also lost. The sender then

enters its timeout procedure, and sends nak1 and resends data1. These (and

all subsequent packets) are correctly delivered by the medium. Meanwhile, the

9

receiver also times out, but �nding the messages, nak1, data1, in its receive

bu�er, processes them. However, it silently ignores nak1, since it has never

sent a data packet with sequence number 1. It also ignores data1, since 1 is

not in its current receive window. This cycle can now repeat forever, with the

sender sending messages to the receiver, which the receiver ignores, resulting in

no messages being accepted from, or delivered to, the upper layer in spite of the

medium behaving perfectly from this point onwards.

Sender

Send DATA1 Receive DATA1;

Receiver

packet dropped
by medium

Send DATA2

packet dropped

Timeout :

Resend DATA1

Timeout :

Generate ACK1

Receive NAK1;Send NAK1;

Receive DATA1;

Ignore since not in active send window

Ignore since not in active receive window

repeat portion between dotted lines

Fig. 1: An error scenario illustrating a livelock in the original version of the

i-protocol.

The livelock error arises because there is no ow of information from the

receiver to the sender regarding the sequence numbers up to which the receiver

has received all messages. A simple �x for this problem consists of sending an

up-to-date ack, on the receipt of a nak for sequence number sendseq, provided

that the active send window is empty. (The �x appears as lines 107{114 in the

VPL listing of the protocol.) With this �x the model checker was unable to �nd

any livelocks in the protocol.

5 Model-Checking Results

As discussed in the Introduction, the i-protocol makes for a formidable case

study for veri�cation tools, and forms the basis for an interesting comparative

study. Table 1 contains the performance data obtained by applying COSPAN

(version 8.15), Mur' (version 3.0), SMV (version 2.4), Spin (version 2.9.7), and

XMC to the i-protocol. Results are given for W =1 and W =2, with the livelock

error present (~�xed) and not present (�xed), and with a medium that can

10

only drop messages (mini) versus one that can also corrupt messages (full). All

results were obtained on an SGI IP25 Challenge machine with 16 MIPS R10000

processors and 3GB of main memory. Each individual execution of a veri�cation

tool, however, was carried out on a single processor with 1.9GB of available main

memory.

A few comments about Table 1 are in order. On some runs, memory was

exhausted before the veri�cation e�ort could complete. This is indicated in the

\Completed?" column. The timing �gures given in the table are \wall-clock"

time rather than cpu time. This makes a di�erence in exactly one instance,

W =2/full/�xed for XMC, where 4.7GBytes of virtual memory are used. In this

case, the wall-clock time is perceptively higher than the cpu time. Some table

entries are left blank. This is because the corresponding data was unavailable

because the tool does not provide it (e.g., the number of transitions, in the

case of SMV) or because the tool failed to terminate on the run in question.

The number of states reported by SMV is the total number of reachable states.

The other tools give the number of explored states. Finally, the results for the

Concurrency Factory are not included in the table. As mentioned in Section 1,

this will change with the new release of the Factory.

As can be gleaned from the results of Table 1, the special-purpose cycle-

detection algorithms of Spin and COSPAN served them well. In particular, these

tools were able to complete analysis of several complex versions of the i-protocol,

including W = 2/mini/~�xed, W = 2/mini/�xed, and W = 2/full/~�xed. The

ability to specify atomically executed code sections in Spin also proved e�ec-

tive, enabling Spin to complete analysis of the W =1/full/�xed version. Spin,

however, ran out of memry for W =2/full/�xed, despite the use of partial-order

reduction and bitstate hashing (with 98% state-space coverage).

SMV exhibited excellent memory-usage performance on all runs of window

size 1, but failed to complete in a reasonable amount of time on any run of

window size 2. This is most likely due to an exponential blowup in the BDD

representation for window sizes larger than 1. The dynamic variable reordering

option of SMV was used on all runs reported in Table 1. Several static variable

orderings were also tried, including a \sequential" ordering in which the vari-

ables of the sender precede the variables of the sender-to-receiver medium, which

precede the variables of the receiver, etc. An \interleaved" ordering, in which

the components' variables were strictly interleaved, was also attempted. In all

cases, the dynamic reordering signi�cantly outperformed the static ones.

Mur' and XMC performed the best on the i-protocol, completing on all cases

of interest. Mur' uniformly exhibited superior memory-usage behavior (over all

the other tools), due in part to the low-level nature of its speci�cation lan-

guage (guarded commands) and the succinct manner it encodes system states.

Mur' was also fast. XMC, however, was faster than Mur' for all cases in which

the livelock error was present. This is because of the local, top-down nature of

XMC's model-checking algorithm (Mur' is a global model checker). Prior expe-

rience [RRR

+

97] indicates that the space requirements of XMC can be reduced

through source-level transformations aimed at optimizing the representation of

11

Version Tool Completed? States Transitions Memory(MB) Time(min:sec)

W=1 mini ~�xed COSPAN Yes 63K 204K 4.9 0:41

Mur' Yes 3K 8K 0.1 0:01

SMV Yes 24.5M 4.0 41:52

Spin Yes 425 768 749 0:10

XMC Yes 341 571 5 0:01

W=1 mini �xed COSPAN Yes 1.5M 5.9M 116 24:21

Mur' Yes 7K 19K 0.3 0:06

SMV Yes 27.7M 5.3 74:43

Spin Yes 322K 1M 774 0:31

XMC Yes 3K 12K 78 0:17

W=2 mini ~�xed COSPAN Yes 154K 486K 13 1:45

Mur' Yes 45K 122K 2 0:21

SMV No

Spin Yes 35K 71K 751 0:12

XMC Yes 1034 1839 11 0:02

W=2 mini �xed COSPAN Yes 11.3M 42.7M 906 619:49

Mur' Yes 91K 240K 4 1:37

SMV No

Spin Yes 1.9M 6M 905 2:28

XMC Yes 20K 74K 475 1:49

W=1 full ~�xed COSPAN Yes 116K 345K 9.1 17:03

Mur' Yes 54K 205K 2 0:25

SMV Yes 425.3M 6.0 201:04

Spin Yes 5.2K 10.1K 749 0:11

XMC Yes 961 1521 9 0:01

W=1 full �xed COSPAN No

Mur' Yes 124K 458K 6 1:57

SMV Yes 583.3M 9.8 224:20

Spin Yes 12.6M 44.9M 1713 17:50

XMC Yes 36K 155K 1051 3:36

W=2 full ~�xed COSPAN Yes 194K 562K 15.9 29:40

Mur' Yes 1.1M 4M 20 9:43

SMV No

Spin Yes 17K 22K 750 0:17

XMC Yes 4K 7K 35 0:05

W=2 full �xed COSPAN No

Mur' Yes 2.1M 7.7M 89 41:55

SMV No

Spin No

XMC Yes 315K 1.33M 4708 47:15

Table 1: Model-checking results.

12

process terms. Finally, the number of states/transitions explored by XMC is ap-

preciably lower in comparison with the other systems. This is primarily due to

XMC's use of lazily evaluated logical variables to represent variables and data

structures in the speci�cation, and the fact that XMC treats sequences of pure

computation steps as atomic.

6 Conclusions

We have shown how an actual bug in a real-life communications protocol can

be detected and eliminated through the use of automatic veri�cation tools sup-

porting model checking. We have also tried to demonstrate the i-protocol's ef-

fectiveness as a veri�cation-tool benchmark by conducting a comparative study

of the performance of six widely used veri�cation tools in analyzing the original

and livelock-free versions of the protocol.

Pertinent future work includes recruiting the actual developers of the model

checkers used in this study to encode and analyze the i-protocol. We expect

that the performance of each tool will increase under these conditions and it

would be interesting to learn what \tricks" the developers employ to attain this

improvement.

For completeness, other properties of the i-protocol should be checked besides

the absence of livelock, such as deadlock-freedom and eventual message delivery.

It would be particularly interesting to apply a tool with deductive reasoning

capabilities, such as PVS [ORR

+

96], to the i-protocol, so that a parameterized

version of the protocol (window size, bu�er size, etc.) could be analyzed.

Finally, we invite developers of veri�cation tools besides those considered in

this case study to try their hand at the i-protocol and report the results to us

for posting on the i-protocol web site. This will assist protocol developers and

other software engineers interested in pursuing automated veri�cation to make

an educated decision about which tool is right for the task at hand.

References

[AH96] R. Alur and T. A. Henzinger, editors. Computer Aided Veri�cation (CAV

'96), volume 1102 of Lecture Notes in Computer Science, New Brunswick,

New Jersey, July 1996. Springer-Verlag.

[CCA96] A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. Experimental design

for comparing static concurrency analysis techniques. Technical Report

96-084, Computer Science Department, University of Massachusetts at

Amherst, 1996.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,

1999. To appear.

[CLSS96] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky. The Con-

currency Factory: A development environment for concurrent systems. In

Alur and Henzinger [AH96], pages 398{401.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design | A Foundation.

Addison-Wesley, 1988.

13

[CMCHG96] E. M. Clarke, K. McMillan, S. Campos, and V. Hartonas-GarmHausen.

Symbolic model checking. In Alur and Henzinger [AH96], pages 419{422.

[Cor96] J. C. Corbett. Evaluating deadlock detection methods for concurrent

software. IEEE Transactions on Software Engineering, 22(3), March 1996.

[CW96] E. M. Clarke and J. M. Wing. Formal methods: State of the art and

future directions. ACM Computing Surveys, 28(4), December 1996.

[Dil96] D. L. Dill. The Mur' veri�cation system. In Alur and Henzinger [AH96],

pages 390{393.

[HHK96] R. H. Hardin, Z. Har'El, and R. P. Kurshan. COSPAN. In Alur and

Henzinger [AH96], pages 423{427.

[HP96] G. J. Holzmann and D. Peled. The state of SPIN. In Alur and Henzinger

[AH96], pages 385{389.

[JGS93] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Au-

tomatic Program Generation. Prentice Hall, 1993.

[Mil89] R. Milner. Communication and Concurrency. International Series in

Computer Science. Prentice Hall, 1989.

[ORR

+

96] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS:

Combining speci�cation, proof checking, and model checking. In Alur

and Henzinger [AH96], pages 411{414.

[RRR

+

97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A.

Smolka, T. W. Swift, and D. S. Warren. E�cient model checking us-

ing tabled resolution. In Proceedings of the 9th International Confer-

ence on Computer-Aided Veri�cation (CAV '97), Haifa, Israel, July 1997.

Springer-Verlag.

[RS97] Y. S. Ramakrishna and S. A. Smolka. Partial-order reduction in the

weak modal mu-calculus. In A. Mazurkiewicz and J. Winkowski, editors,

Proceedings of the Eighth International Conference on Concurrency The-

ory (CONCUR '97), volume 1243 of Lecture Notes in Computer Science,

Warsaw, Poland, July 1997. Springer-Verlag.

[Wol86] P. Wolper. Expressing interesting properties of programs in propositional

temporal logic. In Proc. 13th ACM Symp. on Principles of Programming

Languages, pages 184{192, St. Petersburgh, January 1986.

[XSB97] XSB. The XSB logic programming system v1.7, 1997. Available by anony-

mous ftp from ftp.cs.sunysb.edu.

14

A i-Protocol Pseudo-Code

f all additions & subtractions are modulo SEQ g

1 process i-protocol-unit

2 while true do

3 select

4 call sendmsg

5 %

6 call getpkt

7 %

8 call timeout

9 endselect

10 endwhile

11 endprocess f i-protocol-unit g

12

13 procedure sendmsg

14 usr-send?*;

15 while (sendseq - rack > W | sendseq = rack) do

16 select

17 call getpkt

18 %

19 call timeout

20 endselect

21 endwhile

22 pak.type := DATA;

23 pak.seq := sendseq;

24 pak.ack := recseq;

25 sendseq := sendseq + 1;

26 med-out!pak;

27 lack := recseq

28 endprocedure f sendmsg g

29

30 procedure getpkt

31 med-in?pak;

32 case pak.hck

33 false : skip ;

34 true :

35 call handle-ack;

36 case pak.type

37 DATA: call handle-data;

38 NAK: call handle-nak;

39 ACK: skip

40 endcase

41 endcase

42 endprocedure f getpkt g

15

43 procedure handle-data

44 if ~ (pak.seq - lack > W | pak.seq = lack) then

45 case pak.dck

46 false :

47 if ((pak.seq 62 (lack, recseq]) & ~ recbuf[pak.seq]

48 & ~ nakd[pak.seq]) then

49 pak.type := NAK;

50 pak.ack := recseq;

51 nakd[pak.seq] := true ;

52 med-out!pak;

53 lack := recseq

54 endif

55 true :

56 nakd[pak.seq] := false ;

57 if (pak.seq = recseq + 1) then

58 recseq := recseq + 1;

59 usr-recv!*; f replace by usr-recv!pak.seq for `in-order delivery' g

60 tmp := recseq + 1;

61 while recbuf[tmp] do

62 recseq := tmp;

63 usr-recv!* ; f replace by usr-recv!tmp for `in-order delivery' g

64 recbuf[tmp] := false ;

65 tmp := tmp+1

66 endwhile

67 if ~ (recseq - lack < W/2) then

68 pak.type := ACK;

69 pak.ack := recseq;

70 pak.seq := recseq;

71 med-out!pak;

72 lack := recseq

73 endif

74 else if ((pak.seq 62 (lack, recseq]) & ~ recbuf[pak.seq]) then

75 recbuf[pak.seq] := true ;

76 tmp := recseq + 1;

77 while ~ (tmp = pak.seq) do

78 if ~ (nakd[tmp] | recbuf[tmp]) then

79 pak.type := NAK;

80 pak.seq := tmp;

81 pak.ack := recseq;

82 nakd[pak.seq] := true ;

83 med-out!pak;

84 lack := recseq

85 endif

86 tmp := tmp + 1

87 endwhile

88 endif

89 endcase

90 endif

91 endprocedure f handle-data g

16

92 procedure handle-ack

93 if ~ (pak.ack = sendseq | pak.ack - rack > W

94 | sendseq - pak.ack > W) then

95 rack := pack.ack

96 endif

97 endprocedure f handle-ack g

98

99 procedure handle-nak

100 if ~ (pak.seq = sendseq | pak.seq - rack > W

101 | sendseq - pak.seq > W) then

102 pak.type := DATA;

103 pak.ack := recseq;

104 med-out!pak;

105 lack := recseq

106 endif

107 if FIXED then f bug fix g

108 if (pak.seq = sendseq & rack+1 = sendseq) then

109 pak.type := ACK;

110 pak.ack := pak.seq := recseq;

111 med-out!pak;

112 lack := recseq

113 endif

114 endif f bug fix g

115 endprocedure f handle-nak g

116

117 procedure timeout

118 timeout!*;

119 nakd := false ; f clear all entries of nakd array g

120 select

121 call getpkt

122 %

123 pak.type := NAK;

124 pak.seq := recseq + 1;

125 pak.ack := recseq;

126 nakd[pak.seq] := true ;

127 med-out!pak;

128 lack := recseq;

129 if ~ (sendseq = rack + 1) then

130 pak.type := DATA;

131 pak.seq := rack + 1;

132 pak.ack := recseq;

133 med-out!pak

134 endif

135 endselect

136 endprocedure f timeout g

17

