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Abstract

We introducelinear decision diagrams(LDDs) as a spe-
cial class of linear representations of formal power series.
LDDs can be seen as a generalization of some previously
proposed structures, such as MTBDDs and matrix dia-
grams, that have seen successful application in the compact
representation of Markov models with large state spaces.
Besides providing some possibilities for additional com-
pression, LDDs have an interesting and useful reversibility
property that is not shared by previously considered BDD
variants. In addition, LDDs have the advantage that most
LDD operations can be performed without any assumption
that the arguments are fully reduced or “canonical.” This
suggests the possibility of using multiple reduction heuris-
tics that trade off reduction “strength” for computation
cost. We present some experimental results that compare the
sizes of MTBDD and LDD representations for rate matrices
obtained from some standard benchmark examples.

1. Introduction

Binary decision diagrams(BDDs) [1, 4, 21] and their
variants are a class of data structures that has seen success-
ful application in the formal verification of systems with
large state spaces. Variations of BDDs have been proposed
to support quantitative calculations of the type that are re-
quired for verification and performance analysis of sys-
tems modeled using Markov chains. For example,multi-
terminal binary decision diagrams(MTBDDs) [2, 11, 12]
are a generalization of BDDs in which there can be mul-
tiple leaf nodes, each labeled by a distinct value drawn
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from a set ofV of possible values (for example, the real
numbers). Ann-level MTBDD thus represents aV-valued
function of n boolean arguments, or equivalently, a2n-
dimensional vector with entries drawn fromV. An MTBDD
representation of a vector can be very compact, assuming
that the set of distinct values appearing as entries in the vec-
tor is small. MTBDDs can also be used to represent ma-
trices, and computations such as vector/matrix multiplica-
tion can be performed efficiently in terms of MTBDD rep-
resentations. A variety of other variations of BDDs have
been proposed, includingedge-valuedand factored edge-
valuedBDDs [20, 29],binary moment diagrams(BMDs)
[5], multi-valued decision diagrams(MDDs) [17], andma-
trix diagrams(MDs) [8].

This paper proposeslinear decision diagrams(LDDs)
as a data structure for formal verification. LDDs are a spe-
cial case of thelinear representationsthat have been stud-
ied in the context of the theory of formal power series (see,
e.g.[3, 13, 24]). Like MTBDDs, linear representations de-
scribe mappings from finite strings of symbols (e.g. from
the two-element alphabet{0, 1}) to values. LDDs are a class
of linear representations that exhibit a “level structure” like
that of BDDs. In fact, the so-called “quasi-reduced” MTB-
DDs [22] can be regarded as a restricted class of linear rep-
resentations. When LDDs are used to represent matrices
there is also a close relationship to MDs. However, the ad-
ditional structure of LDDs provides some possibilities for
additional compression beyond that possible with previous
BDD variants. LDDs also have an interesting and useful
reversibility property that BDDs do not have. In addition,
LDDs have the advantage that most LDD operations can be
performed without any assumption that the arguments are
fully reduced or “canonical.” This suggests the possibility
of using multiple reduction heuristics that trade off reduc-
tion “strength” for computation cost.

The remainder of this paper is organized as follows. In
Section 2 we give a general definition of linear represen-
tations and briefly indicate how various operations can be
performed with them. A key point here is the fact that there
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exists aminimization algorithm([25]) that can be applied
to minimize the number of dimensions (nodes) in a linear
representation so as to avoid the blow-up that would other-
wise occur as successive operations are performed. In Sec-
tion 3 we introduce linear decision diagrams (LDDs) as a
restricted class of linear representations. We indicate how
LDDs can be used to perform vector and matrix computa-
tions, and discuss the relationship between LDDs, MTB-
DDs, and MDs. In Section 3.5 we discuss some issues re-
lated to the implementation of LDDs. In Section 4 we report
the results of some experiments in which we compare the
sizes of LDD matrix representations under various reduc-
tion “strengths.” Finally, in Section 5 we draw some brief
conclusions from our investigation of LDDs.

2. Linear Representations

Linear representationsare a kind of vector automata that
compute mappings of finite words over an alphabetΣ to val-
ues in a suitable spaceV. In a classical setting, such map-
pings are calledformal power series, in view of the observa-
tion that a power series in several non-commuting variables
can be usefully described as a mapping that takes each fi-
nite sequence of variables (i.e. a “monomial”) to its asso-
ciated coefficient. In the most general setting considered in
the classical theory, it is required only that the spaceV be a
semiring, which is a structure having an addition and a (not
necessarily commutative) multiplication operation with dis-
tinguished elements playing the role of0 and1, but in which
neither multiplicative nor additive inverses need exist. In
this paper, though, we restrict our attention to the special
case in whichV is a field; for example, the field of ratio-
nal numbers or the field of real numbers.

Formally, if V is a field, then we useV1×d, Vd×1, and
Vd×d to denote, respectively, the set of alld-dimensional
row vectors, the set of alld-dimensional column vectors,
and the set of alld × d-matrices, with entries inV. Vec-
tor and matrix addition and multiplication are defined in the
usual way. It is convenient to identify the setV1×1 of 1×1-
matrices withV itself.

A function S : Σ∗ → V is called aformal series overΣ
with coefficients inV. The notationV�Σ� is traditionally
used to denote the set of all such formal series. The value of
S on a wordw is traditionally denoted by(S, w). A series
S ∈ V�Σ� is calledrecognizableif there exists

• an integerd ≥ 0,

• a row vectorC ∈ V1×d,

• a column vectorD ∈ Vd×1, and

• a monoid homomorphismM : Σ∗ → Vd×d,

such that for allw ∈ Σ∗ we have

(S, w) = C(Mw)D.

The triple R = (C,M,D) is called alinear representa-
tion of S andd is thedimensionof the linear representa-
tion. In the degenerate cased = 0, the spacesV1×d, Vd×1

andVd×d each contain only the zero vector, and the repre-
sentation recognizes the identically zero formal series. We
will say that two linear representationsR and R′ over Σ
andV areequivalentif they recognize the same formal se-
ries.

An interesting property of linear representations is that
every linear representationR = (C,M,D) has adual
Rop = (DT ,MT , CT ). It is easy to see that ifR recog-
nizes formal seriesS, then its dualRop recognizes the for-
mal seriesSop defined by(Sop, w) = (S, wR), wherewR

denotes thereversalof the wordw.

2.1. Minimization

An important fact about linear representations is the fol-
lowing, which requires thatV be a field.

Proposition 1 (Scḧutzenberger [25]) If S ∈ V�Σ� is a
recognizable formal series, then there exists a linear rep-
resentationRmin that is minimal in the sense that it has
minimum dimension among all representations that recog-
nizeS. Moreover, there exists an algorithm for computing
a minimal linear representation ofS given an arbitrary lin-
ear representation ofS as input.

We do not give here a complete proof of Proposition
1. For that, the reader may refer to the original paper of
Scḧutzenberger [25], or to the book [3] which has a more
algebraic presentation. For our purposes, though, it will be
helpful to consider in concrete terms the problem of how,
given an arbitrary representationR, one can compute a min-
imal representationR′ equivalent toR. Essentially the same
minimization algorithm as we describe here has been dis-
cussed previously in ([25, 7, 3]). Our presentation here cen-
ters around notion of a “reduction” on a representationR,
and the related concepts of “reachability” and “observabil-
ity.” These concepts will be helpful later in understanding
how the minimization algorithm specializes to LDDs.

Formally, supposeR = (C,M,D) is a representation of
dimensiond. We callR reachableif the set{C(Mu) : u ∈
Σ∗} spansV1×d. Similarly, we callR observableif the set
{(Mv)D : v ∈ Σ∗} spansVd×1. If R is both reachable and
observable we call itcanonical. The following result is ob-
vious, but useful to note.

Proposition 2 LetR be a representation. ThenR is observ-
able if and only ifRop is reachable.

The next result shows why reachability and observability
are of interest with respect to minimization.

Proposition 3 LetR be a representation. ThenR is canon-
ical if and only if it is minimal.
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A reductionon a representationR = (C,M,D) is a pair
of matrices(P,Q), whereP ∈ Vd×d′ andQ ∈ Vd′×d, such
that the following conditions are satisfied:

1. QP = Id′

2. CPQ = C

3. Q(Mσ)PQ = Q(Mσ) for all σ ∈ Σ

Note that condition (1) implies thatd′ ≤ d. If in fact d′ < d
then the reduction is callednontrivial.

The notions of reachability and reduction are connected
as follows:

Proposition 4 A representationR is reachable if and only
if there is no nontrivial reduction onR.

SupposeR = (C,M,D) is a representation, and let
(P,Q) be a reduction onR. Let representationR′ =
(C ′,M ′, D′) be defined as follows:

1. C ′ = CP .

2. D′ = QD.

3. M ′σ = Q(Mσ)P for all σ ∈ Σ.

We callR′ thereductof R by the reduction(P,Q).

Proposition 5 SupposeR = (C,M,D) is a representa-
tion, let (P,Q) be a reduction onR with P ∈ Vd×d′ and
Q ∈ Vd′×d, and letR′ = (C ′,M ′, D′) be the reduct ofR
by (P,Q), ThenR′ is equivalent toR. Moreover, ifR is ob-
servable then so isR′.

Proposition 6 SupposeR = (C,M,D) is a representation
of dimensiond. LetS be any linear subspace ofV1×d that
includesC and is closed underMσ for all σ ∈ Σ. Then
there is a reduction(P,Q) onR such thatS is the image of
the idempotentPQ.

From the above results we can see how to minimize a
representation. Given a representationR = (C,M,D) of
dimensiond, compute the least subspaceS of R that con-
tainsC and is closed underMσ for all σ ∈ Σ. Associated
with the subspaceS is a reduction(P,Q), such thatS is
the image of the idempotentPQ. Let R′ be the reduct of
R by the reduction(P,Q), thenR′ is reachable and equiv-
alent toR. Now repeat the procedure on the dual(R′)op of
R′ to obtainR′′, equivalent to(R′)op, which is both reach-
able and observable and hence minimal. The dual(R′′)op

of R′′ is then a minimal representation that is equivalent to
the original representationR.

2.2. Computing with Linear Representations

Since there is just one linear representation of dimen-
sion zero, it follows from the results of the preceding sec-
tion that there is an algorithm to determine whether a given

linear representationR recognizes the identically zero se-
ries: simply minimizeR and then check whether the re-
sulting representation has dimension zero. In addition, al-
gorithms exist for computing a variety of other operations
on linear representations, including:

(Scaling) Given a valuea ∈ V and a representationR that
recognizes formal seriesS, compute a representation
aR that recognizes the seriesaS defined by(aS,w) =
a(S, w).

(Addition) Given representationsR1 and R2 that recog-
nize formal seriesS1 and S2, respectively, compute
a representationR1 + R2 that recognizes the series
S1 +S2 defined by(S1 +S2, w) = (S1, w)+ (S2, w).

(Hadamard Product) Given representationsR1 and R2

that recognize formal seriesS1 andS2, respectively,
compute a representationR1 ∗ R2 that recognizes the
seriesS1 ∗ S2 defined by(S1 ∗ S2, w) = (S1, w) ·
(S2, w).

(Cauchy Product) Given representationsR1 andR2 that
recognize formal seriesS1 andS2, respectively, com-
pute a representationR1 ·R2 that recognizes the series
S1 · S2 defined by

(S1 · S2, w) =
∑

uv=w

(S1, u) · (S2, v).

(Equality Test) Given representationsR1 and R2, deter-
mine whetherR1 andR2 recognize the same formal
series.

Though straightforward constructions to implement most
of the above operations would be dimension-increasing, by
following each construction with an application of mini-
mization one can perform a series of operations without
danger of the blow-up in dimension that would otherwise
occur.

3. Linear Decision Diagrams

A linear representationR = (C,D,M) overΣ is called
a linear decision diagram(LDD) if there exists a natural
numbern and a sequenced0, d1, . . . , dn of natural num-
bers, such that for eachσ ∈ Σ the matrixMσ has the block
form: 

0 M1,σ 0 . . . 0
0 0 M2,σ . . . 0

. . .
0 0 0 . . . Mn,σ

0 0 0 . . . 0
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whereMk,σ ∈ Vdk−1×dk for 1 ≤ k ≤ n, and such thatC
andD have the block forms:

C =
(

C0 0 0 . . . 0
)

D =


0
0
0

. . .
Dn


whereC0 ∈ V1×d0 andDn ∈ Vdn×1.

Alternatively, since the sequenced0, d1, . . . , dn is im-
plicit in the dimensions of the matricesMk,σ (1 ≤ k ≤ n),
we can specify an LDD simply by giving these matrices, to-
gether with the nonzero portionC0 of the input vectorC
and the nonzero portionDn of the output vectorD. That is,
we can regard an LDD as a tuple:

(C0, {Mk,σ : 1 ≤ k ≤ n, σ ∈ Σ}, Dn).

such that the evident relationship between the dimensions
holds. In the sequel, it will be convenient for us to pass back
and forth implicitly between these two ways of regarding an
LDD. Note that, due to the special form of an LDDL, if S
is the formal series recognized byL, thenS is a polyno-
mial whose (finite) support is contained in the setΣn. Note
also that, like a BDD, an LDD has a “level structure,” where
the dimensionsd0, d1, . . ., dn correspond to the number of
nodes at each of then+1 levels, and the matricesMk,σ de-
fine the edges between the levels.

3.1. Minimization

As they are a special case of linear representations, the
results of Section 2.1 apply to LDDs, yielding the existence
of LDDs of minimal dimension and of an LDD minimiza-
tion algorithm. In fact, the special structure of LDDs can be
exploited to obtain the stronger result that minimal LDDs
are in fact minimal ineachof the dimensionsdn, and that
minimization of an LDD can be performed in two phases:
a forward, “reachability” phase that sweeps through the list
of matrices from left to right, and a backward, “observabil-
ity” phase that sweeps from right to left.

LDD Reachability Algorithm

Input: An LDD L = (C, {Mk,σ : 1 ≤ k ≤ n, σ ∈ Σ}, D).

Output: A reachable LDD

R(L) = (C ′, {M ′
k,σ : 1 ≤ k ≤ n, σ ∈ Σ}, D′)

that is equivalent toL.

Procedure: If C is the identically zero vector, then output
the degenerate LDD havingdk = 0 for 0 ≤ k ≤ n.

Otherwise, supposeC has a nonzero valueci in the ith
position, for somei with 1 ≤ i ≤ d0. DefineQ0 ∈ V1×d0 to

be the matrix havingC as its single row. DefineP0 ∈ Vd0×1

to be the matrix having as its sole nonzero entry1/ci in the
ith row. Observe thatQ0P0 = I1 and thatCP0Q0 = C.

Now, proceeding iteratively for eachk from 1 to n, sup-
pose at stagek that we have computed matrixQk−1. LetQk

be a matrix whose rows form an independent subset of the
set of all rows of the productsQk−1Mk,σ. Let Pk be a ma-
trix such thatQkPk = Idk

. AlthoughPk is in general not
uniquely determined, the correctness of the algorithm does
not depend on howPk is selected. Note that, regardless of
how Pk is obtained, the construction ofQk and the prop-
erty QkPk = Idk

implies thatPkQk is an idempotent ma-
trix whose image includes each of the rows of the matrices
Qk−1Mk,σ, and hence we have

Qk−1Mk,σPkQk = Qk−1Mk,σ

for all σ ∈ Σ.
Once the above procedure has been carried out for1 ≤

k ≤ n, we have constructed matricesPk andQk for 0 ≤
k ≤ n satisfying the following properties:

1. QkPk = Idk
, for 0 ≤ k ≤ n.

2. CP0Q0 = C.

3. Qk−1Mk,σPkQk = Qk−1Mk,σ for all σ ∈ Σ and1 ≤
k ≤ n.

These properties are easily seen to be the appropriate spe-
cialization to LDDs of the notion of a reduction from Sec-
tion 2.1. Let the LDD

R(L) = (C ′, {M ′
k,σ : 1 ≤ k ≤ n, σ ∈ Σ}, D′)

be defined as follows:

• C ′ = CP0.

• D′ = QnD.

• M ′
k,σ = Qk−1Mk,σPk for 1 ≤ k ≤ n.

Once again, this definition specializes to the case of LDDs
the notion of reduct defined in Section 2.1. It then follows
thatR(L) is a reachable LDD that is equivalent toL.

Full minimization of an LDD is achieved using two
applications of the LDD reachability algorithm presented
above:

LDD Minimization Algorithm

Input: An LDD L = (C, {Mk,σ : 1 ≤ k ≤ n, σ ∈ Σ}, D).

Output: A canonical LDD

C(L) = (C ′, {M ′
k,σ : 1 ≤ k ≤ n, σ ∈ Σ}, D′)

that is equivalent toL.

Procedure: GivenL, apply the reachability algorithm toL
to obtain a reachable LDDR(L) that is equivalent toL.
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Then, compute the dualR(L)op ofR(L), apply the reacha-
bility algorithm again to obtainR(R(L)op), and finally du-
alize again to obtain

C(L) = R(R(L)op)op

which is a canonical LDD equivalent toL.

3.2. Computing with LDDs

The constructions, mentioned in Section 2.2, for comput-
ing various operations on linear representations obviously
specialize to LDDs. Often, the special structure of LDDs
makes it more efficient to compute certain operations on
LDDs than on general linear representations. One case in
point is the minimization algorithm itself. The reachability
algorithm for a linear representation of dimensiond would
in general involve the calculation of a basis for the least sub-
space ofV1×d that contains the vectorC and is closed un-
der multiplication on the right by the matricesMσ. This
closure calculation can be performed via repeated multipli-
cation byM to generate vectors of dimensiond, which then
have to be checked for independence with respect to the
span of the set of previously generated vectors. Although
each step in the LDD reachability algorithm also requires a
matrix multiplication and the extraction of an independent
set of rows, the vectors at thekth stage are only of dimen-
siondk, rather than the full dimensiond =

∑n
k=0 dk. In ad-

dition, for an LDD withn+1 levels closure is reached after
only n stages, whereas a general linear representation could
require up tod iterations to reach closure.

Another calculation that can be performed more effi-
ciently on LDDs is the following:

(Summation) Given an LDDL that recognizes formal se-
riesS, compute the value

∑
w∈Σ∗(S, w).

For an LDD this can be done simply by forming the prod-
uct:

C

(
n∏

k=1

∑
σ∈Σ

Mk,σ

)
D.

For an arbitrary linear representation the corresponding cal-
culation would be:

C

(∑
σ∈Σ

Mσ

)∗
D,

where∗ denotes Kleene star.
We now give explicit descriptions of several other useful

constructions that can be performed on LDDs. In the fol-
lowing, suppose

L = (C, {Mk,σ : 1 ≤ k ≤ d, σ ∈ Σ}, D)

and

L′ = (C ′, {M ′
k,σ : 1 ≤ k ≤ d′, σ ∈ Σ}, D′)

are given LDDs.

(Scaling) DefineaL to be the LDD

aL = (aC, {Mk,σ : 1 ≤ k ≤ d, σ ∈ Σ}, D).

(Addition) Assumingd = d′, defineL+L′ to be the LDD

L + L′ = (C ′′, {M ′′
k,σ : 1 ≤ k ≤ d, σ ∈ Σ}, D′′)

where

C ′′ =
(

C C ′ ) D′′ =
(

D
D′

)

M ′′
k,σ =

(
Mk,σ 0

0 M ′
k,σ

)
(Hadamard Product) Assumingd = d′, defineL ∗ L′ to

be the LDD

L ∗ L′ = (C ′′, {M ′′
k,σ : 1 ≤ k ≤ d, σ ∈ Σ}, D′′)

where

C ′′ = C ⊗ C ′ D′′ = D ⊗D′

M ′′
k,σ = Mk,σ ⊗M ′

k,σ

and⊗ denotes the Kronecker (tensor) product.

(Cauchy Product) SupposeS andS′ are the formal series
represented byL andL′, so that the support ofS lies in
Σd and the support ofS′ lies in Σd′ . Then in this spe-
cial case the Cauchy product ofS andS′ is the formal
seriesSS′ defined by

(SS′, w) =


(S, u)(S′, u′), if w = uu′,

u ∈ Σd, u′ ∈ Σd′

0, otherwise.

Define the LDDL · L′ by

L · L′ = (C, {M ′′
k,σ : 1 ≤ k ≤ d + d′}, D′)

where

M ′′
k,σ =


Mk,σ, for 1 ≤ k ≤ d
(D ⊗ C ′)M ′

1,σ, for k = d + 1
M ′

k−d,σ, for d + 2 ≤ k ≤ d + d′
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3.3. Vector and Matrix Computation

Since LDDs represent mappings from finite words to val-
ues, they can be used to represent vectors and matrices in a
fashion similar to the way MTBDDs are used for this pur-
pose. In this section, we briefly sketch the main ideas and
indicate some ways in which LDDs differ from MTBDDs.
We suppose throughout this section thatΣ is the two-letter
alphabet{0, 1}.

An n + 1-level LDD overΣ represents a formal power
seriesS overΣ, whose support is contained inΣn. By fix-
ing an encoding of elements of the set{0, 1, . . . , 2n− 1} as
words inΣn, we may regardS as a2n-element vector with
entries fromV. For example, we may choose an encoding
in which i ∈ {0, 1, . . . , 2n − 1} is represented by its binary
encoding given least-significant bit first. MTBDDs are used
to represent vectors in the same way. However, note that if
LDD L represents a vector under a least-significant-bit-first
encoding, then its dualLop represents the same vector un-
der a most-significant-bit-first encoding. MTBDDs do not
have this duality property.

Consideration of the definitions of reachability and ob-
servability for LDDs reveals that for a canonical LDD over
Σ, the dimensiondk at thekth level can be at most2k for
0 ≤ k ≤ n/2 and at most2n−k for n/2 ≤ k ≤ n. Minimal
LDDs representing sparse vectors will in general have di-
mensions much smaller than these exponential bounds, so
that LDDs can provide a compact sparse vector represen-
tation. This compactness is not necessarily limited to vec-
tors containing large numbers of zeroes, since like MTB-
DDs a minimal LDD representation also provides compres-
sion by identifying identical subvectors when these subvec-
tors occur “aligned” at indices that are powers of2. Unlike
MTBDDs, but like FEVBDDs [20, 29] and matrix diagrams
(MDs) [8], LDDs are also capable of identifying subvectors
that are multiples of each other. However, LDDs provide the
opportunity for even further compression by identifing sub-
vectors that are linear combinations of each other.

Another way in which LDDs are different from MTB-
DDs is their duality property. A canonical LDD will always
haved0 = dn = 1; that is, it will have a single root node and
a single leaf node. Because of this, and because the number
of nodes can increase or decrease by no more than a fac-
tor of two at each level, as we traverse the levels of an LDD
from left to right the number of nodes at each successive
level tends to increase toward the middle levels, then de-
crease again. This need not occur with MTBDDs, since the
number of terminal nodes in a reduced MTBDD is not fixed
but rather depends on the number of distinct nonzero val-
ues in the vector it represents.

Like MTBDDs, LDDs admit efficient implementations
of basic operations on vectors. Scaling and addition of vec-
tors can be done using the previously mentioned scaling and

addition operations on LDDs. Componentwise product of
vectors can be performed using the Hadamard product op-
eration on LDDs (this is essentially the same as the “apply”
operation on MTBDDs, in the special case that the opera-
tion being applied is multiplication). Dot product of vectors
can be performed by applying Hadamard product followed
by summation to the LDD representations. The Cauchy
product operation on LDDs corresponds to the Kronecker
(tensor) product operation on vectors in case the lengths
of the vectors in question are powers of2. This operation
is useful because in formal verification, Kronecker product
often arises as a basic operation by which components are
combined to yield a composite system (e.g.[23, 6]).

Besides vectors, LDDs can be used to represent matri-
ces. A square matrix of dimension2n can be represented as
a 2n + 1-level LDD. By choosing the encoding of the in-
dices compatibly with that used for vectors, one can per-
form various vector/matrix operations on the LDD repre-
sentations. As for MTBDDs, a convenient choice is to en-
code the row and column indices by theirn-bit binary rep-
resentations, which are then interleaved by alternating row
and column bits starting least-signficant bit first to produce
a wordw ∈ Σ2n. With such conventions in place, the vec-
tor of column sums of a matrix can be accomplished by re-
ducing a2n + 1-level LDD L to an + 1-level LDD L via
the construction

Mk,0 = (M2k−1,0 + M2k−1,1)M2k,0

Mk,1 = (M2k−1,0 + M2k−1,1)M2k,1

for 1 ≤ k ≤ n. Multiplying a matrix on the left by a
row vector can be performed by first expanding then + 1-
level LDD representing the vector to a2n + 1-level LDD
by inserting new levels consisting of identity matrices in
between each of the original levels (this amounts to trans-
posing the original row and replicating it in columns), then
computing the Hadamard product of the resulting LDD by
the LDD representing the matrix, and finally reducing the
result back to an + 1-level LDD by forming column sums.
Matrix/matrix multiplication can be accomplished using the
same basic idea.

3.4. MTBDDs and Deterministic LDDs

LDDs are closely related to MTBDDs. Both LDDs and
MTBDDs represent vectors whose dimensions are powers
of 2. For an MTBDD, the distinct values appearing in the
vector are displayed as the labels of the terminal nodes. The
entry at theith position in the vector is obtained by start-
ing at the root of the MTBDD and following edges to a
leaf node, where the edge followed from a node at level
k is determined by thekth bit in the binary expansion of
the indexi. Unlike LDDs, edges in fully reduced MTB-
DDs can “skip levels” in the sense that an edge need not
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always go from a node at levelk to a node at levelk + 1.
However, we can imagine introducing “dummy nodes” in
an MTBDD, having the same0 and1-successor nodes, so
that levels are never skipped. MTBDDs that otherwise sat-
isfy the conditions for being reduced, except for the pres-
ence of dummy nodes, are calledquasi-reduced[22]. The0-
and1-labeled edges between levelsk andk + 1 in a quasi-
reduced MTBDD can then be represented as zero/one ma-
tricesMk,0 andMk,1. The root node can be represented as
the1-dimensional row vectorC = (1), and the distinct val-
ues labeling the leaf nodes can be displayed in the form
of as adn-dimensional column vectorD. Thus, a quasi-
reduced MTBDD corresponds to an LDD over the alpha-
betΣ = {0, 1}, having all zero/one entries except at the last
level, and which in addition is “deterministic” in the sense
that vectorC and each matrixMk,0 andMk,1 has at most
one nonzero entry in each row.

Conversely, from a given LDD, it is possible to construct
an equivalent LDD that is deterministic and has zero/one
entries at all levels except the last. This can be achieved by
an algorithm that is similar to the LDD reachability algo-
rithm presented previously, except that at each stage instead
of identifying a linearly independent set of rows we extract a
set of nonzero rows that is “representative” in the sense that
each nonzero row appears exactly once in the selected set. If
the originally given LDD is observable, then it can be shown
that the LDD resulting from this determinization algorithm
corresponds to a quasi-reduced MTBDD. Interestingly, by
exploiting the duality properties of an LDD, we also obtain
a “codeterminization” algorithm for LDDs. Whereas the de-
terminization algorithm outputs an LDD having the distinct
values displayed at the leaf nodes, the codeterminization al-
gorithm produces an LDD having its values displayed at the
root nodes. The codeterminization of an LDD can be used
as an efficient way to decompose a vector into a sum of
“level sets.”

From the above correspondences between MTBDDs and
LDDs, we can conclude that a vector of dimension2n can
always be represented at least as compactly by an LDD as it
can by a quasi-reduced MTBDD. Moreover, LDDs can pro-
vide compact representations of vectors that cannot be rep-
resented compactly by MTBDDs; in particular this is true
for vectors that have many distinct entries, but where these
entries occur in patterns that can be generated as linear com-
binations of a small number of independent representatives.

3.5. Implementation Issues

We have incorporated an experimental implementation
of LDDs into our PIOATool analysis engine [26, 32] for
probabilistic I/O automata (PIOA) [30, 31, 28, 27]. PIOA-
Tool is designed to operate on specifications of continuous-
time Markov chains (CTMCs) expressed as the composition

of a hierarchically structured system of component PIOA.
Besides the specification of the Markov chain, PIOATool
takes as input an “observable,” which is the description of
a particular performance measure to be computed. The two
basic operations performed by PIOATool are (1) to “apply”
a system behavior to an observable to obtain a new observ-
able, and (2) to “evaluate” an observable to obtain a result.
The main operation involved in application is computing the
Kronecker products, of each of a set of small transition ma-
trices for the component being applied, with corresponding
large transition matrices for observable. Evaluation involves
a reachability analysis phase, followed by a phase involving
the solution of a large set of linear equations. Both phases
can be accomplished by an iterative approach in which the
central operation is vector/matrix multiplication.

We now mention some practical experience we gained
from the exercise of integrating LDD-based vector and ma-
trices into PIOATool. Perhaps the most important point is
that it is hardly ever required, and often not desirable, that
LDDs be fully dimension-minimized. This is to be con-
trasted with the case of MTBDDs, where the algorithms for
operating on MTBDDs rely heavily on their arguments be-
ing in canonical form. For LDDs, the only typically encoun-
tered operation where it is absolutely essential to place an
LDD in reduced form is when it is desired to test whether
the LDD represents the identically zero vector. The rest of
the time an LDD can be maintained according to various
weaker requirements. For example, here are three possibili-
ties that we have found useful in practice:

1. Ensure that the block matrices(Mk,0 Mk,1) and
(MT

k,0 MT
k,1) have no zero rows (this corresponds to

ensuring there are no “unreachable” or “unobservable”
nodes).

2. Ensure that the block matrices(Mk,0 Mk,1) and
(MT

k,0 MT
k,1) have full rank (this yields full minimal-

ity).

3. By choosing from among the rows of the matrices
Mk,0 and Mk,1 a set that is “representative” in the
sense that no two rows in the set are multiples of each
other, and by applying a change of basis associated
with the selected set, we can transform the matrices
Mk,0 andMk,1 so as to obtain at most one nonzero en-
try in each row. Apply this transformation at each level
unless doing so would result in an increase, rather than
a decrease, in the number of columns. Dually, trans-
form the matricesMk,0 and Mk,1 so as to obtain at
most one nonzero entry in each column, unless doing
so would result in an increase in the number of rows.

In the course of building the experimental LDD im-
plementation, we observed that best performance wasnot
achieved when full LDD minimization (case (2) above) was
used routinely. Instead, it was often faster to use the weaker
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form of minimization represented by (3) above, except in
situations where full minimization was required for cor-
rectness. One reason for this discrepancy seems to be that
best performance is achieved when the number ofedges,
rather than the number ofnodes(i.e. dimension) is mini-
mal. Full minimization, represented by case (2), minimizes
dimension but sometimes does so at the expense of produc-
ing denser matricesMk,0 andMk,1. In addition, the cost
of the independence checking required for case (2) gener-
ally is at least quadratic in the number of nodes at a level,
whereas hashing techniques can be used in case (3) to re-
duce the complexity to linear in many cases.

After minimization, the LDD operation that it is most
critical to optimize is Hadamard product, which is the cen-
tral operation to vector/matrix multiplication (this corre-
sponds to the “apply” operation for MTBDDs). A straight-
forward implementation of the definition in terms of Kro-
necker product is much too expensive, as it first builds an
LDD whose dimensions at each level are the product of
the dimensions of the argument LDDs at the correspond-
ing level, and it then immediately applies the minimiza-
tion algorithm and throws away most of what has been con-
structed. To avoid this, our implementation performs a pre-
analysis that permits us to avoid building the full Kronecker
products, but rather to construct only that portion that would
be left after applying minimization condition (1) above. It is
not clear to us that this is the best that can be done.

A feature of MTBDD implementations that is not shared
by our LDD implementation is the node cache. In MTBDD
implementations, a cache is used to keep track of MTBDD
nodes that have already been constructed. This cache serves
two purposes: (1) it is used in ensuring that only reduced
MTBDDs are constructed; and (2) it speeds up construc-
tions on MTBDDs by avoiding constructing the same sub-
graph multiple times. LDD operations can be programmed
without the use of a cache, assuming instead that one of
the variants of the minimization algorithm is applied peri-
odically to avoid explosion in dimension. It is not clear to
us at the moment whether the efficiency gains provided by
the MTBDD node cache make MTBDDs inherently signif-
icantly faster than LDDs, or whether we can program LDD
operations in such a way as to make use of an MTBDD-like
node cache.

Other implementation issues for LDDs derive from pre-
cision requirements and the use of floating point. Our LDD
implementation can use either floating point or exact ratio-
nal arithmetic. When exact arithmetic is used, we know that
an LDD constructed to represent a vector or matrix exactly
represents that vector or matrix. When floating point is used,
the possible accumulation of numerical errors means that
this need not be the case. One consequence of this is that
near-zero values can tend to accumulate in the LDD matri-
ces, thereby making these matrices more dense and making

manipulation of them more time-consuming. Also, the full
LDD minimization algorithm requires the selection of in-
dependent subsets of the set of rows of the matricesMk,σ.
We have observed situations in which sets of rows turn out
to be very nearly dependent. In such cases, the precision re-
quired to perform the minimization can grow very rapidly.
In the case of rational arithmetic, huge fractions are gener-
ated, thereby slowing down the computation very substan-
tially. In the case of floating point arithmetic, inaccurate re-
sults can be produced. To avoid such problems, we employ
a heuristic that detects when nearly dependent sets of rows
are encountered during minimization and unless full mini-
mization is absolutely essential (such as when testing if an
LDD represents an identically zero vector) we simply avoid
performing any reduction in such cases. We need to bet-
ter understand the numerical issues associated with LDDs
and to take a lessad hocapproach to dealing with them.

4. Experimental Results

In order to get an idea of the relative compactness of
LDDs and MTBDDs in practical situations, we took rate
matrices arising from several case studies examined by the
PRISM group [18, 19] and constructed LDD representa-
tions of these matrices using three different LDD minimiza-
tion criteria. The particular PRISM case studies we used
were the Cyclic Server Polling System [16], the Tandem
Queueing Network [15], the Flexible Manufacturing Sys-
tem [10], the Kanban Manufacturing System [9] and the
Workstation Cluster [14]. These models have been used reg-
ularly as benchmarks in the performance analysis literature.

The three LDD minimization criteria we used were:

1. Full minimization. The dimension (number of nodes)
of the LDD is the minimum possible.

2. Partial minimization. The LDDs were minimized ac-
cording to criterion (3) of Section 3.5.

3. Deterministic. Deterministic LDDs were produced that
had zero/one entries at all levels except the last. As
noted in Section 3.4, such LDDs are essentially the
same as quasi-reduced MTBDDs.

The example matrices we used were obtained from
PRISM using an export feature present in the current ver-
sion of that tool. Unfortunately, we were unable to make
a direct comparison with the MTBDD size informa-
tion that is reported for these examples on the PRISM
web site. This is because although PRISM does rep-
resent these matrices using a variant (offset-labeled
MTBDDs) of quasi-reduced MTBDDs, the internal rep-
resentation of the matrices in PRISM uses more di-
mensions, and hence more MTBDD levels, than the
matrices obtained via the PRISM export feature. So, al-
though the figures we report for deterministic LDDs
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should give an idea of the relative compactness of MTB-
DDs versus that of partially and fully minimized LDDs,
the numbers cannot be compared directly to those pub-
lished by the PRISM group for the same benchmark exam-
ples.

Figure 1 summarizes our experimental results. Each ta-
ble gives the results for various instances of a particular
benchmark example. The parameterN , whose exact mean-
ing depends on the example, determines the size of the in-
stance. For the polling system,N is the number of stations,
for the tandem queueing network,N is the capacity of the
queue, for the flexible manufacturing system and kanban
manufacturing system,N refers to the number of tokens,
and for the workstation cluster,N denotes the number of
workstations. To avoid complicating the results with issues
related to the accumulation of near-zero floating point val-
ues, we used exact rational arithmetic in constructing the
LDDs. The columns under “model” give the number of
states and the number of nonzero entries in the rate matrix.
The columns under “fully minimized” and “partially min-
imized” give the number of nodes (i.e. the dimension) of
the LDD representation of the rate matrix and the number
of edges (i.e. the total number of nonzero values in the in-
put vector, matrices and output vector) of the LDD. In the
“deterministic” case, we also report under “terminal nodes”
the dimensiondn of the final LDD level. This value equals
the number of distinct nonzero entries in the matrix repre-
sented by the LDD.

In general, the experimental results show that fully min-
imized and even partially minimized LDDs often provide
substantial reductions in the numbers of nodes and edges as
compared to determinized LDDs (i.e. quasi-reduced MTB-
DDs). The reductions derive from the ability of LDDs to
exploit patterns that are more general than just repeated in-
stances of identical submatrices. Fully minimized LDDs,
while providing additional reduction (in some cases signifi-
cant amounts) in the number of nodes over partially reduced
LDDs, typically do so at the cost of an increase in the num-
ber of edges. In addition, though the tables do not show tim-
ing information, the cost of fully minimizing LDDs grows
at a rate greater than linear in the number of dimensions,
which eventually negates the benefits of the additional re-
duction.

5. Conclusions

LDDs are a data structure that generalizes some other
BDD variants that have been used in verification and per-
formance analysis. LDDs, in turn, are themselves a special
case of a more general structure, namely linear representa-
tions for formal power series, for which an associated min-
imization theory exists. Fully node-minimized LDDs are
generally more compact than MTBDDs, but the minimiza-

tion algorithm can be costly to execute. Partial minimization
of LDDs can be done faster, and produces results that can
still be significantly more compact than MTBDDs. View-
ing MTBDDs and the like as special cases of linear repre-
sentations might suggest various useful constructions and
algorithms that would otherwise not be evident. A system-
atic treatment of numerical issues related to LDDs remains
to be performed.
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Cyclic Server Polling System

model fully minimized partially minimized deterministic
states non-zeros nodes edges nodes edges nodes edges terminal nodes

4 96 272 111 224 118 177 221 322 4
5 240 800 165 385 175 257 356 549 4
6 576 2,208 246 612 259 370 731 1137 4
7 1,344 5,824 324 883 340 482 1121 1823 4
8 3,072 14,848 408 1191 427 606 2082 3387 4
9 6,912 36,864 514 1561 536 754 3209 5481 4

Tandem Queueing Network

model fully minimized partially minimized deterministic
states non-zeros nodes edges nodes edges nodes edges terminal nodes

5 66 189 128 259 133 229 243 341 6
7 120 363 68 106 68 106 118 159 6
31 2015 6819 116 178 116 178 218 295 6
63 8128 27971 140 214 140 214 268 363 6

Flexible Manufacturing System

model fully minimized partially minimized deterministic
states non-zeros nodes edges nodes edges nodes edges terminal nodes

1 54 155 132 282 137 277 314 444 9
2 810 3699 1155* 4216* 1166 4222 3880 5956 14

* For these cases, nearly degenerate set(s) of vectors were encountered during minimization, and to
avoid precision blowup, partial minimization was used instead of full minimization for the levels where
the problem occurred.

Kanban Manufacturing System

model fully minimized partially minimized deterministic
states non-zeros nodes edges nodes edges nodes edges terminal nodes

1 160 616 133 226 134 254 387 524 14
2 4600 28120 2039 18063 2487 8315 7570 11447 14

Workstation Cluster

model fully minimized partially minimized deterministic
states non-zeros nodes edges nodes edges nodes edges terminal nodes

6 1652 7520 621 4716 865 2875 2643 3894 13
7 2176 10000 685 4990 907 3100 3135 4564 14
8 2772 12832 824 7556 1166 4443 4316 6337 15
9 3440 16016 596 1401 659 1185 4164 5984 16
10 4180 19552 1056 9205 1506 6466 5045 7323 17

Figure 1. Comparison of LDD Sizes for Benchmark Examples
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