
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Formally Specifying CARA in Java?

Eugene W. Stark

Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794 USA, e-mail:
stark@cs.sunysb.edu

Received: / Revised version:

Abstract. A restricted dialect of Java is proposed as
a language for writing formal specifications for reac-
tive systems. Specifications written in this dialect have
one Java class per system module. Each class uses
static fields to record module state, uses synchronized
static methods as entry points for services provided by
the module, and communicates with other modules by
method calls. Specifications written in this form are di-
rectly executable, can serve as a reference model for
subsequent implementations, and can also be used as
a target for formal verification techniques. Application
of the method to construct an executable specification
of the CARA (Computer-Assisted Resuscitation Algo-
rithm) system is described.

Key words: specification – verification – reactive sys-
tems – Java – medical devices

1 Introduction

CARA (Computer-Assisted Resuscitation Algorithm) is
a software system that provides closed-loop control to
a high-output intravenous infusion pump. The system
is intended to infuse fluids to resuscitate medical pa-
tients who are in danger of developing severe hypoten-
sion; for example, soldiers who are bleeding from injuries
sustained in a battlefield situation. The CARA software
is designed to operate automatically, thereby minimizing

? This research was supported in part by the National Science
Foundation under Grant CCR-9988155 and the Army Research
Office under Grants DAAD190110003 and DAAD190110019. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation, the Army
Research Office, or other sponsors.

the need for attention by medical personnel. During au-
tomatic operation, the system takes periodic blood pres-
sure readings from multiple sensors, applies a “corrobo-
ration” procedure to determine the value to be used as
a basis for control, and then computes an analog output
voltage to be used to control the flow rate of the infusion
pump. The system must detect and respond appropri-
ately to a variety of anomalous and error situations that
can arise during operation. The actual CARA system im-
plementation is being developed by Walter Reed Army
Institute of Research (WRAIR) and their contractors.
For a more detailed overview of the CARA system, the
reader is referred to other papers in the present volume.

Our interest in CARA arises out of our research into
the application of formal verification techniques, such
as model checking, to the development of safety-critical
embedded systems, of which CARA is a good example.
The CARA system is sufficiently complex as to provide
a challenge to current formal verification techniques, but
sufficiently simple that it is reasonable to set as a goal
the verification of important properties that encompass
most or all of the system. In short, CARA can serve
as a good driving example for our research in formal
verification.

In order to apply formal verification techniques to
CARA, it is necessary to have a formal description of
the system to be verified. In late January 2001 we were
provided by Walter Reed Army Institute of Research
(WRAIR) some requirements documents (unpublished:
1999, 2001) they had developed for CARA. Some of these
documents consisted of stylized lists of numbered items
detailing various behavioral requirements on the CARA
system. Another document consisted of informal English
prose giving an overview of the system and its intended
mode of use (ı.e. its “SOP”). Although there were a va-
riety of ambiguities and inconsistencies in these require-
ments documents, because a CARA prototype did not

2 Eugene W. Stark: Formally Specifying CARA in Java

yet exist it was necessary for us to accept these docu-
ments as the authoritative description of CARA.

From February, 2001 to early June, 2001, two mem-
bers of our group (Prof. Arne Skou from Aalborg Uni-
versity in Denmark who was visiting Stony Brook dur-
ing the period, and Stony Brook Ph.D. student Arnab
Ray) worked on formalizing portions of the CARA re-
quirements using the UPPAAL [9] and the Concurrency
Workbench of the New Century (CWB-NC) [3] verifica-
tion tools. The status of that work as of June, 2001 is
described in an unpublished report [13]. Ray has sub-
sequently continued his work on CARA using the Con-
currency Workbench, and the results are described in
another paper in the present volume.

By June, 2001, certain limitations of the approaches
that had been taken by Skou and Ray had become ap-
parent to me. Specifically, in the process of trying to con-
struct formal models of the CARA system in the rather
low-level languages provided by the formal verification
tools, quite a number of abstractions and simplifications
had been made, with the result that it seemed very dif-
ficult to make a strong case that the formalizations in
any sense faithfully captured “the CARA system.” In my
own mind, I had significant difficulty imagining any way
to argue, before the engineers constructing the actual
CARA prototype, that the formal models constructed
by Skou and Ray had any particularly close relationship
with the real system, or that properties they had for-
mally verified about their models had any particular im-
plications for the real system. Thus, I began to consider
how to construct a formal description of the system that
would correspond as closely to the requirements docu-
ments as I could manage. I was hoping that such a formal
specification could serve as a “master reference model”
that could be readily compared with the concrete proto-
type being constructed by WRAIR as well as used as a
basis for more abstract models to which formal verifica-
tion techniques could be applied.

To develop a more comprehensive model of CARA
that fully and faithfully captured the content of the re-
quirements documents, it seemed necessary to me that
the model be coded in a higher-level language than that
provided by the UPPAAL or the CWB-NC verification
tools Ray and Skou were using. In addition, it seemed
necessary to have computerized support for checking the
consistency of the model in various ways; for example,
to make sure that every service required by some mod-
ule in the system was actually implemented somewhere.
Finally, I felt that it would be very difficult to remove
from the model the large number of obvious errors that
were bound to be present, unless we had some capabil-
ity of executing or simulating the model to permit the
use of traditional debugging techniques. Only once the
model had been cleared of the most blatant errors would
it make sense to look for the kind of subtle problems for
which formal verification would be most useful.

This last point, concerning “blatant errors” versus
“subtle problems,” perhaps deserves some further clari-
fication. As is well known to anyone who has used any
type of formal language such as a programming language
or a formal logic, it is essentially impossible in all but
the most trivial situations for a human being to produce
an error-free expression in a formal language on the first
attempt. Instead, the formal artifact must be checked
in various ways to reveal the existence and location of
errors, which are then corrected. For a purely declara-
tive, non-executable specification in a formal logic, the
checking would typically be performed by deducing logi-
cal consequences to determine, for example, whether the
specification itself is consistent, whether desired “good”
behavior satisfies the specification, and whether unde-
sired “bad” behavior is ruled out by the specification.
This deduction of logical consequences is generally too
tedious to be carried out by a human being; an auto-
mated tool such as a theorem prover or model checker is
required. On the other hand, for an executable specifica-
tion, a significant amount of checking can be carried out
using traditional debugging and testing techniques: vari-
ous executions are generated which are then examined to
see if any errors are manifest. Although it is well-known
that human beings are not very reliable when it comes
to certifying the absence of errors in an execution, in
fact they can be quite effective at noticing the presence
of many kinds of errors, especially errors resulting from
“trivial” typographical or coding mistakes.

We can thus crudely classify the the kinds of errors
that can occur in a specification either as “obvious” er-
rors, which those that manifest themselves in a large
fraction of “normal” executions and which are easily
spotted by a human being, or as “subtle” errors, which
are those that are evident either only in a small frac-
tion of “unusual” executions, or which by their nature
require tedious analysis of an execution in order to be
detected. An example of an obvious error that we actu-
ally made in developing the CARA specification was a
misplaced statement bracket whose effect was to cause
the system frequently to enter auto-control mode with-
out the operator having pushed any button to request it.
An example of a subtle error we actually made was an
input dialog that triggered an inappropriate action, due
to the fact that the system state had changed between
the time the dialog was displayed and the time the user’s
response was entered, in such a way that the dialog it-
self was no longer relevant. Whereas obvious errors are
readily found and removed by normal debugging tech-
niques, it can require a significant amount of time (both
human and computer) to construct and run tests to iden-
tify such mistakes with current formal verification tools.
So traditional debugging techniques will likely be more
cost-effective for removing obvious errors. Formal veri-
fication techniques, however, can identify subtle errors
that persist even after extensive debugging and testing,

Eugene W. Stark: Formally Specifying CARA in Java 3

and for such errors the cost of preparing the required
tests is justified.

2 Formal Specifications in Java

To address the issues laid out above, I decided that it
would be useful to develop a formalization of the CARA
requirements using the Java programming language. By
coding the model in Java, the Java compiler could be
used to perform various consistency checks. Since Java
is a full-fledged programming language, it would be pos-
sible to execute the model and eliminate major errors us-
ing traditional debugging. Finally Java also comes with
the Javadoc documentation generator, which generates
browsable HTML documentation from specially format-
ted comments included with the source code. Documen-
tation generated in this way would be a great help in
keeping track of details of the model as it was devel-
oped.

It is important to note that even though a formal
model of CARA constructed in Java would be exe-
cutable, I did not intend for this model to be the same
thing as an implementation of the system. In general, the
formal model would be more abstract than an actual im-
plementation: I would attempt not to introduce details
into the model that were neither mentioned explicitly in
the requirements nor implicit from the manner in which
they were stated. Also, the formal model would avoid any
platform-dependent considerations, such as whether the
final system would be event-driven or interrupt driven,
except insofar as seemed relevant and necessary to an
accurate rendering of the requirements.

Although the use of Java to code the CARA model
would free me to a great extent from distracting con-
straints imposed by low-level modeling languages, I re-
alized that if arbitrary features of Java were to be used
in the model it would be difficult for the model to serve
as a basis for formal verification. So, to keep the distance
from becoming too great between the Java reference
model and low-level versions used for formal verification,
I imposed a number of restrictions on the way in which
the model was coded. These restrictions are described in
more detail below. Overall, the effect of these restrictions
is to ensure that the CARA model can be viewed as a
large state machine that is defined as the parallel com-
position of a number of components, in which the com-
ponents communicate with each other in a fixed pattern
by method calls. Such a view is close to that required
for coding the model in low-level process-algebraic lan-
guages such as those supported by the CWB-NC.

Process-algebra-based architectural design languages
(ADLs, see e.g. [1,2,6,11]) also represent an attempt at
providing a method for formal system description at an
abstract level, and could possibly be seen as candidate
formalisms for the CARA specification. However, the fo-
cus in such languages, such as Wright [1] and PADL

[2], is on the formal description of “component types”
and the verification that instances of these types will al-
ways interoperate in a compatible fashion. The protocols
by which instances of component types interact consti-
tute a simple, separable part of the overall system be-
havior, and low-level process algebra makes a good tool
for specifying them. For the CARA specification though,
the point is not to describe a general class of component
types and their interactions, but rather to formalize spe-
cific system and component behavior described in the
informal requirements documents. For this purpose, an
ADL that provides only process algebra as its behav-
ioral specification language would not be much easier to
use than would the input language for a process-algebra-
based verification tool. So ADLs do not seem to be a
solution to the problems posed by the CARA specifica-
tion.

The first decision I made in formalizing the model
was to adopt a decomposition of the CARA system into
a small, fixed set of modules having a static communica-
tion pattern. CARA is simple enough that an adequate
modularization is obtained in this way, and Skou and
Ray had made a similar decision at an early stage in
their work. The modularization I chose, which is similar
to those devised previously by Skou and Ray, comprised
seventeen modules, of which five represent entities ex-
ternal to the CARA system, and the remaining twelve
represent internal modules of the CARA system. The
modules representing external entities are as follows:

– Patient: Models the patient.
– Pump: Models the infusion pump.
– ArterialSource: Models the arterial line blood pres-

sure sensor.
– PulseWaveSource: Models the pulse wave velocity

blood pressure sensor.
– CuffSource: Models the cuff blood pressure sensor.

The modules internal to the CARA system are as fol-
lows:

– PumpControl: Uses blood pressure and set point in-
formation to calculate control voltage to be supplied
to pump. Also monitors for falling blood pressure.

– PumpMonitor: Tracks the status information supplied
by the pump and estimates flow rate and total in-
fused volume.

– ArterialBP: Obtains blood pressure readings from
the arterial line sensor.

– PulseWaveBP: Obtains blood pressure readings from
the pulse wave velocity sensor.

– CuffBP: Obtains blood pressure readings from the
cuff sensor.

– Corroborate: Performs the corroboration function
for the blood pressure sensors, thereby determining
which sensor will be used for control.

– Mode: Keeps track of the current operating mode and
manages transitions between modes.

4 Eugene W. Stark: Formally Specifying CARA in Java

– Dialog: Handles caregiver/operator input via but-
tons and dialog boxes.

– Display: Represents the caregiver/operator informa-
tion display.

– Logging: Handles the writing of messages to the re-
suscitation log.

– AlarmControl: Handles the raising and clearing of
the various alarms.

– Timer: Provides timing services for other modules.

Figure 1 contains a schematic diagram that shows the
various modules and their primary communication rela-
tionships. (To avoid clutter, no relationships are shown
explicitly for Timer and Logging because each of these
modules communicates with most of the other modules
in the system.) Although one can probably argue that
the the five modules representing external entities are
implicit in the requirements documents and would thus
have to be present in any reasonable formalization of
the system, one probably cannot make the same argu-
ment about the particular modularization I chose for
the system internals. A different, independently devel-
oped formalization of the CARA system (for example,
an actual implementation) would likely disagree to some
extent with my choices. Such a discrepancy would make
it more difficult to draw conclusions about an actual
system implementation from results of any validation or
verification performed on the reference model. Though
I would rather not have introduced right at the outset
an ad hoc assumption about the structure of the system,
some kind of modularization was necessary at this stage
in order to end up with an understandable and manage-
able system description.

One Class Per Module. After having settled upon a
modularization, I next decided to model the system in
Java by representing each system module as a single Java
class, whose methods would correspond to services that
it could provide to the other modules. In more detail,
the basic idea was to think of each class as representing
a kind of state machine whose actions are partitioned
into input, output, and internal actions. An input action
represents the occurrence of a call to one of the exported
methods of the module. An output action represents a
call made by code within the module to a method of
some other module. Internal actions represent internal
computation steps performed by the module as a result
of a call to one of its methods. This point of view corre-
sponds closely to that supported by the I/O automaton
model [10] developed by Nancy Lynch and her students,
and it also supports my eventual goal of formalizing some
aspects of the system in terms of probabilistic I/O au-
tomata [16,15].

All Fields and Methods Static. Since the number of
modules in the CARA system is fixed, the classes rep-
resenting them would not have any dynamic instances
(i.e. objects), but would instead simply serve as a way

of packaging a fixed collection of state variables together
with methods to operate on those state variables. I there-
fore stipulated that all fields and methods of the classes
representing system modules should be declared static,
and the Java new construct would not be used with these
classes.

Simple State Variables. I required that the state vari-
ables (fields) of each module always be simple boolean,
integer, or floating point variables; in particular, no data
structures would be used. This restriction was designed
to retain some possibility of deriving from the CARA
specification various abstractions that could be analyzed
by formal verification tools designed to handle finite-
state models. Even though integer and floating point
variables have very large sets of possible values, a sig-
nificant amount of formal verification with finite-state
tools can still be achieved if one first abstracts the large
value spaces to small finite sets. For example, for CARA
it might make sense to abstract a floating point value
for blood pressure to one of the seven values: “ridicu-
lously low,” “well below set point,” “below set point,”
“at set point,” “above set point,” “well above set point,”
and “ridiculously high.” With simple integer and float-
ing point variables, it is relatively easy to devise such
abstractions. If arbitrarily complex data structures are
used, it is not.

I should note that in the actual code, I did not usually
use the Java type double to represent floating-point val-
ues such as blood pressure or flow rate. Instead, I intro-
duced auxiliary classes as “wrappers” for floating point
values, so that each variable in the specification could be
given an appropriate type. I introduced five such classes
altogether:

– FlowRate: Models a rate of fluid flow.
– Pressure: Models a blood pressure.
– Time: Models a time interval.
– Voltage: Models a voltage.
– Volume: Models a volume of fluid.

These classes were slightly more than just wrappers,
since they also had methods for constructing and decom-
posing values according to specific units of measurement.
For example, the Time class has methods inSeconds()
and inMinutes(), both of which take a value of type
double and return a value of type Time. Thus, these
auxiliary classes facilitate the free use of dimensional
quantities in the code, without having to keep explicit
track of the associated units.

I found the “no data structures” restriction to be too
limiting in one particular module: AlarmControl. This
module keeps track of a large number of different alarm
conditions that each have to be handled in a similar way.
To avoid extremely long and repetitive code, I organized
the state of the many alarms into a few fixed-size ar-
rays that could be accessed by loops. However, except
for the fact that the code was significantly shortened

Eugene W. Stark: Formally Specifying CARA in Java 5

Mode

Timer Logging

Dialog

Patient

Source
Cuff

Source
Arterial

Source
PulseWave

Pump

PulseWaveBP

ArterialBP

CuffBP

Corroborate Display

Control
Alarm

Monitor
Pump

Control
Pump

Fig. 1. Schematic Diagram Showing CARA Modularization

and redundancy eliminated, the use of arrays and loops
was inessential in the sense that they can be regarded
as macros that expand to straight-line code accessing
simple variables.

No Exported Fields. In process-algebraic models of the
type I hoped eventually to derive from the Java-based
reference model, the various processes in a system typi-
cally do not access directly each others’ state variables,
but instead communicate with each other by way of syn-
chronized events. In my model, synchronization occurs
when one module makes a call (output) to an exported
method (input) of another module. To guard against di-
rect outside access to state variables, I imposed the re-
quirement that all fields of the classes representing sys-
tem modules be declared private. (Later, I relaxed this
restriction to permit protected declarations, as a con-
cession to facilitate the construction of a system simula-
tor that could display the state of a module graphically
without requiring that explicit support code for this pur-
pose be incorporated into the formal specification. This
is described in more detail in a later section.)

No Returned Values. The synchronized-event communi-
cation mechanism supported by process-algebraic mod-
els is in a sense a very low-level communication prim-
itive. Higher-level communication patterns, such as
call/return, are not supported directly by such a prim-
itive, but instead have to be simulated. To maintain a
close correspondence with what can be directly repre-
sented in process algebra, I decided that the exported
methods of the classes representing system modules
would all return void. Thus, although the invocation

of a service provided by a module could include param-
eters, if a value were to be returned as the result of such
an invocation, this would have to be accomplished by a
“callback,” rather than by the direct return of results.

One Caller per Method. Although some process-
algebraic models, such as CCS [12], support as primitive
the possibility that an input action may synchronize with
more than one output action over the course of system
execution, other models do not provide such support.
I/O automaton models in particular are based on the no-
tion that synchronization occurs whenever an action to
be performed by one process is also a member of a stati-
cally determined alphabet of actions of another process.
Since I was interested in extracting I/O-automaton-like
models from the Java specifications, I required that each
method exported by a system module be called by just
one other module in the system. If a module was to pro-
vide a similar service to several other modules, a sepa-
rate method would have to be exported for each possible
caller. Another purpose of this “single-caller” restriction
is to support values returned via callback: the module
to which a callback should be made has to be uniquely
determined by the context.

“Synchronized” Methods, with Straight-line Bodies. I
imposed the requirement that all exported methods
should be declared synchronized, and that that the
bodies of all methods (exported or not) should be
“straight-line” code that does not contain loops, time
delays, or blocking (sleeping or yielding). Also, it should
be impossible for a method to call itself recursively, ei-
ther locally via a chain of calls within the same class

6 Eugene W. Stark: Formally Specifying CARA in Java

or globally via calls to other classes. These restrictions
serve to simplify the concurrent execution semantics of
the model, making it possible to perform a faithful sim-
ulation of the model and to understand the implications
that verification results obtained for the model might
have for a real system.

The execution model that I had in mind was as fol-
lows. Each of the classes representing an external en-
tity would export an update method, which would be
called periodically to mark the passage of time and to
trigger the occurrence of spontaneous state changes in
the module. Initially I envisioned a multithreaded exe-
cution model in which the system would be driven by a
collection of threads, one associated with each external
module. Each thread would contain a simple run loop
in which it would sleep for a fixed amount of time, in-
voke the update method of its associated module, then
go back to sleep. The fact that the exported methods of
each module are all declared as synchronized implies
that when a thread makes a call to such a method, it ob-
tains exclusive access to that module until such time as
the call has returned. Thus, a call made by a thread to an
exported method of a class runs to completion without
the possibility of interruption by a call to an exported
method of that class made by any other thread. How-
ever, it is possible for a thread executing in a method of
one class, say C1 to make a call to a method of another
class C2, which in turn makes a call back to a (different)
method of C1, because once a thread holds the moni-
tor lock on a class it is permitted to make calls to any
static methods of that class without blocking.

The simulation facility I eventually implemented for
the CARA specification supports a related but some-
what more restricted model that what I originally envi-
sioned. In particular, just one top-level thread was used,
rather than a single thread for each external module.
This was done to eliminate the unknown effect of the
thread scheduling mechanism on the simulation timing,
thereby bringing all variables affecting the choice of exe-
cution trajectory under the explicit control of the simu-
lator. Note, however, that the single-threaded model has
a strictly smaller set of possible execution sequences than
the multi-threaded model. Thus, if we observe “bad” ex-
ecution sequences in the simulator we can conclude that
the same sequence is possible under the multithreaded
model, but failing to observe a particular “bad” behav-
ior (such as deadlock) in the simulator does not neces-
sarily imply that this behavior is impossible under the
multithreaded model. It is necessary to maintain such
considerations well in mind when attempting to deter-
mine the implications for a real system of validation or
verification results performed on the formal model.

In the end, I found it necessary to violate the
“straight-line code” restriction and introduce loops in
a few places in the CARA specification. In each case,
though, the loops that were introduced are bounded
loops that can be regarded as macros that could be

expanded to straight-line code. The alternative to in-
troducing these loops would have been highly repeti-
tive code, which would have been less transparent and
more difficult to maintain than the version containing
the loops.

Limited use of Private Methods. I allowed myself to use
private methods in classes, subject to the same “straight-
line code” restrictions required of exported methods. I
found the use of private methods to be essential for
avoiding extensive repetition of code in the specifica-
tion. In contrast to exported methods, I did not require
that private methods always return void. Note that the
“no return values” restriction is not essential for private
methods, which are only called by other methods within
the same class, since such methods can always be re-
garded as macros and expanded in-line. This cannot be
done for calls that cross class boundaries.

3 Executing the Specifications

As I stated at the outset, a major reason for using
Java to code the CARA specifications was so that ma-
jor errors could be found and removed by executing the
specifications and applying traditional debugging tech-
niques. To this end, I implemented a top-level class,
called Simulation, to drive the execution by periodi-
cally invoking the update methods of the various ex-
ternal modules. In addition, I implemented a graphical
user interface (GUI) to make it possible to control the
simulation, to view and modify internal state variables
of the various modules, and to emulate the caregiver
display functions described in the CARA requirements
documents. The result was a CARA simulator that could
be run as a stand-alone Java application, or in a browser
as an applet. Figure 2 shows a screen shot of the sim-
ulator. The frame is divided into three panels, the top
two of which display information specifically mentioned
in the CARA requirements documents, and the bottom
of which provides access to simulation internals. The top
panel of the frame is a mock-up of the caregiver display.
The buttons mentioned in the requirements documents
are shown on the left and an active “Change Set Point”
dialog is shown on the right. The middle panel of the
frame shows various alarm indicators and messages that
are also mentioned in the requirements documents. The
bottom panel of the frame contains a collection of tabs
that permit the user to control the progress of the simu-
lation and to display and modify internal state variables
of the various modules.

The construction of the simulator GUI posed an in-
teresting design puzzle. I wished to maintain a very clear
separation between the very stylized code that was sup-
posed to constitute the formal specification of the CARA
system and the unrestricted code that implemented the
GUI. The question was, how could I arrange to display

Eugene W. Stark: Formally Specifying CARA in Java 7

Fig. 2. CARA Simulator Application Screenshot

and modify internal state variables of the various system
modules, without cluttering the formal CARA specifica-
tion with substantial amounts of GUI-related code hav-
ing little or nothing to do with the behavior described
in the CARA requirements documents? In fact, I was
indeed able to introduce the GUI code in such a way
that it has very limited coupling with the formal model,
and calls to the GUI do not appear at all in the formal
model portion of the code.

The decoupling of the GUI and the formal model was
achieved by arranging for each of the classes representing
a system module to have an associated subclass that im-
plements a GUI panel for that module. As a subclass, the
GUI panel has access to all the internal state variables
of the system module, assuming that we relax slightly
the “no exported fields” condition and permit fields to
be declared protected rather than private. When the
simulation is initialized, an instance of the GUI panel
for each module is created, and arrangements are made
for the GUI display to be updated periodically (e.g. once
a second). When the GUI display needs to be updated,
the GUI subclass “peeks” at the current values of the
state variables in the main class and updates the display
appropriately. In this way, the GUI display is kept up-to-
date without the necessity of making explicit calls from
the formal model to the GUI. If the user wishes to change
the value of some state variable, the GUI subclass sim-
ply assigns directly to that variable. The GUI subclasses
are kept completely separate from their associated main
classes and their code appears in separate files. It is thus
possible to work on the formal model without any chance
of confusion between which code constitutes the formal
model and which constitutes the GUI.

I feel obliged to comment that that for each system
module to have a GUI display panel as a subclass is
somewhat dubious from an object-oriented point of view,
since the GUI panel does not satisfy the usual “is a” re-
lationship with the system module. In fact, it probably
makes more sense for the system module to be a subclass
of the GUI panel, and the same separation of GUI code
and formal specification can be achieved within this al-
ternative structure. Nevertheless, the “GUI-as-subclass”
organization was the one I originally conceived of, and
was therefore the one I implemented. I have recently
found additional reasons to have the GUI panel as the
parent class, rather than the other way around, and plan
to implement this alternative organization in the next
revision of the code.

The Dialog class has a more interesting relationship
with its GUI subclass than do the other modules, which
merits some further comment. The GUI panel associated
with the Dialog class not only has the responsibility of
simulating the display of the CARA caregiver console,
but also of notifying the Dialog class when any of the
input controls on the caregiver console are activated.
The CARA specification includes some rather compli-
cated requirements that concern when and how various
elements (buttons and dialogs) of the caregiver console
are to be displayed. For example, the requirements state
that certain buttons are to be displayed under some con-
ditions and not under others, and that buttons that are
displayed may be “grayed out” or not. Static priorities
are to be consulted to determine which one of multi-
ple active dialogs will actually be displayed at any given
instant. Our Dialog specification does not actually in-
clude any code for constructing or painting user interface

8 Eugene W. Stark: Formally Specifying CARA in Java

elements on the caregiver console. Instead, it just main-
tains a collection of boolean state variables that indicate
which of the elements are currently active and which are
currently displayed. The priorities and other constraints
are taken into account when Dialog updates these state
variables in response to a method call. It is the GUI sub-
class associated with the Dialog module that actually
renders the caregiver console, after reading the boolean
state variables from the parent class and displaying the
interface elements accordingly. In this way, I was able
to formalize the interesting parts of the CARA require-
ments on the caregiver console without actually having
to include GUI code as part of the formal specification.

When one of the controls (e.g. a button) on the care-
giver console is activated, it is necessary for the GUI
panel associated with the Dialog class to send a notifi-
cation that something has occurred. The GUI panel does
this by invoking a method of the parent Dialog class
to indicate that the control has been activated. This is
the only situation in which a GUI subclass invokes any
methods of its associated main class — all other commu-
nication between GUI and main classes is through direct
inspection and modification of state variables.

There is one other class in the formal CARA spec-
ification that deserves some comment, and that is the
Timer class. This class was introduced in order to en-
capsulate all the timing services required by other mod-
ules in the system. For example, when a blood pressure
reading is required from the blood pressure cuff, the (in-
ternal) CuffBP module calls the (external) CuffSource
module to initiate the reading. However, taking a read-
ing with a blood pressure cuff is not instantaneous, but
requires first inflating the cuff and then listening to the
sounds made by the blood as the cuff is slowly deflated.
It is also possible that an attempt to read the cuff could
fail if the cuff or sensor was not properly positioned. To
handle this situation, the CuffBP module uses a time-
out as a method of bounding the amount of time taken
to obtain a cuff reading. Because of the “no delays or
blocking” restriction we have imposed, the timeout can-
not be achieved by sleeping within one of the methods
of the CuffBP module. Instead, when a reading attempt
is initiated, CuffBP calls Timer and requests that a call-
back be made after a certain amount of time has elapsed.
If the reading succeeds before the timeout, CuffBP calls
Timer to cancel the “wakeup call.” On the other hand, if
a reading is not obtained by the time the timeout action
occurs, the callback from Timer will initiate an error-
handling sequence within CuffBP.

Although I have described the Timer class as an in-
ternal module of the CARA system, unlike the other
internal modules it provides an update method that
is driven by Simulation. Callbacks from Timer to the
other modules occur as part of executing this update
method. In retrospect, it seems that the Timer class
ought actually to be two separate classes: a TimeBase
class which is external to the CARA system and which

provides an update method, and the Timer class proper,
which is an internal module that provides timing services
to the rest of the CARA system.

4 Overview of the CARA Specification

In this section, I give a brief overview of each of the
modules in the CARA specification. In order to pro-
vide a more concrete feel for what the individual module
specifications end up looking like, Appendix A lists de-
tailed code for one of the modules: Pump. In the code
for Pump, the reader may note a number of calls to the
method Trace.log. These calls are not part of the for-
mal specification, but rather inform the simulator of the
occurrence of significant events. The simulator logs these
events, thereby producing a simulation trace that can be
used for post-mortem debugging and validation. I felt
that the importance of having such logs far outweighed
the disadvantage of the additional clutter added to the
formal model by the tracing calls.

4.1 External Modules

4.1.1 Patient

The Patient module models the response of the hu-
man patient to fluid infusion. We use a very simple-
minded model in which the blood pressure of the pa-
tient is directly proportional to the current volume of
blood in the patient’s circulatory system. The vari-
ous blood pressure sensors periodically query Patient
to obtain the “true” current blood pressure by call-
ing the Patient.getBP method. The infusion of fluid
is modeled by the Pump module periodically invoking
the Patient.addInfusedVolume method to add a small
increment of fluid volume. The update method of the
Patient module is invoked once per second to remove
a small amount of fluid volume, to model bleeding and
excretion.

4.1.2 Pump

The Pump module models the M100 infusion pump.
The pump provides logic-level outputs CONT (conti-
nuity), OCC (occlusion), and AirOK (air-free IV line).
When these lines change state, the pump gener-
ates interrupts, which are simulated by calls to
the PumpMonitor.setCont, PumpMonitor.setOcc, and
PumpMonitor.setAirOK methods. There are also ana-
log outputs EMF (back EMF) and IMP (impedance).
These lines have to be polled by calls to the pollEMF
and pollIMP methods, which usually result in im-
mediate callbacks to the PumpMonitor.setEMF and
PumpMonitor.setIMP methods, respectively. There is a
certain probability that the corresponding callback will
not occur for a particular polling request; this models a

Eugene W. Stark: Formally Specifying CARA in Java 9

failure of the A/D converter that samples the EMF and
IMP lines.

The pump is controlled by an analog control volt-
age that determines the infusion rate. The setting
of this control voltage is simulated by calling the
setControlVoltage method. In addition, there is a
logic-level input to the pump that determines whether
the pump will pay attention to the analog control volt-
age or alternatively run at a predetermined hardware
setting. Changes to the state of this line are simulated
by calling the setAnalogControl method.

The update method of the pump runs once per sec-
ond and sends a certain amount of infused fluid volume
to the Patient module. In addition, the value of the EMF
output is updated based on the current infusion rate.
This is not currently modeled realistically: in the real
M100 pump, the EMF value varies constantly as a rocker
arm (serving as the impeller) contacts the pump tubing.
This constantly varying signal has to be processed in
order to estimate the infusion rate. In our model, we
simply treat the EMF line as giving a direct indication
of the current instantaneous infusion rate.

Also incorporated into the Pump module are simple
two-state Markov failure models associated with each
of the logic-level status lines CONT, OCC, and AirOK. At
any time, each of these lines is either in the “failed”
or “not failed” state. In the “not failed” state, the line
has the logic value “true”, indicating normal operational
status. In the “failed” state, the line has the logic value
“false”, which indicates an error condition. Once per sec-
ond, there is a possible transition between states. Tran-
sitions from “not failed” to “failed” occur with a proba-
bility chosen to produce a specified mean time to failure
(MTTF). Transitions from “failed” to “not failed” occur
with a probability chosen to produce a specified mean
time to repair (MTTR).

4.1.3 ArterialSource

The arterial line sensor is a “beat-to-beat” blood pres-
sure sensor that provides a direct measurement of blood
pressure via a transducer inserted into an artery. The
update method of the ArterialSource is invoked ev-
ery 15 seconds, though it might be more realistic if it
occurred in synchrony with a simulated patient heart-
beat. When update is called, ArterialSource queries
Patient to request the “true” blood pressure. This
blood pressure reading is then modified by adding some
Gaussian noise whose standard deviation is specified as
a percentage of the true pressure. The resulting “noisy”
pressure reading is supplied to the (internal) ArterialBP
module via a call to the ArterialBP.setBP method.

Also incorporated into the ArterialSource module
is a simple two-state Markov failure model, similar to
that used in Pump. At any time, the module is either in
the “failed” or “not failed” state. When the module is in
the “not failed” state, it supplies blood pressure readings

periodically as described above. When the module is in
the “failed” state, it does not supply any readings. Every
15 seconds, there is a possible transition between states,
which is taken with a probability designed to produce a
specified MTTF or MTTR.

4.1.4 PulseWaveSource

The pulse wave velocity sensor is a “beat-to-beat” blood
pressure sensor that infers blood pressure from propaga-
tion characteristics of the pressure wave resulting from
each heartbeat. In our model, PulseWaveSource is es-
sentially identical to ArterialSource, except that as
separate modules they can fail independently and they
can produce different blood pressure readings due to in-
dependent noise.

4.1.5 CuffSource

The cuff sensor uses a traditional sphygnomanometric
method that involves inflating a cuff to a pressure some-
what over the systolic blood pressure of the patient
and observing the waveforms associated with heartbeats
as the cuff pressure is slowly reduced. In contrast to
the “beat-to-beat” methods, the cuff sensor produces a
blood pressure reading only when activated, and sub-
stantial time (on the order of one minute) may elapse
between the time the reading is requested and the time
it is obtained.

In our model, when a cuff pressure is required,
the CuffBP module initiates the reading by invoking
the CuffSource.pollBP method. In contrast to the
ArterialSource and PulseWaveSource modules, the
CuffSource module does not immediately return a pres-
sure. Rather, there is a random delay which we model
using a geometric distribution having a specified mean
(the default is 40 seconds). When the delay time expires,
the current blood pressure is returned via a callback to
the CuffBP.setBP method.

Also incorporated into the CuffSource module is a
Markov failure model similar to that used in other exter-
nal modules. At any time, the CuffSource module is ei-
ther in the “failed” or “not failed” state. When the mod-
ule is in the “not failed” state, it responds to a pollBP
request by returning a blood pressure as described above.
When the module is in the “failed” state, it does not re-
turn any blood pressure.

4.2 Internal Modules

4.2.1 PumpControl

The PumpControl module uses blood pressure and set
point information to calculate the control voltage to
be supplied to the pump. It also monitors for falling
blood pressure. The PumpControl module is informed

10 Eugene W. Stark: Formally Specifying CARA in Java

by Mode via the startAutoControl method when auto-
control begins. The set point is initialized to the de-
fault of 70mmHg, and the pump control voltage is
set so as to yield the initial flow rate of 4 liters per
hour. Information about the controlling blood pres-
sure is updated when the Corroborate module calls
the setControlBP method supplied by PumpControl.
Each time this occurs, PumpControl calculates a new
control voltage and supplies it to Pump by calling the
Pump.setControlVoltage method. Periodically (every
15 seconds), PumpControl checks whether the set point
has been reached and whether it appears that the blood
pressure is falling. If the caregiver modifies the set
point via the change set point dialog, the Dialog mod-
ule supplies the new set point to PumpControl via the
setSetPoint method. When auto-control terminates,
Mode uses the stopAutoControl method provided by
PumpControl to convey this information.

We currently use a very simplistic control algorithm
that applies the maximum control voltage to the pump
when the control blood pressure is below 60mmHg, ap-
plies the minimum, “keep vein open” (KVO) control
voltage to the pump when the control blood pressure
is at or above the set point, and which varies the control
voltage linearly with the control blood pressure when the
latter is between 60mmHg and the set point.

4.2.2 PumpMonitor

The PumpMonitor module tracks the status information
supplied by the pump. It also estimates the infusion rate,
which it integrates over time to determine the total in-
fused fluid volume. The PumpControl module uses the
setTimeAtSetPoint method to keep the PumpMonitor
informed about how long it has been since the desired
blood pressure set point was attained. After the set point
has been held for ten minutes, the PumpMonitor calcu-
lates a baseline “steady-state” infusion rate and moni-
tors for increases in the infusion rate that signficantly
exceed this level (such increases might indicate a sub-
stantial increase in patient bleeding).

The setAirOK, setCONT, and setOCC methods pro-
vided by PumpMonitor are called by the Pump module
to simulate interrupts that occur when the correspond-
ing logic outputs of the pump change their state. The
setEMF and setIMP methods are called by the Pump
module in response to calls made periodically (once ev-
ery five seconds) by PumpMonitor to the Pump.pollEMF
and Pump.pollIMP methods. The information obtained
in this way is combined to infer some derived status in-
formation, such as whether the pump is plugged in (we
currently equate this with the CONT line being at a logic
“true” level) whether the pump is “OK,” and to estimate
the current infusion rate. Each time there is a change in
pump status, the Mode module is informed by a call to
the Mode.setPumpStatus method.

4.2.3 ArterialBP

The ArterialBP module obtains blood pressure readings
from ArterialSource, checking the readings for validity,
and delivering them on demand to Corroborate. Each
time ArterialBP receives a blood pressure reading from
ArterialSource, it checks this reading for validity and
saves it. When Corroborate requires a blood pressure
reading, it calls ArterialBP.pollBP, which results in an
immediate callback to Corroborate.setArterialBP.

The ArterialBP.intrT15 method is called by Timer
every fifteen seconds, to enable ArterialBP to detect the
loss of BP data from ArterialSource. If fifteen seconds
go by without a new reading, then the current reading
is flagged as “stale” and invalidated.

4.2.4 PulseWaveBP

The PulseWaveBP module obtains blood pressure read-
ings from PulseWaveSource, checking them for validity,
and delivering them on demand to Corroborate. It is
essentially identical to ArterialBP.

4.2.5 CuffBP

The CuffBP module obtains blood pressure readings
from CuffSource and delivering them on demand to
Corroborate. Corroborate requests a reading by call-
ing the pollBP method provided by CuffBP, which re-
sponds by calling the setCuffBP callback method pro-
vided by Corroborate. CuffBP in turn requests a read-
ing from CuffSource by calling its pollBP method, and
CuffSource responds by calling the setBP method of
CuffBP. The CuffBP module checks each reading it ob-
tains for validity before passing it along to Corroborate.

The blood pressure cuff differs from the “beat-to-
beat” sensors in that it may take much longer (a minute
or more) to deliver a reading in response to a request,
and in some cases it might not deliver a reading at all. To
bound the time that it might take to deliver a response
when a cuff reading is requested by Corroborate, the
CuffBP module sets a timer when a reading is first re-
quested. If no response is forthcoming by the time the
timer expires, an invalid blood pressure is given as a re-
sponse to Corroborate.

CuffBP also handles the taking of periodic read-
ings that are required when the cuff is the only blood
pressure sensor available for controlling the infusion
pump. Corroborate sets the time interval between pe-
riodic readings by calling the setBPInterval method of
CuffBP.

4.2.6 Corroborate

The Corroborate module is the most complex of all the
modules in our specification. Corroborate is responsi-
ble for combining information from the various blood

Eugene W. Stark: Formally Specifying CARA in Java 11

pressure sources to determine the control blood pres-
sure value supplied to PumpControl. This function in-
volves the manipulation of the cuff blood pressure sen-
sor to obtain readings at appropriate times to corrob-
orate the readings provided by the other sources used
for control, to monitor for lost blood pressure sources
and issue alarms, and to cause auto-control mode to be
terminated in case no suitable control source is avail-
able. Corroborate is provided with blood pressure data
via calls to the setArterialBP, setPulseWaveBP, and
setCuffBP methods. Calls to these occur in response
to calls made by Corroborate to the pollBP methods
supplied by the ArterialBP, PulseWaveBP, and CuffBP
modules.

Corroborate supplies the current control pressure to
PumpControl every 15 seconds. The control pressure is
only updated upon receipt of new valid blood pressure
data from the current control source, or upon the oc-
currence of a timeout indicating that the current source
has been lost. If no new data arrives from the current
source, then the most recent control pressure is what is
supplied to PumpControl.

If no blood pressure source other than the cuff is
available, Corroborate exhibits some special behavior.
It calls CuffBP.setBPInterval to initiate periodic au-
tomatic readings of the cuff. The period of cuff readings
ranges from 1 minute apart to 10 minutes apart, depend-
ing on the current blood pressure. In addition, a failure
of the cuff blood pressure source to provide data in a
timely fashion will cause more serious alarms when the
cuff is the only source available than it would otherwise.

The core function of the Corroborate module is
“corroboration”, which involves comparing readings ob-
tained from the so-called “beat-to-beat” sensors, the ar-
terial line sensor and the pulse wave velocity sensor, to
the readings obtained from the cuff sensor. This corrob-
oration function is modeled as a state machine, which
becomes active every 30 minutes during auto-control
or whenever a change in the available blood pressure
sources makes re-corroboration necessary. The transi-
tions of this state machine are driven by the responses
from the cuff source and from caregiver interaction via
“override dialogs”.

Corroborate also interprets the responses from over-
ride dialogs issued for the user. An override dialog is
issued when a beat-to-beat source being used for con-
trol does not corroborate with, or match, the current
cuff reading. The user is asked to respond “YES” or
“NO” as to whether the current control source should be
used anyway. In case of a “YES” response, Corroborate
checks to make sure that the selected source is still valid
(there are scenarios under which the source can become
invalid while the dialog is pending), then remembers that
the current source was selected by override. In case of
a “NO” response, Corroborate either terminates auto-
control or tries to corroborate a lower-priority source,
depending on the circumstances.

4.2.7 Mode

The Mode module keeps track of the current operating
mode and manages transitions between modes. The pos-
sible modes are “waiting”, which is the mode just after
the CARA system has been initialized but before the
pump has been detected for the first time, “manual”,
in which the pump ignores the analog control voltage
and pumps at its hardware setting of 0.2 liters per hour,
and “auto-control”, in which the pump is under active
control of the CARA software.

A transition from “waiting” to “manual” mode oc-
curs the first time the pump is detected. Mode is in-
formed about the status of the pump via calls made by
PumpMonitor to the setPumpStatus method. A tran-
sition from “manual” to “auto-control” mode occurs
when the caregiver presses the “start auto-control”
button, resulting in a call by the Dialog module to
the startAutoControl method. One way a transition
from “auto-control” to manual mode can occur is when
the caregiver issues a YES response to a “terminate
auto-control” dialog, which results in a call by the
Dialog module to the stopAutoControl method. An-
other way auto-control can be terminated is when a
call by PumpMonitor to the setPumpStatus method
indicates that the pump is no longer “OK”. A third
way auto-control can be terminated is when a call by
Corroborate to the setBPStatus method indicates that
there is no longer any valid control BP. When auto-
control initiates or terminates, Mode calls methods of
various other modules, including Corroborate, to or-
chestrate the change.

4.2.8 Dialog

The Dialog module handles user input via buttons and
dialogs. As stated earlier, Dialog does not actually con-
tain any GUI code, but simply maintains the current
state of the user interface as a collection of boolean vari-
ables that describe which buttons and dialogs are cur-
rently active and which are currently displayed. Each
time the state of anything changes, Dialog recomputes
the display state appropriately.

4.2.9 Display

The Display module handles the display of various kinds
of status and alarm indicators and other data. It pro-
vides various methods to the other modules by which
the state of the items to be displayed can be changed
when necessary.

4.2.10 Logging

The Logging module handles the writing of messages
to the resuscitation log. A number of methods are pro-
vided for making log entries in various situations. These
methods are invoked by other modules when necessary.

12 Eugene W. Stark: Formally Specifying CARA in Java

4.2.11 AlarmControl

The AlarmControl module handles the raising and
clearing of the various alarms. AlarmControl maintains
a notion of the “current” alarm, and displays the name
of the current alarm in an alarm message field when any
alarm is active. Pressing the alarm reset button resets
only the current alarm; if there are other active alarms,
another one becomes the current alarm.

When there are active alarms, a “Silence Alarm” but-
ton is also available. Pressing this button silences the
audible alarm signal for all alarms for a period of time
that is different for each alarm. When the silence time
for an alarm has expired, the audible alarm signal again
becomes active for that alarm. Pressing the silence but-
ton again will again silence that alarm, but will not af-
fect the remaining silence times associated with other
already-silenced alarms.

Separate methods are provided by AlarmControl for
the activating and deactivating of each different alarm.
Most of these methods take a single boolean parame-
ter that is true if the alarm is to be activated, and
false if the alarm is to be deactivated. There is also
a cancelAllAlarms method which is used by Mode to
deactivate any active alarms when leaving auto-control
mode.

4.2.12 Timer

The Timer module provides timing services required by
the other modules. There are two types of timing ser-
vices provided by Timer. One kind of service is settable
“countdown” timers which other modules use to imple-
ment timeouts. These timers are set by supplying Timer
with the amount of time to wait. When this amount of
time expires, Timer performs a callback to the appro-
priate method of the invoking module. The other type
of timing service provided by Timer is periodic inter-
rupts at various frequencies. Currently, the other mod-
ules require interrupts at one-second, five-second, fifteen-
second, and one-minute intervals. Not all modules re-
quire all frequencies, and some modules do not require
any.

Timer itself contains a update method that is in-
voked by Simulation once per second. Counters are
used to generate all the other timings from this basic
one-second period.

5 Validation and Verification using the
Java-based Specifications

As stated in the introduction, my objective in writing a
Java-based specification for CARA was to create a “mas-
ter reference model” that could serve both as a standard
against which concrete implementations could be com-
pared, and as a basis for applying formal verification

techniques. So far, the primary outcome of developing
the Java-based specification has been that it forced us to
analyze the WRAIR requirements documents in detail;
thereby identifying situations in which these documents
do not adequately describe the behavior that the CARA
system should exhibit.

In the course of our analysis, we found Corroborate
to be the most difficult (and interesting) part of the
specification. In creating a detailed specification for
Corroborate that adhered closely to the behavior de-
scribed in the requirements documents we found it nec-
essary to introduce rather more in the way of concrete
detail than we would have preferred to do. However, we
did not see any way of constructing an executable spec-
ification that matched the requirements closely without
descending to this level of detail. Having to work out the
details of Corroborate turned out to be a worthwhile ex-
ercise, though. While exchanging E-mail messages with
a WRAIR engineer (Steve Van Albert, private commu-
nication, January 2002) in an attempt to clarify aspects
of the corroboration procedure that we found vague, the
engineer identified a situation in the code for their own
prototype where a “null response” would occur in a sit-
uation where the appropriate response was for an action
to be performed. Besides this, a few other situations were
identified that were not necessarily errors, but seemed to
merit a closer look.

We are currently pursuing two approaches to ap-
plying formal verification techniques to the Java-based
CARA specification. The first approach combines sim-
ulation and model checking to check the specifications
against formalized versions of the requirements. To do
this, we have extended the simulation code to provide
the capability of driving the simulation with predefined
scripts or “scenarios.” Each scenario specifies a sequence
of controls to be applied to the states of the external
modules of the CARA system. The controls are designed
to drive the system into a regime of operation covered by
the requirements. As the system is simulated under the
control of the scenario, an execution trace is recorded.
It will then be possible to check this execution trace
against formal assertions about what behavior should
be observed. For example, a scenario might specify that
the “start auto-control” button should be pressed, and
that when the system has been under auto-control mode
for a certain period of time, then the pump should be un-
plugged. The resulting execution trace could be checked
for whether the appropriate alarms are triggered and
whether auto-control mode is terminated within a cer-
tain period of time. We plan to use a real-time version
of linear-time temporal logic to formalize the correctness
assertions, and to use a model-checking procedure to au-
tomatically check whether the assertions are satisfied by
the execution traces generated by simulation. This ap-
proach will enable a substantial library of tests to be
constructed that will likely expose mismatches between
our reference model and the requirements documents.

Eugene W. Stark: Formally Specifying CARA in Java 13

The tests could also be applied to traces generated by
an actual CARA prototype.

Our second approach to applying formal verification
to the CARA specification involves extracting lower-
level, process-algebraic models from the specification,
and then applying model checking, equivalence check-
ing, and performance analysis algorithms to these lower-
level models. An advantage of extracting the lower-level
models automatically from the higher-level, Java-based
specification is that one can then be sure that the lower-
level specifications correspond exactly to the higher-level
ones, and thus that analysis results obtained for the
lower-level specifications are relevant to the higher-level
versions. We have implemented a prototype tool capable
of automatically translating Java-based specifications
into a language for describing “probabilistic I/O au-
tomata” (PIOA) [14]. The tool is also able to produce in-
put for the PRISM probabilistic model-checker [7,8]. Ide-
ally, specifications extracted from the Java code would
be input into the CWB-NC using a PIOA-language front
end we have already implemented, or into the PRISM
tool using its associated input language. Once compiled
by the CWB-NC or PRISM, we would be able to bring
to bear the suite of analysis tools they support to check
correctness properties of the CARA specification. As a
practical matter, however, there is still a significant gap
between the size of the specifications compiled from the
Java code for CARA and the size of the specifications
that can be handled by the CWB-NC or PRISM.

An approach that might reduce the size of the “ver-
ification gap” would be to use the Bandera system [4,5]
to perform the model extraction and verification. Ban-
dera was designed to support model extraction and veri-
fication of realistic Java programs and consequently im-
plements some sophisticated techniques for producing
manageable-size models and verification problems. First
of all, the extraction of a formal model from Java source
code is handled in Bandera in much the same way as
an optimizing compiler would handle the translation of
Java to object code. The optimizations applied during
the translation process serve to significantly reduce the
size of the model that is generated. Second, model ex-
traction is performed by Bandera only in the context
of a particular formal specification that is to be veri-
fied. This permits Bandera to make use “program slic-
ing” techniques to automatically strip away portions of
the program that cannot possibly affect the truth of the
given specification, thereby further reducing the size of
the state space. Third, Bandera explicitly supports the
use of abstract interpretation to replace data domains
having a large or infinite number of values with a much
smaller, finite number of values.

A tool like Bandera should be viewed as playing a
supporting role for the Java-based approach to specifi-
cation proposed here, rather than as an alternative to it.
In writing the CARA specification, we imposed restric-
tions on Java not because we wanted to make things

difficult in general, but because we wanted to make it
somewhat difficult to write a specification that included
too much in the way of concrete implementation details
and that diverged too much from the kind of model na-
tively supported by current model-checking tools. Al-
though Bandera is targeted at the verification of realistic
(and therefore unrestricted) Java programs, it can cer-
tainly be applied to Java code satisfying the restrictions
we have used for the CARA specification. Indeed, its
suite of optimizations ought to make it work even better
in this case. To date, however, we have had only minimal
experience with Bandera and we hope to use the CARA
model as the basis for more in-depth experiments with
it in the future.

6 Conclusions

A Java-based specification for a system of the complexity
of CARA does not require an enormous amount of ef-
fort to create. The CARA model and simulator described
here was constructed by graduate student Liqiang Wang
and me working part-time over the period from mid-
June, 2001 to mid-January, 2002. The CARA model
proper comprises about 6400 lines of code, including nu-
merous comments that key parts of the code to specific
items in the requirements documents, flag ambiguities
that were uncovered during the process of developing
the model, and record specific decisions made that did
not appear to be explicitly covered by the requirements
documents. The simulator and GUI comprise about 3000
lines of additional code. As a model like this is developed,
and especially after much of it has become fairly stable,
it is very important to be able to track changes that
were made, together with the reasons for making them.
For this reason, we imported the specification into the
Concurrent Versions System (CVS) revision control tool
as soon as we had completed a coherent first draft. Al-
though CVS was very helpful, it does not provide explicit
support for tracking associations between lines of code
and specific items in the requirements documents. Such
a tool would be essential in a production setting.

I expect that the Java-based approach described here
would be useful for other systems similar in complexity
to CARA. The approach would most fruitful if applied
at an early stage during requirements analysis, so that
the model could actually serve as a formalization of the
requirements as they are developed. The specification
resulting from this approach would serve multiple pur-
poses: as a kind of rapid prototype to show the behavior
that is a consequence of the specification, as a reference
model against which to compare subsequent implemen-
tations, and as a target on which to apply formal verifi-
cation techniques.

Our simulation code, including the simulation-based
validation tool we are currently working on, is not
CARA-specific and could be re-used for other specifi-

14 Eugene W. Stark: Formally Specifying CARA in Java

cations. The overall framework for the GUI is likewise
not tied to CARA, however the individual GUI panels
are. The application of our approach to other systems
would probably best be facilited by a tool that would
permit a designer to enter the classes that make up the
formal model, and then use a “visual” editor to lay out
a GUI panel for each module and declare the connection
between the GUI elements and the state variables for the
module. The code to actually construct the GUI could
then be generated automatically and combined with the
generic simulation and validation code to produce a com-
plete execution environment. It is perhaps not realistic
to expect that system designers will be as disciplined as
I was in adhering to a restricted dialect of Java and in
keeping the system specification separate from the simu-
lation and GUI code. For this reason, any tool to support
the approach described here should explicitly enforce the
necessary discipline.

References

1. R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Transactions on Software Engineering
and Methodology, 6(3):213–249, 1997.

2. M. Bernardo, P. Ciancarini, and L. Donatiello. On the
formalization of architectural types with process alge-
bras. In D. Rosenblum, editor, Proc. ACM/IEEE Int.
Conf. on Fundamentals of Software Engineering (FSE-
8), pages 140–148, San Diego, CA, 2000. ACM Press.

3. R. Cleaveland and S. Sims. The NCSU Concurrency
Workbench. In R. Alur and T. A. Henzinger, editors,
Computer Aided Verification (CAV ’96), volume 1102 of
Lecture Notes in Computer Science, pages 394–397, New
Brunswick, New Jersey, July 1996. Springer-Verlag.

4. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Păsăreanu, Robby, and H. Zheng. Bandera: extracting
finite-state models from Java source code. In 22nd In-
ternational Conference on Software Engineering, pages
439–448, Limerick, Ireland, 2000. IEEE Computer Soci-
ety.

5. J. Hatcliff and M. Dwyer. Using the Bandera tool set
to model-check properties of concurrent Java software.
In Proc. of the 12th Int. Conf. on Concurrency Theory
(CONCUR ’01), volume 2154 of Lecture Notes in Com-
puter Science, pages 39–58. Springer-Verlag, 2001.

6. P. Inverardi, A. L. Wolf, and D. Yankelevich. Static
checking of system behaviors using derived component
assumptions. ACM Transactions on Software Engineer-
ing and Methodology, 9(3):239–272, July 2000.

7. M. Kwiatkowska. Model checking for probability and
time: From theory to practice. In Proc. 18th IEEE Sym-
posium on Logic in Computer Science (LICS’03), June
2003.

8. M. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic symbolic model checker. In T. Field,
P. Harrison, J. Bradley, and U. Harder, editors,
Proc. 12th International Conference on Modelling Tech-
niques and Tools for Computer Performance Evalua-
tion (TOOLS’02), volume 2324 of LNCS, pages 200–204.
Springer, 2002.

9. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
nutshell. Software Tools for Technology Transfer, 1:134–
152, 1997.

10. N. A. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of
the 6th Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 137–151, 1987.

11. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Speci-
fying Distributed Software Architectures. In W. Schafer
and P. Botella, editors, Proc. 5th European Software En-
gineering Conf. (ESEC 95), volume 989, pages 137–153,
Sitges, Spain, 1995. Springer-Verlag, Berlin.

12. R. Milner. Communication and Concurrency. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

13. A. Ray, A. Skou, R. Cleaveland, S. A. Smolka, and E. W.
Stark. Formal modeling and analysis of the control soft-
ware for the CARA infusion pump. Unpublished prose
document describing the CARA system and its intended
mode of use, June 2001.

14. E. Stark, R. Cleaveland, and S. Smolka. A process-
algebraic language for probabilistic I/O automata. In
Proc. of the 14th Int. Conf. on Concurrency Theory
(CONCUR ’03), Marseille, France, September 2003.

15. E. W. Stark and G. Pemmasani. Implementation of a
compositional performance analysis algorithm for proba-
bilistic I/O automata. In Proceedings of 7th International
Workshop on Process Algebra and Performance Mod-
elling (PAPM’99), Zaragoza, Spain, September 1999. (to
appear).

16. S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition
and behaviors of probabilistic I/O automata. Theoretical
Computer Science, 176(1-2):1–38, 1997.

Eugene W. Stark: Formally Specifying CARA in Java 15

Appendix A: Java-based Specification of the Pump Module

/**

* Models the M100 infusion pump.

*

* @author Eugene W. Stark

* @author Liqiang Wang

*/

class Pump implements Periodic {

/**

* The maximum infusion rate of the pump.

* We assume that this is the infusion rate that would obtain

* when the maximum control voltage is applied.

*/

final static FlowRate INFUSION_RATE_MAX = FlowRate.inLitersPerHour(6.0);

/**

* The minimum infusion rate of the pump.

* We assume that this is the infusion rate that would obtain

* when the minimum control voltage is applied.

* The M100 home page gives the minimum flow rate as 0.2lph.

*/

final static FlowRate INFUSION_RATE_MIN = FlowRate.inLitersPerHour(0.2);

/**

* The "KVO" infusion rate of the pump.

* We assume this is the flow rate that is obtained when the

* KVO control voltage is applied to the pump.

*

* NOTE: The M100 infusion pump specs page gives the minimum

* flow rate of the pump as 0.2 lph. However, in UPenn Q167,

* WRAIR indicates that KVO setting is 0.02 lph.

* This discrepancy needs to be looked into.

*/

final static FlowRate INFUSION_RATE_KVO = INFUSION_RATE_MIN;

/**

* Maximum control voltage input to pump.

* NOTE: The M100 infusion pump home page does not have detailed

* electrical specifications. However, it does say that the

* pump operates on 6 AAA batteries, which would suggest that it

* is working with max signal levels of 6x1.5V = 9V.

* So, we use 9V as the maximum voltages below.

*/

final static Voltage CONTROL_VOLTAGE_MAX = Voltage.inVolts(9.0);

/**

* Minimum control voltage input to pump.

* This has not been checked against actual pump specs.

*/

final static Voltage CONTROL_VOLTAGE_MIN = Voltage.inVolts(0.0);

/**

* "Keep vein open" control voltage input to pump.

* This may well be the same as CONTROL_VOLTAGE_MIN.

* It has to be checked against actual pump specs.

* In any case, it is the control voltage required to produce

* a KVO flow rate.

*/

final static Voltage CONTROL_VOLTAGE_KVO =

calculateControlVoltage(INFUSION_RATE_KVO);

16 Eugene W. Stark: Formally Specifying CARA in Java

/**

* Control voltage input to pump required to produce a flow

* rate of 4 liters per hour, as per (R17.1).

*/

final static Voltage CONTROL_VOLTAGE_4LPH =

calculateControlVoltage(FlowRate.inLitersPerHour(4.0));

/**

* Maximum "back EMF" voltage output from pump.

* WRAIR in UPenn Q167 seem to indicate that the back EMF

* signal ranges from 0V to 1V.

* Steve Van Albert of WRAIR confirmed this in E-mail.

* The back EMF signal is not constant at all, but rather

* varies as the pump rocker arm contacts the tubing.

* This signal would presumably require filtering to

* estimate the flow rate. Here we just assume unrealistically

* that the back EMF signal directly reflects the current

* infusion rate.

*/

final static Voltage EMF_VOLTAGE_MAX = Voltage.inVolts(1.0);

/**

* Minimum "back EMF" voltage output from pump.

* This has not been checked against actual pump specs.

*/

final static Voltage EMF_VOLTAGE_MIN =

calculateBackEMF(INFUSION_RATE_MIN);

/**

* Probability that EMF polling will fail.

*/

final static double EMF_POLL_FAILURE_PROB = 0.1;

/**

* The current control voltage being applied to the pump.

*/

protected static Voltage controlVoltage = CONTROL_VOLTAGE_KVO;

/**

* Maximum "IMP" voltage output from pump.

* E-mail from Steve Van Albert at WRAIR indicates that impedance

* goes from 0V to 5V with a typical value of 1.5V for saline.

* He also says if this line is cut, the IMP signal will go

* negative for 8 to 10 seconds, and this is what they use

* for their loss of continuity check.

*/

final static Voltage IMP_VOLTAGE_MAX = Voltage.inVolts(5.0);

/**

* Minimum "IMP" voltage output from pump.

*/

final static Voltage IMP_VOLTAGE_MIN = Voltage.inVolts(0.0);

/**

* Probability that IMP polling will fail.

*/

final static double IMP_POLL_FAILURE_PROB = 0.1;

Eugene W. Stark: Formally Specifying CARA in Java 17

/**

* Pump mean time to failure.

* Used for generating random failures.

*/

private final static Time MTTF = Time.inHours(24.0);

/**

* Pump mean time to repair.

* Used for generating random repairs.

*/

private final static Time MTTR = Time.inMinutes(5.0);

/** Whether or not random failures and repairs will take place. */

protected static boolean randomFailuresEnabled = true;

/**

* Given a control voltage, compute the corresponding infusion

* rate that would obtain if that control voltage were applied.

* We assume the infusion rate varies linearly as the control

* voltage goes from its minimum to its maximum value.

* In reality, the flow rate will likely also depend on the

* impedance of the fluid being pumped, but we ignore this

* for now.

*

* @param controlVoltage The control voltage applied to the pump.

* @return The infusion rate of the pump.

*/

private static FlowRate calculateInfusionRate(Voltage controlVoltage) {

double fraction =

(controlVoltage.getVolts() - CONTROL_VOLTAGE_MIN.getVolts())

/

(CONTROL_VOLTAGE_MAX.getVolts() - CONTROL_VOLTAGE_MIN.getVolts());

FlowRate rate =

FlowRate.inLitersPerHour

(fraction *

(INFUSION_RATE_MAX.getLitersPerHour()

- INFUSION_RATE_MIN.getLitersPerHour())

+ INFUSION_RATE_MIN.getLitersPerHour());

return(rate);

}

/**

* Given a flow rate, compute the corresponding control voltage

* required to produce that flow rate. This is not used in actual

* operation, just to initialize control voltage constants above.

*

* @param flowRate The flow rate to be produced.

* @return The required control voltage.

*/

private static Voltage calculateControlVoltage(FlowRate flowRate) {

double fraction =

(flowRate.getLitersPerHour()

- INFUSION_RATE_MIN.getLitersPerHour())

/

(INFUSION_RATE_MAX.getLitersPerHour()

- INFUSION_RATE_MIN.getLitersPerHour());

Voltage voltage =

Voltage.inVolts

(fraction *

(CONTROL_VOLTAGE_MAX.getVolts()

- CONTROL_VOLTAGE_MIN.getVolts())

+ CONTROL_VOLTAGE_MIN.getVolts());

18 Eugene W. Stark: Formally Specifying CARA in Java

return(voltage);

}

/**

* Given a flow rate, calculate the back EMF that would be produced.

* We currently use a simple model for this signal in which

* the value of the back EMF signal is linearly related to

* the infusion rate.

*/

private static Voltage calculateBackEMF(FlowRate flowRate) {

return(Voltage.inVolts

(flowRate.getLitersPerHour()

* (EMF_VOLTAGE_MAX.getVolts()

/ INFUSION_RATE_MAX.getLitersPerHour())));

}

/**

* The rate at which the pump is infusing fluids.

*/

protected static FlowRate infusionRate = INFUSION_RATE_KVO;

/**

* The current back EMF signal level from the pump.

*/

protected static Voltage EMF = calculateBackEMF(INFUSION_RATE_KVO);

/**

* The current IMP signal level from the pump.

* A typical value is 1.5 volts for saline, per Steve Van Albert of WRAIR.

*/

protected static Voltage IMP = Voltage.inVolts(1.5);

/**

* The current AirOK status signal value from the pump.

* True means OK, false means bad.

*/

protected static boolean AirOK = true;

/**

* The current OCC status signal value from the pump.

* True means OK, false means bad.

*/

protected static boolean OCC = true;

/**

* The current CONT status signal value from the pump.

* True means OK, false means bad.

*/

protected static boolean CONT = true;

/**

* The current value of the signal that tells the pump whether

* it is under analog control.

* True means under analog control, false means manual control.

*/

protected static boolean useAnalogControl = false;

/**

* Called by PumpMonitor to request current EMF value.

* The value is returned by a callback to PumpMonitor.setEMF().

*/

synchronized static void pollEMF() {

Eugene W. Stark: Formally Specifying CARA in Java 19

Trace.log("Pump", "pollEMF", "EMF: " + EMF.formatVolts());

/*

* There is a certain probability that no value will be returned.

*/

if(Simulation.randomChoice(1.0 - EMF_POLL_FAILURE_PROB))

PumpMonitor.setEMF(EMF);

}

/**

* Called by PumpMonitor to request current IMP value.

* The value is returned by a callback to PumpMonitor.setIMP().

*/

synchronized static void pollIMP() {

Trace.log("Pump", "pollIMP", "IMP: " + IMP.formatVolts());

/*

* There is a certain probability that no value will be returned.

*/

if(Simulation.randomChoice(1.0 - IMP_POLL_FAILURE_PROB))

PumpMonitor.setIMP(IMP);

}

/**

* Called by PumpControl to inform the Pump of a new control voltage.

*

* @param volts The new control voltage.

*/

synchronized static void setControlVoltage(Voltage volts) {

controlVoltage = volts;

if(useAnalogControl)

infusionRate = calculateInfusionRate(volts);

Trace.log("Pump", "setControlVoltage",

"Control voltage: " + volts.formatVolts());

}

/**

* Called by PumpControl to tell the Pump to use or not to use the

* analog control voltage.

*

* @param on true if the analog control voltage is to be used.

*/

synchronized static void setAnalogControl(boolean on) {

useAnalogControl = on;

if(on) {

infusionRate = calculateInfusionRate(controlVoltage);

Trace.log("Pump", "setAnalogControl", "Analog control");

} else {

infusionRate = INFUSION_RATE_KVO;

Trace.log("Pump", "setAnalogControl", "Manual control");

}

}

/** The update interval of the pump. */

public static final Time UPDATE_INTERVAL = Time.inMilliseconds(1000);

/**

* Simulate the autonomous behavior of the pump.

* When the pump status changes, it will inform PumpMonitor.

* (R57, R59, R60, Q62)

*/

public synchronized void update() {

EMF = calculateBackEMF(infusionRate);

20 Eugene W. Stark: Formally Specifying CARA in Java

// We assume the impedance output remains constant

// at its initial value.

//IMP = ??;

// The logic output lines toggle their state in a fashion

// governed by a two-state Markov chain, so that the probability

// of failure can be different than that of repair.

// Note that that the expected time to failure (and to repair)

// is then a geometric distribution with mean 1/p

// if p is the probability of failure (or repair) at each

// time step. Thus, given a desired MTTF (or MTTR) t,

// the probability of failure (or repair) at each step should

// be 1/t.

if(randomFailuresEnabled) {

if(AirOK) {

if(Simulation.randomChoice

(1.0/(MTTF.getSeconds()/UPDATE_INTERVAL.getSeconds()))) {

AirOK = !AirOK;

Trace.log("Pump", "run", "Random AirOK failure");

}

} else {

if(Simulation.randomChoice

(1.0/(MTTR.getSeconds()/UPDATE_INTERVAL.getSeconds()))) {

AirOK = !AirOK;

Trace.log("Pump", "run", "Random AirOK recovery");

}

}

PumpMonitor.setAirOK(AirOK);

if(OCC) {

if(Simulation.randomChoice

(1.0/(MTTF.getSeconds()/UPDATE_INTERVAL.getSeconds()))) {

OCC = !OCC;

Trace.log("Pump", "run", "Random OCC failure");

}

} else {

if(Simulation.randomChoice

(1.0/(MTTR.getSeconds()/UPDATE_INTERVAL.getSeconds()))) {

OCC = !OCC;

Trace.log("Pump", "run", "Random OCC recovery");

}

}

PumpMonitor.setOcc(OCC);

if(CONT) {

if(Simulation.randomChoice

(1.0/(MTTF.getSeconds()/UPDATE_INTERVAL.getSeconds()))) {

CONT = !CONT;

Trace.log("Pump", "run", "Random CONT failure");

}

} else {

if(Simulation.randomChoice

(1.0/(MTTR.getSeconds()/UPDATE_INTERVAL.getSeconds()))) {

CONT = !CONT;

Trace.log("Pump", "run", "Random CONT recovery");

}

}

PumpMonitor.setCont(CONT);

}

Eugene W. Stark: Formally Specifying CARA in Java 21

/*

* Inform the patient about the volume of fluid that

* has been infused since the last update.

* This is just the current infusion rate in liters per hour

* times the update interval in hours.

*/

Patient.addInfusedVolume

(Volume.inLiters(infusionRate.getLitersPerHour() / 3600.0));

}

}

