Linear Decision Diagrams

Eugene W. Stark, Wenxin Song
Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794 USA

{stark,wenxin@cs.sunysb.edu

Abstract from a set ofV of possible values (for example, the real
numbers). Ann-level MTBDD thus represents \-valued
We introducdinear decision diagram@DDs) as aspe- function of n boolean arguments, or equivalently,2a-
cial class of linear representations of formal power series. dimensional vector with entries drawn frodm An MTBDD
LDDs can be seen as a generalization of some previouslyrepresentation of a vector can be very compact, assuming
proposed structures, such as MTBDDs and matrix dia- that the set of distinct values appearing as entries in the vec-
grams, that have seen successful application in the compactor is small. MTBDDs can also be used to represent ma-
representation of Markov models with large state spaces.trices, and computations such as vector/matrix multiplica-
Besides providing some possibilities for additional com- tion can be performed efficiently in terms of MTBDD rep-
pression, LDDs have an interesting and useful reversibility resentations. A variety of other variations of BDDs have
property that is not shared by previously considered BDD been proposed7 inc|udirgdge-va|uechnd factored edge-
variants. In addition, LDDs have the advantage that most valuedBDDs [20, 29],binary moment diagram@BMDs)
LDD operations can be performed without any assumption [5], multi-valued decision diagranm(®1DDs) [17], andma-
that the arguments are fully reduced or “canonical” This trix diagrams(MDs) [8].

suggests the possibility of using multiple reduction heuris- This paper proposeinear decision diagramgLDDs)

tics that trade off reduction “strength” for computation e
. as a data structure for formal verification. LDDs are a spe-
cost. We present some experimental results that compare the

sizes of MTBDD and LDD representations for rate matrices .C'al case of thdinear representationthat have been_ Stucs
. ied in the context of the theory of formal power series (see,
obtained from some standard benchmark examples.

e.g.[3, 13, 24]). Like MTBDDs, linear representations de-
scribe mappings from finite strings of symboksd.from
the two-element alphabéd, 1}) to values. LDDs are a class
1. Introduction of linear representations that exhibit a “level structure” like
that of BDDs. In fact, the so-called “quasi-reduced” MTB-
Binary decision diagram¢BDDs) [1, 4, 21] and their pDs [22] can be regarded as a restricted class of linear rep-
variants are a class of data structures that has seen succesgsentations. When LDDs are used to represent matrices
ful application in the formal verification of systems with there is also a close relationship to MDs. However, the ad-
large state spaces. Variations of BDDs have been proposeditional structure of LDDs provides some possibilities for
to support quantitative calculations of the type that are re- additional compression beyond that possible with previous
quired for verification and performance analysis of sys- BDD variants. LDDs also have an interesting and useful
tems modeled using Markov chains. For examphelti- reversibility property that BDDs do not have. In addition,
terminal binary decision diagram@MTBDDs) [2, 11, 12] | DDs have the advantage that most LDD operations can be
are a generalization of BDDs in which there can be mul- performed without any assumption that the arguments are
tiple leaf nodes, each labeled by a distinct value drawn fy|ly reduced or “canonical.” This suggests the possibility
of using multiple reduction heuristics that trade off reduc-
* This research was supported in part by the National Science Founda-

tion under Grant CCR-9988155 and the Army Research Office under tion strength for computation cost.

Grants DAAD190110003 and DAAD190110019. Any opinions, find- The remainder of this paper is organized as follows. In
ings, and conclusions or recommendations expressed in this material . . - .

are those of the author(s) and do not necessarily reflect the views ofse_Ctlon 2 we _glve _a Qe”era' defm't_mn of “nea_r represen-
the National Science Foundation, the Army Research Office, or other tations and briefly indicate how various operations can be

sponsors. performed with them. A key point here is the fact that there

exists aminimization algorithm([25]) that can be applied The triple R = (C, M, D) is called alinear representa-

to minimize the number of dimensions (nodes) in a linear tion of S andd is the dimensionof the linear representa-
representation so as to avoid the blow-up that would other-tion. In the degenerate cage= 0, the space¥! >4, Yix1
wise occur as successive operations are performed. In SecandV?*? each contain only the zero vector, and the repre-
tion 3 we introduce linear decision diagrams (LDDs) as a sentation recognizes the identically zero formal series. We
restricted class of linear representations. We indicate howwill say that two linear representatiord® and R’ over &
LDDs can be used to perform vector and matrix computa- andV areequivalentf they recognize the same formal se-
tions, and discuss the relationship between LDDs, MTB- ries.

DDs, and MDs. In Section 3.5 we discuss some issues re- An interesting property of linear representations is that
lated to the implementation of LDDs. In Section 4 we report every linear representatioR = (C, M, D) has adual

the results of some experiments in which we compare theR°? = (DT, M™T C7T). It is easy to see that iR recog-
sizes of LDD matrix representations under various reduc- nizes formal serie§, then its dualR°? recognizes the for-
tion “strengths.” Finally, in Section 5 we draw some brief mal seriesS° defined by(S°P, w) = (S, w’?), wherew’
conclusions from our investigation of LDDs. denotes theeversalof the wordw.

2. Linear Representations 2.1. Minimization

Linear representationare a kind of vector automata that An important fact about linear representations is the fol-
compute mappings of finite words over an alphabéd val- lowing, which requires thay’ be a field.
ues in a suitable spad2 In a classical setting, such map-
pings are calletbrmal power seriesin view of the observa- recognizable formal series, then there exists a linear rep-

tion that a power series in several non-commuting Va”ablesresentatioanin that is minimal in the sense that it has

can be usefully described as a mapping that takes each fi- . - . . i
) .) . - . minimum dimension among all representations that recog-
nite sequence of variablesq. a “monomial”) to its asso-

. gy . . . nize S. Moreover, there exists an algorithm for computing

ciated coefficient. In the most general setting considered in__~_ " . . : . . :
. o . a minimal linear representation & given an arbitrary lin-
the classical theory, it is required only that the spHdze a . .
i o : " ear representation of as input.
semiring which is a structure having an addition and a (not
necessarily commutative) multiplication operation with dis- We do not give here a complete proof of Proposition
tinguished elements playing the roletodnd1, butin which 1. For that, the reader may refer to the original paper of
neither multiplicative nor additive inverses need exist. In Schitzenberger [25], or to the book [3] which has a more
this paper, though, we restrict our attention to the special algebraic presentation. For our purposes, though, it will be
case in whichy is a field; for example, the field of ratio- helpful to consider in concrete terms the problem of how,
nal numbers or the field of real numbers. given an arbitrary representatid) one can compute a min-
Formally, if V is a field, then we us®'*?, Y¢x1 and imal representatio®’ equivalent tak. Essentially the same

yixd to denote, respectively, the set of dHdimensional minimization algorithm as we describe here has been dis-
row vectors, the set of alf-dimensional column vectors, cussed previously in ([25, 7, 3]). Our presentation here cen-

Proposition 1 (Schitzenberger [25]) If S € V<YX>> is a

and the set of all x d-matrices, with entries V. Vec- ters around notion of a “reduction” on a representatin
tor and matrix addition and multiplication are defined in the and the related concepts of “reachability” and “observabil-
usual way. It is convenient to identify the $&t*! of 1 x 1- ity.” These concepts will be helpful later in understanding
matrices withV itself. how the minimization algorithm specializes to LDDs.

A function S : ¥* — Vis called aformal series ovek Formally, supposé& = (C, M, D) is a representation of

with coefficients iV. The notationV<>>> is traditionally dimensiond. We call R reachableif the set{C(Mu) : u €
used to denote the set of all such formal series. The value of*} spansy*<. Similarly, we callR observablef the set
S on a wordw is traditionally denoted byS, w). A series {(Mv)D : v € %*} spansV®* L. If R is both reachable and
S € V<> is calledrecognizabléf there exists observable we call itanonical The following result is ob-

e aninteged > 0, vious, but useful to note.

e arow vectorC € Y'x4, Proposition 2 Let R be a representation. Theiis observ-

. op ¢
« a column vecto € V<!, and able if and only ifR°P is reachable.

The next result shows why reachability and observability

e amonoid homomorphism/ : ¥* — Vx4, : _ e
are of interest with respect to minimization.

such that for alkv € ¥* we have N) _
Proposition 3 Let R be a representation. Theh is canon-

(S,w) = C(Mw)D. ical if and only if it is minimal.

A reductionon a representatioR = (C, M, D) is a pair
of matrices(P, Q), whereP € V¥*4 and@ € V¥ *4, such
that the following conditions are satisfied:

1. QP =1,
2. CPQ=C
3. Q(Mo)PQ =Q(Mo)foralloc € &

Note that condition (1) implies that < d. Ifinfactd’ < d
then the reduction is calletbntrivial.

The notions of reachability and reduction are connected

as follows:

Proposition 4 A representatiomR is reachable if and only
if there is no nontrivial reduction ofR.

SupposeR = (C,M, D) is a representation, and let
(P,Q) be a reduction onR. Let representationk’
(C', M', D') be defined as follows:

1.C'=CP.
2. D' =QD.
3. Mo =Q(Mo)Pforallo € X.
We call R’ thereductof R by the reductior{ P, Q).

Proposition 5 SupposeR = (C, M, D) is a representa-
tion, let (P, Q) be a reduction onk with P € V44" and

Q € V¥*d and letR’ = (C’,M’, D’) be the reduct of?

by (P, @), ThenR' is equivalent taR. Moreover, ifR is ob-

servable then so i&’.

Proposition 6 Supposer = (C, M, D) is a representation
of dimensiond. LetS be any linear subspace of' ¢ that

includesC and is closed undeM o for all o € X. Then

there is a reductiorf P, @) on R such thatS is the image of
the idempotenP@.

From the above results we can see how to minimize a

representation. Given a representati®n= (C, M, D) of
dimensiond, compute the least subspaSeof R that con-
tainsC and is closed unde¥/o for all o € . Associated
with the subspacé is a reduction(P,), such thatS is
the image of the idempote®®@. Let R’ be the reduct of
R by the reduction(P,), thenR’ is reachable and equiv-
alent toR. Now repeat the procedure on the d(A&l)°P of
R’ to obtainR”, equivalent to R')°P, which is both reach-
able and observable and hence minimal. The @&&l)°P
of R” is then a minimal representation that is equivalent to
the original representatioR.

2.2. Computing with Linear Representations

Since there is just one linear representation of dimen-
sion zero, it follows from the results of the preceding sec-
tion that there is an algorithm to determine whether a given

linear representatio® recognizes the identically zero se-
ries: simply minimizeR and then check whether the re-
sulting representation has dimension zero. In addition, al-
gorithms exist for computing a variety of other operations
on linear representations, including:

(Scaling) Given a value: € V and a representatioi that
recognizes formal serieS, compute a representation
aR that recognizes the series$' defined by(a.S, w) =
a(S,w).

(Addition) Given representation®; and R, that recog-
nize formal seriesS; and S,, respectively, compute
a representatior?; + Rs that recognizes the series
S + S, defined by(51 + Ss, w) = (Sl, w) + (52, ’U))

(Hadamard Product) Given representation£; and Rs
that recognize formal serieS; and S,, respectively,
compute a representatid®y x R, that recognizes the
seriesS; * Sy defined by(S; * Sy, w) = (S1,w) -
(Sg,w).

(Cauchy Product) Given representation®, and R, that
recognize formal serieS; and S, respectively, com-
pute a representatiaR; - R, that recognizes the series
S1 - S, defined by

(S1-Sp,w) =Y (S1,u) - (S2,0).

uv=w

(Equality Test) Given representation®; and R, deter-
mine whetherR, and R, recognize the same formal
series.

Though straightforward constructions to implement most
of the above operations would be dimension-increasing, by
following each construction with an application of mini-
mization one can perform a series of operations without
danger of the blow-up in dimension that would otherwise
occur.

3. Linear Decision Diagrams

A linear representatio® = (C, D, M) overX is called
a linear decision diagran{LDD) if there exists a natural
numbern and a sequencéy, d, ..., d, of natural num-
bers, such that for eache X the matrixA o has the block
form:

0 M, 0 0
0 0 My, 0
0 0 0 My,
0 0 0 0

whereM;, , € V¥#-1*dx for 1 < k < n, and such that’
andD have the block forms:

0
0
C=(Co 0 0 0) D=| 0
DTL
whereC, € V¥4 andD,, € Yién*1,
Alternatively, since the sequene, ds,...,d, is im-

plicit in the dimensions of the matricéd}, , (1 < k < n),

we can specify an LDD simply by giving these matrices, to-
gether with the nonzero portiofiy of the input vectorC
and the nonzero portioP,, of the output vectoD. That is,
we can regard an LDD as a tuple:

(Co, {Mk,o : 1 <k <n,o€X},D,).

such that the evident relationship between the dimension
holds. In the sequel, it will be convenient for us to pass back

and forth implicitly between these two ways of regarding an
LDD. Note that, due to the special form of an LDD if S

is the formal series recognized Wy then S is a polyno-
mial whose (finite) support is contained in the 88t Note
also that, like a BDD, an LDD has a “level structure,” where
the dimensiondy, d, ..., d,, correspond to the number of
nodes at each of the+ 1 levels, and the matrice¥;, , de-
fine the edges between the levels.

3.1. Minimization

S

be the matrix having’ as its single row. Defing, ¢ Ydox!
to be the matrix having as its sole nonzero enty; in the
ith row. Observe tha)y Py = I; and thatC P,Qo = C.

Now, proceeding iteratively for eacéhfrom 1 to n, sup-
pose at stagk that we have computed matiiy, ;. LetQy
be a matrix whose rows form an independent subset of the
set of all rows of the produci@;,_1M}, . Let P, be a ma-
trix such thatQy P, = I, . Although Py is in general not
uniquely determined, the correctness of the algorithm does
not depend on how?, is selected. Note that, regardless of
how P, is obtained, the construction ¢J; and the prop-
erty Qi P, = I, implies thatP, Q) is an idempotent ma-
trix whose image includes each of the rows of the matrices
Qr—1My, -, and hence we have

Qr-1 My, o PLQr = Qr—1My &

forallo € X.

Once the above procedure has been carried out for
k < n, we have constructed matricés and@Q;, for 0 <
k < n satisfying the following properties:

1. QkPk :Idk,for()gkzgn.

2. CPyQo = C.
3. Qk—le,aPka = Qk—le,a forallo € ¥ andl <
k <n.

These properties are easily seen to be the appropriate spe-
cialization to LDDs of the notion of a reduction from Sec-
tion 2.1. Let the LDD

R(L) = (C"{M} ,:1<k<n,oce€x},D)

As they are a special case of linear representations, thg,, jefined as follows:

results of Section 2.1 apply to LDDs, yielding the existence

of LDDs of minimal dimension and of an LDD minimiza-
tion algorithm. In fact, the special structure of LDDs can be
exploited to obtain the stronger result that minimal LDDs
are in fact minimal ineachof the dimensiongl,,, and that
minimization of an LDD can be performed in two phases:

o (' = CPO
o D = Q..D.
¢ Mlir,o' = Qk‘—le,o-Pk for 1 < k <n.
Once again, this definition specializes to the case of LDDs

a forward, “reachability" phase that sweeps through the list the notion of reduct defined in Section 2.1. It then follows

of matrices from left to right, and a backward, “observabil-
ity” phase that sweeps from right to left.
LDD Reachability Algorithm
Input: AnLDD L = (C,{My,:1<k<mn,o€X},D).
Output: Areachable LDD

R(L) = (C",{M}, :1<k<n,o0eXx} D)
that is equivalent td..

Procedure: If C is the identically zero vector, then output

the degenerate LDD having, = 0 for 0 < k < n.
Otherwise, suppos€' has a nonzero valug in theith

position, for somé with 1 < i < d,. DefineQ, € V'*% to

thatR(L) is a reachable LDD that is equivalent o

Full minimization of an LDD is achieved using two
applications of the LDD reachability algorithm presented
above:
LDD Minimization Algorithm
Input: ANLDD L = (C,{M},:1<k<n,o€X},D).
Output: A canonical LDD

C(L)=(C"{My,:1<k<n,0eX}, D)

that is equivalent td..

Procedure: Given L, apply the reachability algorithm tb
to obtain a reachable LDIR(L) that is equivalent td_.

Then, compute the du@t(L)°P of R(L), apply the reacha-

bility algorithm again to obtaiR (R(L)°P), and finally du-

alize again to obtain
C(L) = R(R(L)*")*®

which is a canonical LDD equivalent fo.

3.2. Computing with LDDs

The constructions, mentioned in Section 2.2, for comput-
ing various operations on linear representations obviously
specialize to LDDs. Often, the special structure of LDDs
makes it more efficient to compute certain operations on

and
L'=(C'{M],:1<k<d,ceX}, D)
are given LDDs.
(Scaling) DefineaL to be the LDD
al = (aC,{My,:1<k<d,o €X},D).
(Addition) Assumingd = d’, defineL + L’ to be the LDD
L+L =(C"{M/,:1<k<d,oex},D")

where

LDDs than on general linear representations. One case in

point is the minimization algorithm itself. The reachability
algorithm for a linear representation of dimensibwould

in general involve the calculation of a basis for the least sub-
space ofY!*? that contains the vectar' and is closed un-
der multiplication on the right by the matricédo. This
closure calculation can be performed via repeated multipli-
cation byM to generate vectors of dimensidnwhich then
have to be checked for independence with respect to th
span of the set of previously generated vectors. Although
each step in the LDD reachability algorithm also requires a
matrix multiplication and the extraction of an independent
set of rows, the vectors at tti¢h stage are only of dimen-
siondy,, rather than the full dimensiah= ZZZO di. In ad-
dition, for an LDD withn + 1 levels closure is reached after

e

D//

D/

cr—(C) ()

(%)

(Hadamard Product) Assumingd = d’, defineL = L’ to
be the LDD

Mk:,o’
0

0
My,

Ll = (C"AM], : 1 <k <d,o€%},D")
where

C//:C®C/ D//:D®D/

only n stages, whereas a general linear representation could

require up tad iterations to reach closure.
Another calculation that can be performed more effi-
ciently on LDDs is the following:

(Summation) Given an LDDL that recognizes formal se-
ries S, compute the valug .. (S, w).

For an LDD this can be done simply by forming the prod-

- C (ﬁ > M,w,> D.

k=1oc€eX
For an arbitrary linear representation the corresponding cal-

culation would be:
o () D,

wherex denotes Kleene star.

We now give explicit descriptions of several other useful
constructions that can be performed on LDDs. In the fol-
lowing, suppose

ZMO‘

oEX

L=(C{M,:1<k<doex}D)

Mlg,a = MkHU ® Ml,f,a
and® denotes the Kronecker (tensor) product.

(Cauchy Product) Supposes andS’ are the formal series
represented by, andL’, so that the support of lies in
¥4 and the support af’ lies in 24", Then in this spe-
cial case the Cauchy product gfand.S’ is the formal
seriesSS’ defined by

(S, u) (S, u'), if w=wu,
(S5 w) = uwe Xt u en®
0, otherwise.

Define the LDDL - L’ by
L-L'=(CA{M},:1<k<d+d},D)
where
My, o, forl1 <k <d

(DeC")Mj ,, fork =d+1
My o ford+2<k<d+d

"o
Mk’U =

3.3. Vector and Matrix Computation addition operations on LDDs. Componentwise product of
vectors can be performed using the Hadamard product op-
Since LDDs represent mappings from finite words to val- eration on LDDs (this is essentially the same as the “apply”
ues, they can be used to represent vectors and matrices in @peration on MTBDDs, in the special case that the opera-
fashion similar to the way MTBDDs are used for this pur- tion being applied is multiplication). Dot product of vectors
pose. In this section, we briefly sketch the main ideas andcan be performed by applying Hadamard product followed
indicate some ways in which LDDs differ from MTBDDs. by summation to the LDD representations. The Cauchy
We suppose throughout this section thais the two-letter product operation on LDDs corresponds to the Kronecker

alphabet{0, 1}. (tensor) product operation on vectors in case the lengths
An n + 1-level LDD overy represents a formal power ©f the vectors in question are powersdfThis operation

seriesS over X, whose support is contained %i*. By fix- is useful because in formal verification, Kronecker product

ing an encoding of elements of the §6t1,...,2" — 1} as often arises as a basic operation by which components are

words in", we may regards as a2"-element vector with ~ combined to yield a composite systeend.[23, 6]).

entries fromV. For example, we may choose an encoding ~ Besides vectors, LDDs can be used to represent matri-
inwhichi € {0,1,...,2" — 1} is represented by its binary ~ C€S. A square matrix of dimensi@rft can be represented as
encoding given least-significant bit first. MTBDDs are used & 2n + 1-level LDD. By choosing the encoding of the in-
to represent vectors in the same way. However, note that ifdices compatibly with that used for vectors, one can per-
LDD L represents a vector under a least-significant-bit-first form various vector/matrix operations on the LDD repre-
encoding, then its dudl°P represents the same vector un- sentations. As for MTBDDs, a convenient choice is to en-
der a most-significant-bit-first encoding. MTBDDs do not code the row and column indices by thehbit binary rep-
have this duality property. resentations, which are then interleaved by alternating row
and column bits starting least-signficant bit first to produce
awordw € 32", With such conventions in place, the vec-
tor of column sums of a matrix can be accomplished by re-
ducing a2n + 1-level LDD L to an + 1-level LDD L via

the construction

Consideration of the definitions of reachability and ob-
servability for LDDs reveals that for a canonical LDD over
¥, the dimensioni, at thekth level can be at mogt* for
0 < k < n/2andat mos"* for n/2 < k < n. Minimal
LDDs representing sparse vectors will in general have di-

mensions much smaller than these exponential bounds, so Mio = (Myp_1,0+ Map_1.1)Mopo
that LDDs can provide a compact sparse vector represen- o
tation. This compactness is not necessarily limited to vec- M1 = (Mag—1,0 + Mog—1,1) Mo 1

tors containing large numbers of zeroes, since like MTB- 5, | <« 1 < 4. Multiplying a matrix on the left by a
DDs a minimal LDD representation also provides compres- 1o,y vector can be performed by first expanding the 1-

sion by identifying identical subvectors when these subvec-|g\e| LDD representing the vector to2a + 1-level LDD

tors occur “aligned” at indices that are powersoUnlike py inserting new levels consisting of identity matrices in
MTBDDs, but like FEVBDDs [20, 29] and matrix diagrams petween each of the original levels (this amounts to trans-
(MDs) [8], LDDs are also capable of identifying subvgctors posing the original row and replicating it in columns), then
that are multiples of each other. However, LDDs provide the computing the Hadamard product of the resulting LDD by
opportunity for even further compression by identifing sub- ihe | DD representing the matrix, and finally reducing the
vectors that are linear combinations of each other. result back to a + 1-level LDD by forming column sums.

Another way in which LDDs are different from MTB- Matrix/matrix multiplication can be accomplished using the
DDs is their duality property. A canonical LDD will always same basic idea.

haved, = d,, = 1;thatis, it will have a single root node and

a single leaf node. Because of this, and because the numbes 4 MTBDDs and Deterministic LDDs

of nodes can increase or decrease by no more than a fac-

tor of two at each level, as we traverse the levels of an LDD | DDs are closely related to MTBDDs. Both LDDs and

from left to right the number of nodes at each successive MTBDDs represent vectors whose dimensions are powers

level tends to increase toward the middle levels, then de-of 2. For an MTBDD, the distinct values appearing in the

crease again. This need not occur with MTBDDs, since the vector are displayed as the labels of the terminal nodes. The

number of terminal nodes in areduced MTBDD is not fixed entry at theith position in the vector is obtained by start-

but rather depends on the number of distinct nonzero val-ing at the root of the MTBDD and following edges to a

ues in the vector it represents. leaf node, where the edge followed from a node at level
Like MTBDDs, LDDs admit efficient implementations & is determined by thé&th bit in the binary expansion of

of basic operations on vectors. Scaling and addition of vec-the indexi. Unlike LDDs, edges in fully reduced MTB-

tors can be done using the previously mentioned scaling andDDs can “skip levels” in the sense that an edge need not

always go from a node at levélto a node at levek + 1. of a hierarchically structured system of component PIOA.
However, we can imagine introducing “dummy nodes” in Besides the specification of the Markov chain, PIOATool
an MTBDD, having the samé and1-successor nodes, so takes as input an “observable,” which is the description of
that levels are never skipped. MTBDDs that otherwise sat- a particular performance measure to be computed. The two
isfy the conditions for being reduced, except for the pres- basic operations performed by PIOATool are (1) to “apply”
ence of dummy nodes, are callgdiasi-reduced2]. The0- a system behavior to an observable to obtain a new observ-
and1-labeled edges between levélaindk + 1 in a quasi- able, and (2) to “evaluate” an observable to obtain a result.
reduced MTBDD can then be represented as zero/one maThe main operation involved in application is computing the
trices My, o and My, 1. The root node can be represented as Kronecker products, of each of a set of small transition ma-
the 1-dimensional row vectof = (1), and the distinct val- trices for the component being applied, with corresponding
ues labeling the leaf nodes can be displayed in the formlarge transition matrices for observable. Evaluation involves
of as ad,,-dimensional column vectob. Thus, a quasi- areachability analysis phase, followed by a phase involving
reduced MTBDD corresponds to an LDD over the alpha- the solution of a large set of linear equations. Both phases
betX = {0, 1}, having all zero/one entries except at the last can be accomplished by an iterative approach in which the
level, and which in addition is “deterministic” in the sense central operation is vector/matrix multiplication.
that vectorC' and each matrix\{; o and M ; has at most We now mention some practical experience we gained
one nonzero entry in each row. from the exercise of integrating LDD-based vector and ma-
Conversely, from a given LDD, it is possible to construct trices into PIOATool. Perhaps the most important point is
an equivalent LDD that is deterministic and has zero/one that it is hardly ever required, and often not desirable, that
entries at all levels except the last. This can be achieved byL.DDs be fully dimension-minimized. This is to be con-
an algorithm that is similar to the LDD reachability algo- trasted with the case of MTBDDs, where the algorithms for
rithm presented previously, except that at each stage insteadperating on MTBDDs rely heavily on their arguments be-
of identifying a linearly independent set of rows we extract a ing in canonical form. For LDDs, the only typically encoun-
set of nonzero rows that is “representative” in the sense thattered operation where it is absolutely essential to place an
each nonzero row appears exactly once in the selected set. IEDD in reduced form is when it is desired to test whether
the originally given LDD is observable, then it can be shown the LDD represents the identically zero vector. The rest of
that the LDD resulting from this determinization algorithm the time an LDD can be maintained according to various
corresponds to a quasi-reduced MTBDD. Interestingly, by weaker requirements. For example, here are three possibili-
exploiting the duality properties of an LDD, we also obtain ties that we have found useful in practice:
a“ch(.ater.minizatiqn” algorithm for LDDs. W.hereas the.de— 1. Ensure that the block matrice€; o My ;) and
term|n|z§t|on algorithm outputs an LDD having the'dls.tlnct (M7, MT,) have no zero rows (this corresponds to
vaIL_Jes displayed at the leaf no_des_, the codet_ermlnlzanon al- ensdring there are no “unreachable” or “unobservable”
gorithm produces an LDD having its values displayed at the nodes).
root nodes. The codeterminization of an LDD can be used .
as an efficient way to decompose a vector into a sum of 2- Ensure that the block matricegM}. o My,1) and
“evel sets.” (M;[, M;[)) have full rank (this yields full minimal-
From the above correspondences between MTBDDs and ity).

LDDs, we can conclude that a vector of dimensincan
always be represented at least as compactly by an LDD as it
can by a quasi-reduced MTBDD. Moreover, LDDs can pro-
vide compact representations of vectors that cannot be rep-
resented compactly by MTBDDs; in particular this is true
for vectors that have many distinct entries, but where these
entries occur in patterns that can be generated as linear com-
binations of a small number of independent representatives.

3.5. Implementation Issues

We have incorporated an experimental implementation
of LDDs into our PIOATool analysis engine [26, 32] for
probabilistic /0 automata (PIOA) [30, 31, 28, 27]. PIOA-

. By choosing from among the rows of the matrices

My o and My, a set that is “representative” in the
sense that no two rows in the set are multiples of each
other, and by applying a change of basis associated
with the selected set, we can transform the matrices
M}, o and M, ; so as to obtain at most one nonzero en-
try in each row. Apply this transformation at each level
unless doing so would result in an increase, rather than
a decrease, in the number of columns. Dually, trans-
form the matrices\/;, o and M}, 1 so as to obtain at
most one nonzero entry in each column, unless doing
so would result in an increase in the number of rows.

In the course of building the experimental LDD im-
plementation, we observed that best performance moas

Tool is designed to operate on specifications of continuous-achieved when full LDD minimization (case (2) above) was
time Markov chains (CTMCs) expressed as the compositionused routinely. Instead, it was often faster to use the weaker

form of minimization represented by (3) above, except in manipulation of them more time-consuming. Also, the full
situations where full minimization was required for cor- LDD minimization algorithm requires the selection of in-
rectness. One reason for this discrepancy seems to be thatependent subsets of the set of rows of the matidgs..

best performance is achieved when the numbeedtfes We have observed situations in which sets of rows turn out
rather than the number ofodes(i.e. dimension) is mini- to be very nearly dependent. In such cases, the precision re-
mal. Full minimization, represented by case (2), minimizes quired to perform the minimization can grow very rapidly.
dimension but sometimes does so at the expense of produch the case of rational arithmetic, huge fractions are gener-
ing denser matrices{; o and M, ;. In addition, the cost ated, thereby slowing down the computation very substan-
of the independence checking required for case (2) generdially. In the case of floating point arithmetic, inaccurate re-
ally is at least quadratic in the number of nodes at a level, sults can be produced. To avoid such problems, we employ
whereas hashing techniques can be used in case (3) to rea heuristic that detects when nearly dependent sets of rows
duce the complexity to linear in many cases. are encountered during minimization and unless full mini-

After minimization, the LDD operation that it is most mization is absolutely essential (such as when testing if an
critical to optimize is Hadamard product, which is the cen- LDD represents an identically zero vector) we simply avoid
tral operation to vector/matrix multiplication (this corre- Performing any reduction in such cases. We need to bet-
sponds to the “apply” operation for MTBDDs). A straight- ter understand the numerical issues associated with LDDs
forward implementation of the definition in terms of Kro- and to take a lesad hocapproach to dealing with them.
necker product is much too expensive, as it first builds an
LDD whose dimensions at each level are the product of 4. Experimental Results
the dimensions of the argument LDDs at the correspond-
ing level, and it then immediately applies the minimiza- In order to get an idea of the relative compactness of
tion algorithm and throws away most of what has been con-LDDs and MTBDDs in practical situations, we took rate
structed. To avoid this, our implementation performs a pre- matrices arising from several case studies examined by the
analysis that permits us to avoid building the full Kronecker PRISM group [18, 19] and constructed LDD representa-
products, but rather to construct only that portion that would tions of these matrices using three different LDD minimiza-
be left after applying minimization condition (1) above. Itis tion criteria. The particular PRISM case studies we used
not clear to us that this is the best that can be done. were the Cyclic Server Polling System [16], the Tandem

A feature of MTBDD implementations that is not shared Queu€ing Network [15], the Flexible Manufacturing Sys-
by our LDD implementation is the node cache. In MTBDD €M [10], the Kanban Manufacturing System [9] and the
implementations, a cache is used to keep track of MTBDD Workstation Cluster [1_4]. These models have bee_zn _used reg-
nodes that have already been constructed. This cache servéd@rly as benchmarks in the performance analysis literature.
two purposes: (1) it is used in ensuring that only reduced The three LDD minimization criteria we used were:
MTBDDs are constructed; and (2) it speeds up construc- 1. Full minimization. The dimension (number of nodes)
tions on MTBDDs by avoiding constructing the same sub- of the LDD is the minimum possible.
graph multiple times. LDD operations can be programmed
without the use of a cache, assuming instead that one of
the variants of the minimization algorithm is applied peri-
odically to avoid explosion in dimension. It is not clear to 3. Deterministic. Deterministic LDDs were produced that
us at the moment whether the efficiency gains provided by had zero/one entries at all levels except the last. As

Partial minimization. The LDDs were minimized ac-
cording to criterion (3) of Section 3.5.

the MTBDD node cache make MTBDDs inherently signif- noted in Section 3.4, such LDDs are essentially the
icantly faster than LDDs, or whether we can program LDD same as quasi-reduced MTBDDs.

operations in such a way as to make use of an MTBDD-like The example matrices we used were obtained from
node cache. PRISM using an export feature present in the current ver-

Other implementation issues for LDDs derive from pre- sion of that tool. Unfortunately, we were unable to make
cision requirements and the use of floating point. Our LDD a direct comparison with the MTBDD size informa-
implementation can use either floating point or exact ratio- tion that is reported for these examples on the PRISM
nal arithmetic. When exact arithmetic is used, we know that web site. This is because although PRISM does rep-
an LDD constructed to represent a vector or matrix exactly resent these matrices using a variant (offset-labeled
represents that vector or matrix. When floating point is used, MTBDDs) of quasi-reduced MTBDDs, the internal rep-
the possible accumulation of numerical errors means thatresentation of the matrices in PRISM uses more di-
this need not be the case. One consequence of this is thamnensions, and hence more MTBDD levels, than the
near-zero values can tend to accumulate in the LDD matri- matrices obtained via the PRISM export feature. So, al-
ces, thereby making these matrices more dense and makinthough the figures we report for deterministic LDDs

should give an idea of the relative compactness of MTB- tion algorithm can be costly to execute. Partial minimization

DDs versus that of partially and fully minimized LDDs,

of LDDs can be done faster, and produces results that can

the numbers cannot be compared directly to those pub-still be significantly more compact than MTBDDs. View-
lished by the PRISM group for the same benchmark exam-ing MTBDDs and the like as special cases of linear repre-

ples.

sentations might suggest various useful constructions and

Figure 1 summarizes our experimental results. Each ta-algorithms that would otherwise not be evident. A system-
ble gives the results for various instances of a particular atic treatment of numerical issues related to LDDs remains

benchmark example. The paramedérwhose exact mean-
ing depends on the example, determines the size of the in-
stance. For the polling syster, is the number of stations,
for the tandem queueing network, is the capacity of the
gueue, for the flexible manufacturing system and kanban
manufacturing systemy refers to the number of tokens,
and for the workstation clustefy denotes the number of
workstations. To avoid complicating the results with issues
related to the accumulation of near-zero floating point val-
ues, we used exact rational arithmetic in constructing the
LDDs. The columns under “model” give the number of
states and the number of nonzero entries in the rate matrix.
The columns under “fully minimized” and “partially min-
imized” give the number of nodes.€. the dimension) of
the LDD representation of the rate matrix and the number
of edges i¢e. the total number of nonzero values in the in-
put vector, matrices and output vector) of the LDD. In the
“deterministic” case, we also report under “terminal nodes”
the dimensioni,, of the final LDD level. This value equals
the number of distinct nonzero entries in the matrix repre-
sented by the LDD.

In general, the experimental results show that fully min-
imized and even partially minimized LDDs often provide

substantial reductions in the numbers of nodes and edges as

compared to determinized LDDs€. quasi-reduced MTB-

to be performed.

References

[1] S. Akers. Binary decision diagram$EEE Transactions on
Computers27(6):509-516, 1978.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic decision di-
agrams and their applications. IIBEE /ACM International
Conference on CAPL993.

[3] J. Berstel and C.Reutenauer. Rational series and their lan-
guages.EATCS Monographs on Theoretical Computer Sci-
ence 12, 1984.

R. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computer85(8):677—
691, 1986.

R. E. Bryant and Y.-A. Chen. \rification of arithmetic
functions with binary moment diagrams. Technical report,
Carnegie-Mellon University, 1994.

P. Buchholz. Exact performance equivalence: An equiva-
lence relation for stochastic automatéeoretical Computer
Science215:263-287, 1999.

[7] A. Cardon and M. Crochemore. Determination de la

repiesentation d'une&sie reconnaissableR.A.1.R.O. Infor-
matique Tkorique 14(4):371-379, 1980.

(2]

(4]

(5]

(6]

D). The reductons derie ffom the abilty of DDs 1o (9 £, 231l o B, Mner A st o e cen
exploit patterns that are more general than just repeated in- editors,Proc. 8th InternationaI.WOrI%shop on Petri Neis and,
stances of identical submatrices. Fully minimized LDDs, Perforrﬁancé Modelspages 22—31. IEEE Computer Society
while providing additional reduction (in some cases signifi- Press. 1999. '

cant amoqnts) in the number of nodes Qver partifally reduced [9] G. Ciardo and M. Tilgner. On the use of kronecker operators
LDDs, typically do so at the cost of an increase inthe num- =~ ¢ tpe solution of generalized stochastic petri nets. Techni-
ber of edges. In addition, though the tables do not show tim- cal Report 96-35, ICASE Report, 1996.

ing information, the cost of fully minimizing LDDS grows 11 . Ciardo and K. Trivedi. A decomposition approach
at a rate greater than linear in the number of dimensions,” "~ for stochastic reward networksPerformance Evaluatian
which eventually negates the benefits of the additional re- 18(1):37-59, 1993.

duction. [11] E. Clarke, M. Fuijita, P. McGeer, K. McMillan, J. Yang, and

5. Conclusions

LDDs are a data structure that generalizes some other
BDD variants that have been used in verification and per-
formance analysis. LDDs, in turn, are themselves a special
case of a more general structure, namely linear representa-
tions for formal power series, for which an associated min-
imization theory exists. Fully hode-minimized LDDs are
generally more compact than MTBDDs, but the minimiza-

[

X. Zhao. Multi-terminal binary decision diagrams: An ef-
ficient data structure for matrix representation.Piroc. In-
ternational Workshop on Logic Synthesis (IWLS,98ges
1-15, 1993. Also available iformal Methods in System De-
sign, 10(2/3):149-169, 1997.

E. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang.
Spectral transforms for large boolean functions with appli-
cations to technology mapping. Rroc. 30th Design Au-
tomation Conference (DAC'93pages 54-60. ACM Press,
1993. Also available ifformal Methods in System Design
10(2/3):137-148, 1997.

2]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

(24]
(25]

(26]

[27]

S. Eilenberg. Automata, Languages and Machines, Val. A
Academic Press, 1974.

B. Haverkort, H. Hermanns, and J.-P. Katoen. On the use of
model checking techniques for dependability evaluation. In
In Proc. 19th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’'0Qpages 228-237, 2000.

H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi-
terminal binary decision diagrams to represent and analyse
continuous time markov chaingn Proc. 3rd International
Workshop on the Numerical Solution of Markov Chains
pages 188-207, 1999.

O. Ibe and K. Trivedi. Stochastic petri net models of polling
systems. IEEE Journal on Selected Areas in Communica-
tions 8(9):1649-1657, 1990.

T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Multi-valued decision diagrams: theory and ap-
plications.Multiple-Valued Logi¢c4(1-2):9—62, 1998.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Prob-
abilistic symbolic model checker. In T. Field, P. Harrison,
J. Bradley, and U. Harder, editofBroc. 12th International
Conference on Modeling Techniques and Tools for Com-
puter Performance Evaluation (TOOLS'Q2plume 2324 of
LNCS pages 200-204. Springer-Verlag, 2002.

M. Kwiatkowska, G. Norman, and D. Parker. Probabilis-
tic symbolic model checking with PRISM: a hybrid ap-
proach. International Journal on Software Tools for Tech-
nology Transfer (STTTP(?), 2004. (to appear).

Y.-T. Lai, M. Pedran, and S. Vrudhula. Evbdd-based al-
gorithms for linear integer programming, spectral transfor-
mation and function decompositiohlEEE Transactions on
CAD, 13(8):959-975, 1994.

C. Lee. Representation of switching circuits by binary-
decision programsBell System Technical Journa@8:985—
999, 1959.

A. Miner and D. Parker. Symbolic representations and anal-
ysis of large probabilistic systems. Validation of Stochas-

tic SystemsSpringer-Verlag, 2003.

B. Plateau. On the stochastic structure of parallelism and
synchronization models for distributed algorithmBerfor-
mance Evaluation Review3:147-154, 1985.

A. Salomaa and M. SoittolaAutomata-Theoretic Aspects of
Formal Power SeriesSpringer-Verlag, 1978.

M. P. Scliitzenberger. On the definition of a family of au-
tomata.lnformation and Contrql4:245-270, 1961.

E. Stark and G. Pemmasani. Implementation of a compo-
sitional performance analysis algorithm for probabilistic 1/0
automata. IrProceedings of 1999 Workshop on Process Al-
gebra and Performance Modeling (PAPM9®rensas Uni-
versitarias de Zaragoza, Sept. 1999.

E. W. Stark. Compositional performance analysis using
probabilistic 1/0 automata. In C. Palamidessi, edi@@N-
CUR 2000 - Concurrency Theory, 11th International Con-
ference, University Park, PA, USA, August 22-25, 2000, Pro-
ceedingsvolume 1877 ofLecture Notes in Computer Sci-
ence pages 25-28. Springer-Verlag, 2000. Abstract of in-
vited talk.

10

(28]

[29]

(30]

(31]

(32]

E. W. Stark and S. A. Smolka. Compositional analysis of ex-
pected delays in networks of probabilistic I/O automata. In
Proceedings of the 13th Annual IEEE Symposium on Logic
in Computer Science (LICS '98)ages 466—477, Indianapo-
lis, IN, June 1998. IEEE Computer Society Press.

P. Tafertshofer. Factored edge-valued binary decision dia-
grams and their application to matrix representation and ma-
nipulation. Master thesis, Institute of Electronic Design Au-
tomation, Technical University of Municth994.

S.-H. Wu, S. A. Smolka, and E. W. Stark. Compositionality
and full abstraction for probabilistic I/0O automata. Pmo-
ceedings of CONCUR 94 — Fifth International Conference
on Concurrency TheoryJppsala, Sweden, Aug. 1994.

S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and
behaviors of probabilistic I/O automataheoretical Com-
puter Sciencel76(1-2):1-38, 1997.

D. Zhang, R. Cleaveland, and E. W. Stark. The integrated
CWB-NC/PIOATool for functional verification and perfor-
mance analysis of concurrent systems. In H. Garavel and
J. Hatcliff, editors,Tools and Algorithms for the Construc-
tion and Analysis of Systems, 9th International Conference,
TACAS 2003, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2003,
Warsaw, Poland, April 7-11, 2003, Proceeding®lume
2619 ofLecture Notes in Computer Scienpages 431-436.
Springer-Verlag, 2003.

Cyclic Server Polling System

model fully minimized || partially minimized deterministic
states| non-zeros|| nodes| edges || nodes edges nodes| edges| terminal nodes
4 96 272 111 224 118 177 221 | 322 4
51 240 800 165 385 175 257 356 | 549 4
6| 576 2,208 246 612 259 370 731 | 1137 4
71 1,344| 5,824 324 883 340 482 1121 | 1823 4
8 || 3,072| 14,848 408 1191 427 606 2082 | 3387 4
91 6,912| 36,864 514 1561 536 754 3209 | 5481 4
Tandem Queueing Network
model fully minimized || partially minimized deterministic
states| non-zeros|| nodes| edges | nodes edges nodes| edges| terminal nodes
5 66 189 128 259 133 229 243 | 341 6
7 120 363 68 106 68 106 118 159 6
31 || 2015 6819 116 178 116 178 218 | 295 6
63 | 8128 | 27971 140 214 140 214 268 | 363 6
Flexible Manufacturing System
model fully minimized || partially minimized deterministic
states| non-zeros|| nodes| edges | nodes edges nodes| edges| terminal nodes
1 54 155 132 282 137 277 314 | 444 9
2| 810 3699 1155* | 4216* | 1166 4222 3880 | 5956 14

* For these cases, nearly degenerate set(s) of vectors were encountered during minimization, and to
avoid precision blowup, partial minimization was used instead of full minimization for the levels where
the problem occurred.

Kanban Manufacturing System

model fully minimized || partially minimized deterministic
states| non-zeros|| nodes| edges || nodes edges nodes| edges| terminal nodes
1| 160 616 133 226 134 254 387 524 14
2| 4600 | 28120 2039 | 18063 || 2487 8315 7570 | 11447 14
Workstation Cluster
model fully minimized || partially minimized deterministic
states| non-zeros|| nodes| edges || nodes edges nodes| edges| terminal nodes
6 || 1652 7520 621 4716 865 2875 2643 | 3894 13
7 || 2176 | 10000 685 4990 907 3100 3135 | 4564 14
8 || 2772 | 12832 824 7556 || 1166 4443 4316 | 6337 15
9 || 3440 | 16016 596 1401 659 1185 4164 | 5984 16
10 || 4180 | 19552 1056 | 9205 | 1506 6466 5045 | 7323 17

Figure 1. Comparison of LDD Sizes for Benchmark Examples

11

