
A Simple Generalization of Kahn's Principle to

Indeterminate Data
ow Networks

Eugene W. Stark

�

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

July 31, 1990

Abstract

Kahn's principle states that if each process in a data
ow network computes a con-

tinuous input/output function, then so does the entire network. Moreover, in that case

the function computed by the network is the least �xed point of a continuous functional

determined by the structure of the network and the functions computed by the individ-

ual processes. Previous attempts to generalize this principle in a straightforward way to

\indeterminate" networks, in which processes need not compute functions, have been

either too complex or have failed to give results consistent with operational semantics.

In this paper, we give a simple, direct generalization of Kahn's �xed-point principle to

a large class of indeterminate data
ow networks, and we prove that results obtained

by the generalized principle are in agreement with a natural operational semantics.

1 Introduction

Data
ow networks are a parallel programming paradigm in which a collection of concurrently

and asynchronously executing sequential processes communicate by transmitting sequences

or \streams" of \tokens" containing data values over unidirectional FIFO communication

channels. Kahn [14, 15] envisioned a simple programming language built on this paradigm,

in which the communication primitives available to processes are su�ciently restrictive that

only functional processes can be programmed. That is, each process may be viewed as

computing a function from the complete history of values received on its input channels

to the complete history of values emitted on its output channels. Kahn argued that such

processes compute functions that are in fact continuous with respect to a suitable complete

partial order (cpo) structure on the sets of input and output histories. Moreover, a network

�

Research supported in part by NSF Grants CCR-8702247 and CCR-8902215.

1

of such processes also computes a continuous function, which can be characterized as the

least �xed point of a continuous functional associated with the network. This elegant idea

has been called \the Kahn principle," and it has been shown [9, 21, 36] to give results in

agreement with a natural \token-pushing" operational semantics.

In practical programming applications of the data
ow idea, the restriction to functional

processes is somewhat limiting, because there are useful programs one wants to write that

do not describe processes with functional input/output behavior. An example of a class of

such processes are the merge processes, which shu�e together values arriving on two input

channels onto a single output channel. A variety of such processes can be de�ned, corre-

sponding to various conditions under which arriving inputs are guaranteed to be eventually

transmitted to the output [24, 39]. They do not have functional behaviors, because in gen-

eral there are many possible output interleavings for a single pair of input sequences. We

use the term indeterminate to refer to data
ow networks in which processes need not have

functional behaviors.

There have been many attempts to generalize Kahn's theory to a class of indetermi-

nate networks. The obvious idea of generalizing functions to relations fails to give results

consistent with token-pushing semantics. This fact was �rst noticed by Keller [16], and sub-

sequently became known as the \Brock/Ackerman anomaly," after Brock and Ackerman [7]

demonstrated convincingly by some clever examples that no denotational semantics based

on set-theoretic input/output relations can give results consistent with token-pushing se-

mantics. Subsequently, a rather large literature has developed on this subject. A variety

of sophisticated approaches, such as powerdomains [1, 8], categories [3], \scenarios" [6, 7],

sets of \linear traces" [4, 11, 12, 17, 23], \pomsets" [10, 26, 27], multilinear algebra [22], and

other ideas [18, 19, 25, 28, 29, 30, 34, 37, 35] have been tried, but up until now none of these

approaches has resulted in a truly simple and natural generalization of Kahn's principle that

also maintains a clear connection with operational semantics.

In the remainder of this paper, we present a very simple and straightforward general-

ization of Kahn's principle, and prove that it gives results in agreement with operational

semantics.

2 Kahn's Fixed-Point Principle

To give a precise statement of the Kahn principle, we must �rst formalize the notion of the

input/output relation of a data
ow network. We begin by postulating a countably in�nite

set V, whose elements represent the possible data values that can be communicated between

processes. Let V

1

be the set of all �nite and in�nite sequences of elements of V, partially

ordered by the pre�x relation v. We use � to denote the empty sequence, which is the least

element of V

1

. If X is a �nite or countably in�nite set (of channels), then an X-history is a

function from X to V

1

. We think of such a function as representing the complete history of

values communicated on the channels in X during some computation of a data
ow network.

Let HX denote the set of all X-histories, then HX is also partially ordered, with x v x

0

i� x(c) v x

0

(c) for all c 2 X. The poset HX has the structure of a Scott domain (an !-

2

algebraic, consistently complete cpo [32]). The least element ? is the identically � function.

The �nite elements (or compact elements, or isolated elements) of HX are exactly those

histories x with x(c) �nite for all channels c 2 X, and with x(c) = � for all but �nitely many

c 2 X. It is also important for us that HX is �nitary, which means that each �nite element

can have at most a �nite set of elements below it.

Functions on channel sets induce corresponding functions on channel histories. Formally,

if X and Y are sets of channels, then a function � : Y ! X induces a function H� : HX !

HY satisfying H�(x)(c) = x(�(c)) for all c 2 Y . The function H� is obviously continuous;

in fact the mapping H is a contravariant functor from the category of at most countable sets

and functions to the category of Scott domains and continuous maps. Moreover, this functor

maps the empty set to the one-point domain, and maps coproducts of sets (disjoint union)

to products of domains; that is, we have a natural isomorphism H(X + Y) ' HX �HY .

In Section 5, we shall continue with this formal development, de�ning an operational

model for data
ow networks in which both a network and its constituent processes are

represented as a certain kind of automata having �xed sets of input and output channels.

Computation of a data
ow network may be regarded as a token-pushing game played on a

graph whose nodes are automata, and whose arcs indicate when an output channel c of one

automaton A is connected to an input channel d of another automaton B (we admit the

possibility that A = B). As execution progresses, the automata change state and tokens

containing data values move around on the graph. Communication between automata occurs

when a token containing a data value is simultaneously output on channel c by process A

and input on channel d by process B. This synchronized communication model looks at

�rst glance to be di�erent from the usual formulations of operational semantics for data
ow

networks, in which communication channels are regarded as FIFO bu�ers distinct from

processes. Instead of following the usual approach, we �nd it more convenient and economical

to imagine each process as having, for each of its input channels, a component of its internal

state that serves as an input bu�er for that channel. We do not actually impose any direct

structural requirements on the states of an automaton, but instead merely axiomatize the

essential properties of the transition relation that are consequences of this structure. Among

other things, the axioms imply that an automaton is always prepared to accept arbitrary

input on an input channel (the bu�er is never full), and the production of output in a step

can depend only on input received in a previous step. In this way, we obtain the e�ect of a

bu�ered communication model without the notational inconvenience.

Once a formal de�nition of \token-pushing semantics" has been given, it becomes possible

to de�ne the input/output relation of a network. In particular, the input/output relation of

a network with input channels X and output channels Y is a subset of HX � HY , whose

elements are pairs hx; yi representing the history of input and output that could occur in

one particular network computation. We are not interested in including in the input/output

relation pairs hx; yi corresponding to all possible computations, but rather only in those pairs

obtained from completed computations. Intuitively, a computation of a network is completed

if each component process that is capable of performing some non-input step eventually does

so. We need this condition to rule out uninteresting computations in which a process fails to

3

6 6 6 6

6 6

m

�

X XZ Z

Y Y

Figure 1: An Open-Loop Network and one with Feedback

process data in its input bu�er simply because that process is never scheduled to execute a

step. Having de�ned the input/output relation of a network, we may then classify networks

as determinate or indeterminate according to whether or not their input/output relations are

functional (i.e. are graphs of functions from HX to HY) or nonfunctional. In [21] it is shown

that, for a formal operational model of data
ow networks de�ned along these lines, if the

input/output relation of a network is functional, then in fact it is the graph of a continuous

function from HX to HY .

Kahn's principle concerns determinate networks. In its simplest form, the principle gives

a relationship between the function computed by a determinate network with a feedback

loop and the corresponding \open-loop" network. The principle may be stated as follows:

The Kahn Principle

Suppose a network computes the continuous function f : HX �HZ ! HY .

Let � : Z ! Y be an injective function, which we regard as designating, for each

channel in Z, a corresponding channel in Y to which it is to be connected in a

feedback loop (see Figure 1). De�ne the feedback functional

� : [HX ! HY]! [HX ! HY]

by

�(g)(x) = f(x;H�(g(x))):

Then � is continuous, and the function computed by the closed-loop network is

the least �xed-point �� of �.

3 A Generalization of Kahn's Principle

To motivate the generalized version of Kahn's principle, we reconsider the original version

stated above, with a few changes in notation. First of all, instead of representing the behavior

of a network with input channels X and output channels Y by a continuous function f :

4

HX ! HY , let us use instead the function p : HX ! [HY ! HY] de�ned by p(x)(y) =

f(x)u y. Here f(x)u y denotes the greatest lower bound of f(x) and y, which always exists

due to the fact that HY is a consistently complete cpo, and is continuous because HX

and HY are algebraic. Observe that no information is lost in replacing f by p, because

f(x) =

F

fy : y = p(x)(y)g. Note also that for each x 2 X the function p(x) : HY ! HY

has the following properties:

1. p(x) � p(x) = p(x).

2. p(x) v id

HY

.

That is, p(x) is a projection on the domain HY [13]. In the sequel, we use P(D) to denote

the set of all projections on the �nitary domain D. It can be shown that P(D), partially

ordered by v, is a domain; in fact it is a complete lattice.

Now, let us rede�ne the feedback functional to be compatible with the new notation. If

p : HX �HZ ! P(HY) represents the open-loop behavior of a network, and � : Z ! Y is

an injective function, then the corresponding feedback functional

	 : [HX ! [HY ! HY]]! [HX ! [HY ! HY]]

is de�ned by

	qxy = phx;H�(qxy)iy:

Here, and in the rest of the paper, we omit unnecessary parentheses under the convention

that application associates to the left, and we use angle brackets to indicate tupling of

arguments. It is immediate from the above de�nition that 	 is continuous. Moreover, the

least �xed point �	 of 	 determines the least �xed point �� of � in the same way as p

determines f .

Lemma 3.1 ��x =

F

fy : y = �	xyg.

Proof { Recall that the fundamental �xed-point theorem (see, e.g. [32]) in the theory of

complete partial orders states that if a functional � : D ! D is continuous, then �� =

F

i

�

i

0,

where 0 denotes the least element of D, and the iterates �

i

of � are de�ned inductively by:

�

0

= id, �

i+1

= � � �

i

.

Let y = ��x =

F

i

�

i

0x. We �rst claim that �

i

0x v 	

i

0xy for all i � 0. This is

established by induction on i. The basis case is immediate. For the induction step, observe:

�

i+1

0x = �

i+1

0x u y

= fhx;H�(�

i

0x)i u y

= phx;H�(�

i

0x)iy

v phx;H�(

i

0xy)iy

= 	

i+1

0xy;

5

where the induction hypothesis was used to obtain the inequality. This completes the in-

duction. Since �

i

0x v 	

i

0xy for all i � 0, and since 	

i

0xy v y = ��x for all i, it follows

that ��x = �	x(��x).

To complete the proof, we now show that if y is any element of HY with y = �	xy, then

y v ��x. By induction on i we �rst show that 	

i

0xy v �

i

0x for all x; y and all i � 0. The

basis case is obvious. For the induction step, observe:

	

i+1

0xy = phx;H�(

i

0xy)iy

= fhx;H�(

i

0xy)i u y

v fhx;H�(

i

0xy)i

v fhx;H�(�

i

0x)i

= �

i+1

0xy;

completing the induction. Now, if y = �	xy, then y =

F

i

	

i

0xy v

F

i

�

i

0x = ��x.

We thus see that Kahn's principle generalizes in a straightforward way to the new repre-

sentation of network behaviors. However, the new representation has an important advantage

over the old one: it is general enough to permit the speci�cation of some nonfunctional behav-

iors. We observed above that if f : HX ! HY is continuous, and p : HX ! P(HY) is de-

�ned by pxy = fxuy, then fx =

F

fy : y = pxyg; that is to say, fx is the maximal �xed point

of the projection px 2 P(HY). Instead of just considering functions p : HX ! P(HY) of

the form fxuy, we may consider the whole class of continuous functions p : HX ! P(HY).

For an arbitrary such function p, the set of �xed points of px need not be directed, hence it

may contain many maximal elements. Given x 2 HX, we regard each maximal �xed point

y of px as a possible output on input x, and in this way we may think of the function p as

describing an indeterminate network whose input/output relation is the set of all hx; yi such

that y is a maximal �xed point of px.

As a simple example of an indeterminate behavior, consider a network with no input

channels (X = ;, hence HX ' f?g) and one output channel (Y = f�g, hence HY ' V

1

),

which simply emits an arbitrary in�nite sequence of values on its output channel. Such a

network is described by the function p : HX ! P(HY) satisfying pxy = y. It is clear

that any maximal element y of HY is a maximal �xed point of p?, hence determines a pair

h?; yi in the input/output relation of the network. This kind of \oracle" network can be

used in the construction of a variety of other indeterminate behaviors. For example, it can

be shown that a network that implements a kind of merging operation called in�nity-fair

merge [24, 39] can be constructed using functional components and an oracle that outputs

an in�nite sequence of natural numbers.

Although the generalizations we have made so far permit us to describe some indetermi-

nate networks, the class of networks that can be represented as functions p : HX ! P(HY)

is not yet large enough to admit \hiding" operations (see Section 5.6), by which some output

channels of a network are made invisible to its environment. However, we can describe a

larger and more interesting class of networks, which does admit hiding, by making one further

generalization. The additional generalization is to replace the single map p : HX ! P(HY)

6

by two maps: p : HX ! P(D) and l : D ! HY , where D is an arbitrary �nitary domain.

We therefore arrive at the following general de�nition of an indeterminate behavior:

An (X;Y)-behavior is a triple (D; p; l), where D is a �nitary domain, and p :

HX ! P(D) and l : D ! HY are continuous functions.

The input/output relation corresponding to an (X;Y)-behavior (D; p; l) is the set of all

hx; ldi 2 HX �HY such that d is a maximal �xed point of the projection px.

As an example of the kind of indeterminate networks that can be described as behaviors

(D; p; l), we consider angelic merge. A network that performs angelic merge has two input

channels (X = fa; bg) and one output channel (Y = fcg), and operates by merging together

the sequences of data values on its two input channels into a single output sequence. It is

required to satisfy the following liveness condition: In any completed computation, if only a

�nite number of values arrive on one of the inputs, then eventually all the values from the

other input will be transmitted to the output.

To describe angelic merge as an (X;Y)-behavior, we �rst de�ne � : fa; bg

1

�HY ! HX

to be the continuous function that on argument hw; yi, splits the sequence of values y into

two result sequences, where the ith value in y goes to the result sequence for channel a, if

a is the ith value in the sequence w, otherwise to the result sequence for channel b. Angelic

merge may then be de�ned to be the behavior (fa; bg

1

�HY; p; l), where

� l : fa; bg

1

�HY ! HY is de�ned by lhw; yi = y.

� p : HX ! P(fa; bg

1

�HY) satis�es the following condition: for each x 2 HX, w 2

fa; bg

1

, and y 2 HY , pxhw; yi is the greatest hw

0

; y

0

i v hw; yi such that �hw

0

; y

0

i v x.

Many interesting indeterminate networks can be constructed using angelic merge and

functional components. However, it should be pointed out that there is yet a more powerful

kind of merging operation that cannot be described as a behavior (D; p; l). This is the fair

merge, which shu�es two input sequences together onto a single output sequence in such a

way that every value in both input channels eventually appears in the output channel. The

results of this paper do not apply to indeterminate networks having this powerful merging

capability.

We now state our generalized version of Kahn's principle.

The Generalized Kahn Principle

Suppose (D; p; l) is an (X�Z; Y)-behavior that corresponds to the open-loop

network shown in Figure 1. Let � : Z ! Y be an injective function that assigns

to each input channel in Z a corresponding output channel in Y . De�ne the

feedback functional corresponding to (D; p; l) and � to be the map:

� : [HX ! [D ! D]]! [HX ! [D ! D]]

de�ned by:

�qxd = phx;H�(l(qxd))id:

Then � is continuous, and (D;��; l) is the behavior corresponding to the closed-

loop network.

7

In the remainder of the paper, we justify this principle by showing that it gives results

in agreement with token-pushing semantics.

4 Resolution of the Anomalies

In this section, we brie
y examine the way in which Keller/Brock/Ackerman-type \anoma-

lies" are avoided by our semantics for networks. We consider a particularly simple example

of such an anomaly, due to J. Russell [31]. Suppose P is a process, having one input channel

and one output channel, that obeys the following intuitive algorithm: Nondeterministically

choose either: (1) read an input value, then output 0 followed by 1, or (2) output 0, read an

input value, then output 0. Let Q be a similar process that has the additional possibility:

(3) output 0, read an input value, then output 1. The input/output relation of P consists of

all pairs of histories of the form h?; 0i, hvx; 01i, or hvx; 00i, where v is an arbitrary value in

V, and x an arbitrary sequence of elements of V. The input/output relation of Q is identical

to that of P .

Even though P and Q have identical input/output relations, a di�erence between the two

processes can be detected by placing them in a feedback loop. If P

	�

denotes the network

consisting of P with its output fed back to its input, and similarly for Q

	�

, then under

token-pushing semantics the set of possible outputs of P

	�

is f?; 00g, whereas the set of

possible outputs of Q

	�

is f?; 00; 01g. This demonstrates that no semantics for indeter-

minate networks, in which processes and networks are represented by their input/output

relations, can support a de�nition of the feedback operation that gives results in agreement

with token-pushing semantics.

Let us now see how the di�culty is resolved using our de�nition of behavior. Let X = fag

and Y = fbg, and let f1; 2g

?

denote the
at domain generated by f1; 2g. Then the process

P can be represented as the (X;Y)-behavior (f1; 2g

?

�HY; p; l), where lhw; yi = y and

p : HX ! [f1; 2g

?

�HY ! f1; 2g

?

�HY]

is de�ned as follows:

pxh?; yi = h?;?i

pxh1; yi =

(

h1;?i; if x = ?

h1; 01 u yi; otherwise:

pxh2; yi =

(

h2; 0 u yi; if x = ?

h2; 00 u yi; otherwise:

Similarly, the process Q can be represented by the (X;Y)-behavior (f1; 2; 3g

?

�HY; q; l),

where

q : HX ! [f1; 2; 3g

?

�HY ! f1; 2; 3g

?

�HY]

is de�ned by:

qxh?; yi = h?;?i

8

qxh1; yi = pxh1; yi

qxh2; yi = pxh2; yi

qxh3; yi =

(

h3; 0 u yi; if x = ?

h3; 01 u yi; otherwise:

Let � : X ! Y be the map taking a to b. Applying the generalized Kahn principle, the

behavior of P

	�

is the (;; Y)-behavior (f1; 2g

?

�HY; p

	�

; l), where

p

	�

: f?g ! [f1; 2g

?

�HY ! f1; 2g

?

�HY]

is de�ned by:

p?hw; yi =

8

>

<

>

:

h?;?i; if w = ?

h1;?i; if w = 1

h2; 00 u yi; if w = 2:

The maximal �xed points of p

	�

are fh1;?i; h2; 00ig, hence the input/output relation of P

	�

is fh?;?i; h?; 00ig.

The behavior of Q

	�

is the (;; Y)-behavior (f1; 2; 3g

?

�HY; q

	�

; l), where

q

	�

: f?g ! [f1; 2; 3g

?

�HY ! f1; 2; 3g

?

�HY]

is de�ned by:

q?hw; yi =

8

>

>

>

<

>

>

>

:

h?;?i; if w = ?

h1;?i; if w = 1

h2; 00 u yi; if w = 2

h3; 01 u yi; if w = 3:

The maximal �xed points of q

	�

are fh1;?i; h2; 00i; h3; 01ig, hence the input/output relation

of Q

	�

is fh?;?i; h?; 00i; h?; 01ig.

Evidently, the input/output relations of P

	�

and Q

	�

, obtained by the generalized Kahn

principle, are in agreement with token-pushing semantics.

5 Operational Semantics

In this section, we de�ne an operational semantics for indeterminate data
ow networks. In

this semantics a network is represented as a certain kind of automaton, called a monotone

automaton [24, 39]. The construction of larger networks from component automata is mod-

eled by certain operations on automata. In fact, assuming the existence of su�ciently many

\basic" determinate automata (in particular, the existence of an automaton that computes

function H� : HX ! HY for each function � : Y ! X), then any �nite network can

be constructed using basic automata and just three network-building operations: parallel

composition, hiding, and feedback. Parallel composition corresponds to simply placing two

9

6 6

6 6

X

X

0

Y

Y

0

Figure 2: Parallel Composition

automata side-by-side in a network, without any communication (see Figure 2). Hiding

makes some of the output channels of an automaton into \internal" channels, which are

not available for external communication. Feedback is the operation depicted in Figure 1.

Hiding and parallel composition pose no particular semantic di�culties in the framework we

have set up here, and we shall discuss them here only brie
y.

5.1 Monotone Automata

A monotone automaton (henceforth simply \automaton") is a tuple

A = (X;W; Y;Q; i; T)

where

� X, W , and Y are pairwise disjoint sets of channels, which we assume are at most

countable. The elements of X, Y , and W are called input channels, output channels,

and internal channels, respectively. Let E = (X + Y +W)� V, then the elements of

E are called actions of A. If e = hc; vi is an action of A, then we write chan(e) for

the channel component c and val(e) for the value component v, of e. An action e is an

input action or a non-input action, according to whether chan(e) 2 X or chan(e) 62 X.

� Q is a set of states, and i 2 Q is a distinguished initial state.

� T : Q� E ! Q is a partial transition function.

These data are required to satisfy the following conditions:

(Commutativity) For all states q and actions e; e

0

, if chan(e) 6= chan(e

0

), r = T (q; e), and

r

0

= T (q; e

0

), then there exists a state s such that s = T (r

0

; e) = T (r; e

0

).

(Receptivity) For all states q and input actions e, there exists a state r such that r =

T (q; e).

10

These automata are closely related to the input/output automata de�ned by Lynch and

Tuttle [21], and also to the automata that have been studied by Bednarczyk [5], Kwiatkowska

[20], and Shields [33].

A transition of A is a triple q

e

�!r, where r = T (q; e). We write t : q

e

�!r, or just

q

e

�!r, to assert the existence of a transition t = q

e

�!r of A. Intuitively, a transition q

e

�!r

represents a potential computation step of A in which action e occurs and the state changes

from q to r. We say that action e 2 E is enabled in state q if there exists a transition q

e

�!r

in T . If t : q

e

�!r, then q is called the domain dom(t) of t and r is called the codomain cod(t)

of t.

The receptivity condition in the de�nition of an automaton can be viewed as an abstract

statement of the unboundedness of the bu�ers associated with input channels. The commu-

tativity property can be thought of as saying that actions for di�erent ports are concurrent,

hence a�ect di�erent components of the state. Together, the commutativity and receptivity

imply the following monotonicity property: If non-input action e is enabled in state q, and

e

0

is an arbitrary input action with r = T (q; e

0

), then e is enabled in state r as well. One

can think of this condition as saying that it is possible to test for the presence of inputs in

an input bu�er, but not for their absence.

As an example of how we can model a data
ow process as an automaton, consider the

case of the angelic merge process aleady discussed. Recall that X = fa; bg and Y = fcg.

Let W = fdg. We then represent the merge process as an automaton

A = (fa; bg; fdg; fcg;V

�

� V

�

� V

�

; h�; �; �i; T);

where the set of transitions T contains a transition

hx

1

; x

2

; yi

e

�!hx

0

1

; x

0

2

; y

0

i

i� one of the following conditions holds:

1. e = ha; vi, x

0

1

= x

1

v, x

0

2

= x

2

, and y

0

= y.

2. e = hb; vi, x

0

1

= x

1

, x

0

2

= x

2

v, and y

0

= y.

3. e = hd; 1i, vx

0

1

= x

1

, x

0

2

= x

2

, and y

0

= yv.

4. e = hd; 2i, x

0

1

= x

1

, vx

0

2

= x

2

, and y

0

= yv.

5. e = hc; vi, x

0

1

= x

1

, x

0

2

= x

2

, and vy

0

= y.

It is straightforward to check that A satis�es the conditions for an automaton. In cases (3)

and (4), the actions hd; 1i and hd; 2i are in E by our assumption that V contains all the

natural numbers. (It is actually not important that the numbers 1 and 2 be used here; they

could be replaced by any two distinct elements of V.)

Intuitively, the state of A contains two \input bu�ers" and one \output bu�er." Transi-

tions of type (1) and (2) correspond to arriving input values being placed at the end of the

11

appropriate input bu�er. Transitions of type (3) and (4) are internal transitions that corre-

spond to the indeterminate selection of input in one input bu�er or the other to be moved

to the output bu�er. Transitions of type (5) correspond to the transmission of output from

the output bu�er. Similar constructions can be used to model many other kinds of data
ow

processes.

5.2 Computations of Automata

Suppose A = (X;W; Y;Q; i; T) is an automaton. A �nite computation sequence for A is a

�nite sequence
 of transitions of A of the form:

q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

:

An in�nite computation sequence is an in�nite sequence of transitions:

q

0

e

1

�!q

1

e

2

�! . . . :

The state q

0

is called the domain dom(
) of
. If
 is �nite, then the state q

n

is called the

codomain cod(
) of
, and the number n is called the length j
j of
. We call the computation

sequence of length 0 from state q the identity computation sequence. A computation sequence

 is initial if dom(
) is the distinguished initial state i. Finite computation sequences
 and

� are called composable if dom(�) = cod(
) and in that case we de�ne their composition
�

to be the computation sequence obtained by concatenating them in the obvious way.

Each computation sequence
 of A determines a corresponding channel history H(
) 2

H(X + W + Y), where for each channel c 2 X + W + Y , the sequence H(
)(c) is the

subsequence of all val(e

i

) for those actions e

i

with chan(e

i

) = c. In view of the natural

isomorphism H(X +W + Y) ' HX �HW �HY , we may think of the history H(
) of a

computation sequence
 as a triple hx;w; yi 2 HX � HW �HY , and it will generally be

convenient to do so. Let H(A) � HX �HW �HY denote the set of all histories of initial

computation sequences
 of A.

Lemma 5.1 Suppose A = (X;W; Y;Q; i; T) is an automaton. Then

1. h?;?;?i 2 H(A).

2. If hx;w; yi 2 HX �HW �HY is �nite, hx;w; yi 2 H(A), and x

0

is a �nite element

of HX with x v x

0

, then hx

0

; w; yi 2 H(A).

Proof { (1) The identity initial computation sequence has history h?;?;?i.

(2) Given a �nite hx;w; yi 2 HX�HW�HY such that hx;w; yi 2 H(A), we may obtain

a �nite initial computation sequence
 whose history is hx;w; yi. Given a �nite x

0

2 HX

with x v x

0

, we may then use the receptivity property of A to construct a �nite pure-input

extension

0

of
, such that

0

has hx

0

; w; yi as its history.

To state properly the next results, we need some concepts from domain theory. If D is a

domain, then a subdomain of D is a subset U of D, which is a domain under the restriction

12

of the ordering on D, such that the inclusion of U in D is continuous. A subdomain U is

normal if for all d 2 D, the set fu 2 U : u v dg is directed. The following easily proved

characterization of normal subdomains will be convenient:

Proposition 5.2 Suppose U is a subdomain of a domain D. Then U is normal i� the

following conditions hold:

1. ? 2 U .

2. If u; u

0

2 U are consistent (i.e. have an upper bound) in D, then u t u

0

2 U .

Suppose U is a subdomain ofD, and letm : U ! D be the inclusion map. If U is a normal

subdomain ofD, then we may de�ne a map e : D ! U by: ed =

F

fu 2 U : u v dg. It is then

easy to see that e�m = id

U

and m� e v id

D

. Then (m� e)� (m� e) = m� (e�m)� e = m� e,

so the map m � e : D ! D is a projection, and U = fd 2 D : d = m(ed)g. Thus, normal

subdomains determine projections. Conversely, if p : D ! D is a projection on a �nitary

domain D, then U = p(D) = fd 2 D : d = pdg is a normal subdomain of D. Hence there

is a correspondence between projections on D and normal subdomains of D. In fact, the

following is easily shown:

Proposition 5.3 For any �nitary

1

domain D, the set of all normal subdomains of D, par-

tially ordered by inclusion, is a complete lattice that is isomorphic to the set of projections

on D, partially ordered by v. Moreover, if fD

i

: i 2 Ig is a collection of normal subdomains

of D which is directed under inclusion order, then its supremum in the lattice of normal

subdomains is given by:

(

[

fD

i

: i 2 Ig)

c

;

where ()

c

denotes closure under directed suprema.

Lemma 5.4 Suppose U is a normal subdomain of a �nitary domain D. Let U

o

denote the

set of elements of U that are �nite in D. Then U = (U

o

)

c

.

Proof { Since D is algebraic, and U � D, every u 2 U is the supremum of the set of �nite

elements d 2 D with d v u. Let p denote the projection on D corresponding to the normal

subdomain U , then by the continuity of p it follows that u is also the supremum of the set of

all pd such that d 2 D is �nite and d v u. But if d 2 D is �nite in D, then so is pd, because

projections are decreasing and in a �nitary domain no in�nite element can be below a �nite

element. Since U � D, an element of u is �nite in U if it is �nite in D. It follows that u is

the supremum of the directed subset fpd : d 2 D; d v u; d �niteg of U

o

.

An interval in a domain D is a pair [d; d

0

] of elements of D such that d v d

0

. An interval

[d; d

0

] is prime if there exists no d

00

2 D such that d @ d

00

v d

0

. The result below, proved in

[35, 38], gives a great deal of information about the structure of the set H(A).

1

The author thanks Carl Gunter for pointing out that for a projection p on an arbitrary domain D, it is

not necessarily the case that p(D) is algebraic. However, in case D is �nitary, then p(d) is a �nite element

of p(D) whenever d is a �nite element of D, and this is su�cient for algebraicity.

13

Proposition 5.5 Suppose A = (X;W; Y;Q; i; T) is an automaton. Then the set H(A),

partially ordered by v, is a normal subdomain of HX �HW �HY . Moreover, the inclusion

of H(A) in HX �HW �HY preserves prime intervals.

To give the proof of this proposition would require a fairly substantial digression to

develop the necessary techniques. Instead, we merely comment on the method used. We

begin by de�ning two computation sequences
 and

0

to be equivalent if dom(
) = dom(

0

)

and H(
) = H(

0

). We call equivalence classes of computation sequences computations. We

then observe that the partial ordering on histories induces a corresponding partial ordering

on computations, making the map, taking each computation to the corresponding history,

injective and order-preserving. It then remains to show that the partially ordered set of

initial computations is a domain, and that the map from computations to histories is an

embedding of a normal subdomain that preserves prime intervals. To accomplish this, we

introduce the auxiliary notion of the residual of one computation sequence \after" another,

and obtain a characterization in terms of residuals of the ordering on computations.

More precisely, suppose
 and

0

are �nite computation sequences, such that dom(
) =

dom(

0

) and such that the histories H(
) and H(

0

) are consistent. Then there exists a pair

of �nite computation sequences
 n

0

and

0

n
 (read \
 after

0

and

0

after
), such that

the computation sequences
(

0

n
) and

0

(
 n

0

) are equivalent, and such that if � and �

0

are any �nite computation sequences with
�

0

and

0

� equivalent, then there exists a �nite

computation sequence �, unique up to equivalence, such that (
 n

0

)� is equivalent to � and

(

0

n
)� is equivalent to �

0

.

Thus n is a partial binary operation on pairs of computation sequences, where
 n �

is de�ned exactly when dom(
) = dom(�) and H(
) and H(�) are consistent. We then

think of
 and � as potentially being part of the \same concurrent computation," and the

computation sequence
 n � as that obtained by \cancelling" from
 the greatest common

pre�x of
 and �, up to equivalence. If dom(
) = dom(�), but H(
) and H(�) are not

consistent, then
 n � and � n
 are unde�ned. In this case,
 and � \con
ict" in the sense

that
 contains some indeterminate choice that is incompatible with a choice made in �.

Observe that we distinguish between two types of choice that may be represented in an

automaton: concurrent choice, in which actions e, e

0

for distinct channels are both enabled

in the same state q, and indeterminate choice, in which actions e and e

0

for the same channel

are both enabled in state q. A formal de�nition of
 n � is given by induction on the length

of
 and �, and can be found in [35, 38].

A residual operation can also be de�ned on �nite histories. Formally, if x and x

0

are

consistent histories, then the residual of x after x

0

is the unique history xnx

0

with the property

that x

0

(x n x

0

) = x t x

0

. From this de�nition, one can easily see that x v x

0

i� x n x

0

= ?.

A similar relation holds for computations: [
] v [�] i�
 n � is an identity computation

sequence. Thus, the partial ordering on computations has an equivalent characterization in

terms of residuals. Proposition 5.5 may then be proved by �rst using residuals to perform

an inductive construction of suprema for directed collections of computations, and also for

consistent pairs of computations, and then to show that the map taking each computation

to its history preserves residuals (hence is additive and continuous), and re
ects consistency.

14

A map between domains that is strict, additive, continuous, and re
ects consistency is an

embedding of a normal subdomain.

The same techniques also establish the following result:

Proposition 5.6 Suppose A = (X;W; Y;Q; i; T) is an automaton. Let
 be a �nite initial

computation sequence of A having history hx;w; yi, and suppose hx

0

; w

0

; y

0

i is a �nite element

of HX �HW �HY with hx;w; yi v hx

0

; w

0

; y

0

i. If hx

0

; w

0

; y

0

i 2 H(A), then there exists a

�nite initial computation sequence � of A with history hx

0

; w

0

; y

0

i, such that
 is a pre�x of

�.

The proof of Proposition 5.6 is accomplished by letting

0

be an arbitrary initial compu-

tation sequence of A having history hx

0

; w

0

; y

0

i, observing that H(
) and H(

0

) are consistent,

hence the residual

0

n
 is de�ned, and then taking � =
(

0

n
).

Lemma 5.7 Suppose A = (X;W; Y;Q; i; T) is an automaton. Then the map taking x to the

set

U(x) = fhw; yi : hx;w; yi 2 H(A)g;

is a continuous function from HX to the lattice of normal subdomains of HW �HY .

Proof { We �rst use Proposition 5.2 to show that for each x 2 HX, the set U(x) is a normal

subdomain of HW �HY . Note that h?;?i 2 U(x) for all x 2 HX by Lemma 5.1. Also, if

hw; yi 2 U(x) and hw

0

; y

0

i 2 U(x), where hw; yi and hw

0

; y

0

i are consistent, then hx;w; yi 2

H(A) and hx;w

0

; y

0

i 2 H(A), hence hx;w tw

0

; y t y

0

i 2 H(A) and hw tw

0

; y t y

0

i 2 U(x) by

the normality of H(A). To show that U(x) is a subdomain of HW �HY , we show that if

V � U(x) is directed, then

F

V 2 U(x). Now, if V � U(x) is directed, then hx;w; yi 2 H(A)

whenever hw; yi 2 V , hence if hw; yi =

F

V , then hx;w; yi 2 H(A) because H(A) is a

subdomain of HX �HW �HY . It follows that hw; yi 2 U(x).

To prove that the map taking x to U(x) is continuous, we show that for all x 2 HX,

U(x) = (

[

fU(x

0

) : x

0

v x; x

0

�niteg)

c

;

where ()

c

denotes closure under directed suprema. By Lemma 5.4, it su�ces to show that if

hw; yi 2 HW �HY is �nite, then hw; yi 2 U(x) i� hw; yi 2 U(x

0

) for some �nite x

0

v x. So,

suppose hw; yi 2 HW �HY is �nite. If hw; yi 2 U(x), then hx;w; yi 2 H(A), hence there

exists an initial computation sequence
 of A such that the history of
 is hx;w; yi. Moreover,

since hw; yi is �nite, there must be some �nite x

0

2 HX and some �nite pre�x

0

of
 whose

history is hx

0

; w; yi. This shows that hw; yi 2 U(x

0

) for some �nite x

0

v x. Conversely, if

hw; yi 2 U(x

0

) for some �nite x

0

v x, then there exists a �nite initial computation sequence

 of A whose history is hx

0

; w; yi. Then hx;w; yi 2 H(A) by Lemma 5.1 and the fact that

H(A) is closed under directed suprema.

15

5.3 Behaviors of Automata

There is a simple way to obtain an (X;Y)-behavior from an automaton A = (X;W; Y;Q; i; T).

Speci�cally, let D = HW �HY , and de�ne functions

p : HX ! [D ! D] l : D ! HY

as follows:

pxhw; yi =

G

fhw

0

; y

0

i v hw; yi : hx;w

0

; y

0

i 2 H(A)g:

lhw; yi = y:

The de�nition of p makes sense because by Lemma 5.7, the set on the right-hand side is

directed.

Lemma 5.8 Suppose A = (X;W; Y;Q; i; T) is an automaton and D, p, l are de�ned as

above. Then (D; p; l) is an (X;Y)-behavior.

Proof { Obviously D is a domain, and l is continuous. Moreover, from Lemma 5.7 we know

that the map taking x to the set

U(x) = fhw; yi : hx;w; yi 2 H(A)g;

is a continuous function from HX to the lattice of normal subdomains of HW �HY . But

px is just the projection corresponding to U(x) under the isomorphism, given by Proposition

5.3, between the lattice of normal subdomains of HW �HY and the lattice of projections

on HW �HY . Hence p is a continuous function from HX to P(HW �HY).

Recall that we de�ned the input/output relation of an (X;Y)-behavior (D; p; l) to be the

set of all hx; ldi such that d is a maximal �xed point of px. A few words are in order here about

why this makes sense if (D; p; l) is the behavior of an automaton A = (X;W; Y;Q; i; T). For

such a behavior, a history d 2 D is a maximal �xed point of the projection px i� the history

hx; di is maximal among all histories of the form hx; d

0

i 2 H(A). In [24], it was shown

that for monotone automata that are obtained by composing a collection of \sequential"

component automata into networks, a history hx; di is maximal among all histories of the

form hx; d

0

i 2 H(A) i� hx; di is the history of a \completed" or \fair" computation sequence.

Since we wish all and only the completed computation sequences to contribute pairs to the

input/output relation, we regard the coincidence of completedness and maximality as the

justi�cation for our de�nition of the input/output relation associated with a behavior. Of

course, it might be that there are automata that are not representable as a network of

sequential components, and whose input/output relations thus do not necessarily have any

relationship to any concrete, intuitive notion of completed or fair computation sequences.

However, we do not regard this potential extra generality of our model as any cause for

alarm.

16

5.4 Automata from Behaviors

For certain (X;Y)-behaviors (D; p; l), it is possible to construct an automaton having (D; p; l)

as its behavior up to isomorphism of the domain D. In particular, suppose (D; p; l) is an

(X;Y)-behavior that satis�es the following assumptions:

1. D ' HW �HY for some set W .

2. For all x 2 HX, the inclusion of the normal subdomain

fhw; yi 2 HW �HY : hw; yi = pxhw; yig

in HW �HY preserves prime intervals.

Then, de�ne Q to be the set of all �nite elements of HX�HW �HY , and let i = h?;?;?i.

If q 2 Q and e = hc; vi 2 (X + W + Y) � V, then let q; e 2 Q denote the history such

that (q; e)c = (qc)v and (q; e)c

0

= qc

0

for c

0

6= c. Let r = T (q; e) i� r = q; e and one of the

following holds:

1. chan(e) 2 X.

2. chan(e) 2 Y +W , and if r = hx;w; yi then hw; yi = pxhw; yi.

It is straightforward to check that A = (X;W; Y;Q; i; T) is an automaton, and that (D; p; l)

is its behavior up to isomorphism. Assumption (2) above implies that for all x 2 HX, every

maximal �xed point hw; yi of px is reachable from h?;?i by a sequence of prime intervals.

This fact is used to prove that for each state q = hx;w; yi, if hw; yi is not a maximal �xed

point of px, then there exists some non-input action e that is enabled in state q.

In the above construction, the condition that D ' HW � HY for some W is a strong

restriction that can be weakened substantially if we are willing to generalize the de�nition of

automata by relaxing the requirement that internal actions be port/value pairs. In particular,

if we merely require that internal actions be elements of a \concurrent alphabet," then we

can weaken condition (1) above to the condition that D ' E � HY for some \con
ict

event domain" E [38]. Further generalizations are possible if we consider automata for

which more than one action can appear in a single transition. In this paper, we eschew the

extra generality because it makes it more di�cult to see the connection with the intuitive

token-pushing semantics for data
ow networks.

5.5 The Parallel Composition Operation

The parallel composition operation builds a network from two component automata by

placing them next to each other without establishing any communication. Formally, suppose

A = (X;W; Y;Q; i; T); A

0

= (X

0

;W

0

; Y

0

; Q

0

; i

0

; T

0

)

17

are automata, where X+W+Y and X

0

+W

0

+Y

0

are disjoint. Then the parallel composition

of A and A

0

is the automaton

AkA

0

= (X +X

0

;W +W

0

; Y + Y

0

; Q�Q

0

; hi; i

0

i; T

00

);

where hr; r

0

i = T

00

(hq; q

0

i; e) i� one of the following conditions holds:

1. e is an action of A, r = T (q; e), and r

0

= q

0

.

2. e is an action of A

0

, r

0

= T

0

(q

0

; e) and r = q.

There are no particular theoretical di�culties associated with the parallel composition

operation. All we shall have to say about it is to state the following result:

Proposition 5.9 Suppose A has behavior (D; p; l) and A

0

has behavior (D

0

; p

0

; l

0

). Then

AkA

0

has behavior (D �D

0

; p

00

; l � l

0

), where p

00

hx; x

0

ihd; d

0

i = hpxd; p

0

x

0

d

0

i.

5.6 The Hiding Operation

The hiding operation on automata takes some of the output ports and makes them into

internal ports. Formally, suppose

A = (X;W; V + Y;Q; i; T)

is an automaton. Then the hiding of V in A is the automaton

A n V = (X;W + V; Y;Q; i; T):

The map from automata to their behaviors also respects hiding operations, as the fol-

lowing result states:

Proposition 5.10 Suppose the (X;V + Y)-automaton A has behavior (D; p; l). Then the

(X;Y)-automaton A nV has behavior (D; p; � � l), where � : H(V +Y)! HY is the evident

restriction map.

5.7 The Feedback Operation

We now formalize the feedback operation depicted schematically in Figure 1 as a construction

on automata. Suppose

A = (X + Z;W; Y;Q; i; T)

is an automaton, and let � : Z ! Y be an injection. Then the feedback of A by � is the

automaton

A

	�

= (X;W; Y;Q; i; T

	�

)

where r = T

	�

(q; e) i� one of the following conditions holds:

18

1. chan(e) 62 �(Z) and r = T (q; e).

2. e = h�(c); vi for some c 2 Z (which is then unique by the injectiveness of �) and if

e

0

= hc; vi, then there exists a state s with s = T (q; e) and r = T (s; e

0

).

It is easy to check that A

	�

satis�es the conditions for an automaton.

The intuition behind this construction is as follows: The automaton A

	�

behaves exactly

as A does in the case of actions e with chan(e) 62 �(Z). Such actions correspond either to

inputs on channels in X or outputs on channels in Y that are not to be fed back to channels

in Z. However, if e = h�(c); vi for some c 2 Z, then e corresponds to the production of an

output value v that is immediately reapplied as feedback input on channel c.

Lemma 5.11 Suppose
 is a �nite initial computation sequence of A

	�

having history

hx;w; yi. Then there exists a �nite initial computation sequence � of A having history

hx;H�y;w; yi, such that
 and � end in the same state.

Proof { Straightforward induction on the length of a �nite computation sequence.

Lemma 5.12 Suppose hx;w; yi and hx;w

0

; y

0

i are �nite elements of HX�HW �HY , such

that hw; yi v hw

0

; y

0

i. If hx;w; yi 2 H(A

	�

), and hx;H�y;w

0

; y

0

i 2 H(A), then hx;w

0

; y

0

i 2

H(A

	�

).

Proof { Since hx;w; yi 2 H(A

	�

), we may obtain a �nite initial computation sequence

 of A

	�

with history hx;w; yi. By Lemma 5.11, there exists a �nite initial computation

sequence � of A having history hx;H�y;w; yi, such that
 and � end in the same state q.

Since hx;H�y;w

0

; y

0

i 2 H(A) by hypothesis, it follows by Proposition 5.6 that there exists

a �nite computation sequence �

0

for A having history hx;H�y;w

0

; y

0

i, such that � is a pre�x

of �

0

. Then �

0

= �� , where the history of � is of the form h?;?; w

00

; y

00

i, hence � contains no

actions on ports in Z. A straightforward induction on the length of � shows that there exists

a �nite computation sequence � of A

	�

from state q, such that exactly the same sequence

of actions occurs in � as in � . Since � starts in state q, the computation sequences
 and �

are composable, and the computation sequence
� has history hx;w

0

; y

0

i, as required.

6 Correctness of the Generalized Kahn Principle

Suppose A = (X+Z;W; Y;Q; i; T) is an automaton, and � : Z ! Y is an injection. Let A

	�

be the feedback of A by �. Let (D; p; l) be the behavior of A, and let (D

	�

; p

	�

; l

	�

) be the

behavior of A

	�

. Note that D = D

	�

= HW �HY , and both l and l

	�

take hw; yi to y.

The feedback functional corresponding to (D; p; l) and � is the map:

� : [HX ! [D ! D]]! [HX ! [D ! D]]

de�ned by:

�qxd = phx;H�(l(qxd))id:

19

It is obvious from the de�nition that � is continuous. The generalized Kahn principle then

states that p

	�

= ��.

For all x 2 HX, z 2 HZ, and i � 0, de�ne

p

i

= �

i

0

D(x; z) = fhw; yi : hw; yi = phx; zihw; yig = fhw; yi : hx; z; w; yi 2 H(A)g

D

	�

(x) = fhw; yi : hw; yi = p

	�

xhw; yig = fhw; yi : hx;w; yi 2 H(A

	�

)g:

D

i

(x) = fhw; yi : hw; yi = p

i

xhw; yig:

Intuitively, D(x; z) is the set of non-input portions of histories of initial computation se-

quences of A on input hx; zi, and D

	�

(x) is the set of non-input portions of histories of

initial computation sequences of A

	�

on input x. The sets D

i

(x) may be thought of as

approximations to D

	�

(x) in which feedback of output to input is limited to at most i

cycles.

Lemma 6.1

1. For all x 2 HX and all i � 0, the map p

i

x : D ! D is a projection, hence D

i

(x) is a

normal subdomain of D.

2. For all x 2 HX, the map ��x : D ! D is a projection.

Proof { The second statement follows immediately from the �rst by the continuity of

composition. To show the �rst statement, �x an arbitrary x 2 HX. Clearly, p

i

x v id

D

. To

complete the proof, we show by induction on i that (p

i

x) � (p

i

x) = p

i

x for all i � 0, hence

p

i

x is a projection on D. The basis case is obvious. For the induction step, suppose we have

shown that p

i

x is a projection. Fix an arbitrary d 2 D, and let d

i

= p

i

xd and d

i+1

= p

i+1

xd.

We �rst claim that p

i

xd

i+1

= d

i

. To see this, observe that since p

i

x is a projection we

have

p

i

xd

i+1

=

G

fd

0

: d

0

v d

i+1

; d

0

= p

i

xd

0

g

=

G

fd

0

: d

0

v d

i

; d

0

= p

i

xd

0

g

= d

i

;

because d

i+1

v d and d

i

= p

i

xd is the maximal d

0

v d with d

0

= p

i

xd

0

.

It now follows that

p

i+1

xd

i+1

= phx;H�(l(p

i

xd

i+1

))id

i+1

= phx;H�(ld

i

)id

i+1

= phx;H�(ld

i

)i(phx;H�(ld

i

)id)

= phx;H�(ld

i

)id

= p

i+1

xd

= d

i+1

;

20

where we have used the idempotence of phx;H�(ld

i

)i. Thus p

i+1

x(p

i+1

xd) = p

i+1

xd, com-

pleting the induction.

Lemma 6.2 Given hx;w; yi 2 HX �HW �HY , and i � 0, let hw

0

; y

0

i = p

i

xhw; yi. Then

hw; yi 2 D

i+1

(x) i� hw; yi 2 D(x;H�y

0

).

Proof { Simply note that hw; yi 2 D

i+1

(x) i� hw; yi = p

i+1

xhw; yi = phx;H�y

0

ihw; yi i�

hw; yi 2 D(x;H�y

0

).

The next result establishes the basic approximation relationship between the domains

D

i

(x) and the domain D

	�

(x). Its proof requires an analysis of the relationship between the

set of �nite initial computation sequences of A and those of A

	�

.

Lemma 6.3 Suppose hx;w; yi 2 HX � HW � HY is �nite. Then hw; yi 2 D

	�

(x) i�

hw; yi 2 D

n

(x) for some n.

Proof { Suppose hx;w; yi is �nite. If hw; yi 2 D

	�

(x), then there exists a �nite initial

computation sequence
 of A

	�

with hx;w; yi as its history. Suppose
 is of length n, and

for 0 � i � n let

i

be the pre�x of
 of length i. We claim that for all i with 0 � i � n, if

hx

i

; w

i

; y

i

i is the history of

i

, then hw

i

; y

i

i 2 D

i

(x

i

). Since hx;w; yi = hx

n

; w

n

; y

n

i, it then

follows that hw; yi 2 D

n

(x). The claim is proved by induction on i. The basis case is obvious.

For the induction step, suppose we have proved the claim for i, and consider the case of i+1.

Since

i+1

is exactly one transition longer than

i

, the history hx

i+1

; w

i+1

; y

i+1

i di�ers from

hx

i

; w

i

; y

i

i in exactly one of the three components. We consider each case separately.

1. In case x

i

@ x

i+1

, then hw

i+1

; y

i+1

i = hw

i

; y

i

i. Since hw

i

; y

i

i 2 D

i

(x

i

), D

i

(x

i

) �

D

i

(x

i+1

) by Proposition 5.3 and the monotonicity of p

i

, and D

i

(x

i+1

) � D

i+1

(x

i+1

)

by Proposition 5.3 and the fact that p

i

x

i+1

v p

i+1

x

i+1

, it follows that hw

i+1

; y

i+1

i =

hw

i

; y

i

i 2 D

i

(x

i

) � D

i

(x

i+1

) � D

i+1

(x

i+1

).

2. Suppose w

i

@ w

i+1

, so that x

i+1

= x

i

and y

i+1

= y

i

. Then, hx

i+1

; w

i+1

; y

i+1

i =

hx

i

; w

i+1

; y

i

i 2 H(A

	�

), so hx

i

;H�(y

i

); w

i+1

; y

i+1

i 2 H(A) by Lemma 5.11, and thus

hw

i+1

; y

i+1

i 2 D(x

i

;H�(y

i

)). Applying Lemma 6.2 and the induction hypothesis, we

conclude hw

i+1

; y

i+1

i 2 D

i+1

(x

i

) = D

i+1

(x

i+1

).

3. If y

i

@ y

i+1

, then the argument is similar to the previous case.

Conversely, suppose hw; yi 2 D

n

(x) for some n. For 0 � i � n, let hw

i

; y

i

i = p

i

xhw; yi.

We show, by induction on i, that hw

i

; y

i

i 2 D

	�

(x) for all i with 0 � i � n. Since hw; yi =

hw

n

; y

n

i, it then follows that hw; yi 2 D

	�

(x). The basis case is immediate from Lemma 5.1.

For the induction step, suppose we have shown that hw

i

; y

i

i 2 D

	�

(x). Since hw

i+1

; y

i+1

i 2

D

i+1

(x), and hw

i

; y

i

i = p

i

xhw

i+1

; y

i+1

i, it follows that hw

i+1

; y

i+1

i = phx;H�y

i

ihw

i+1

; y

i+1

i,

hence hw

i+1

; y

i+1

i 2 D(x;H�y

i

). Then hx;w

i

; y

i

i 2 H(A

	�

) and hx;H�y

i

; w

i+1

; y

i+1

i 2

H(A), so hx;w

i+1

; y

i+1

i 2 H(A

	�

) by Lemma 5.12. But this means that hw

i+1

; y

i+1

i 2

D

	�

(x), completing the induction step.

21

Lemma 6.4 D

	�

(x) = (

S

i

D

i

(x))

c

.

Proof { For �nite x, the result is a direct consequence of Lemma 6.3, Lemma 5.4, and the

fact that D

	�

(x) is a normal subdomain of HW � HY . To extend to all x, we use the

algebraicity of HX and Lemma 5.7 to obtain:

D

	�

(x) = (

[

fD

	�

(x

0

) : x

0

v x; x

0

�niteg)

c

:

Using Lemma 6.1, we obtain a similar characterization of D

i

(x):

D

i

(x) = (

[

fD

i

(x

0

) : x

0

v x; x

0

�niteg)

c

:

The result is now immediate.

Theorem 1 p

	�

= ��, hence the generalized Kahn principle is correct.

Proof { First note that for all x 2 HX we have ��x =

F

i

p

i

x. Also, for all x 2 HX,

the projection p

	�

x is the projection corresponding to the normal subdomain D

	�

(x) of

HW �HY , under the isomorphism between the lattice of normal subdomains of HW �HY

and the lattice of projections on HW �HY . Similarly, p

i

x is the projection corresponding

to the normal subdomain D

i

(x). By the previous lemma, D

	�

(x) = (

S

i

D

i

(x))

c

. But

(

S

i

D

i

(x))

c

is the least normal subdomain containing all the D

i

(x), hence is the normal

subdomain corresponding to the projection

F

i

p

i

x = ��.

7 Discussion

We have stated a generalized version of Kahn's �xed-point principle for a class of indetermi-

nate networks, and we have proved that it gives results in accordance with token-pushing op-

erational semantics. Our generalized Kahn principle is simple to state, and parallels Kahn's

original �xed-point principle in a pleasant way. The class of data
ow networks to which

it applies includes at least all networks that can be constructed from functional processes

and angelic merge, but not to networks built using fair merge or an equivalent primitive

such as \poll" [24]. Although our generalized Kahn principle is easily stated, the proof

that it agrees with token-pushing semantics seems to require a rather detailed analysis of a

particular operational model, using results the author has been accumulating over the past

several years. It remains to be seen whether a simpler proof can be given. Other interesting

possibilities for future work are to extend the result to recursively de�ned networks, and to

look at possibilities for treating fair merge.

Abramsky [2] has recently proposed a generalized Kahn Principle that can be viewed as a

\pointwise" extension of Kahn's result to those networks whose behaviors can be represented

as sets of continuous functions. In Abramsky's work, a network with input channels X and

output channels Y would be represented as a set of functions from HX to HY . A precise

22

relationship can be drawn between the generalized Kahn Principle of the present paper and

a pointwise version like that of Abramsky. Suppose B = (D; p; l) is an (X + Z; Y)-behavior

with the following special form: D ' (HX � HZ) � D

0

, and up to this isomorphism we

have phx; zihhx

0

; z

0

i; d

0

i = hhxux

0

; zu z

0

i; d

0

i. Such a behavior models a network in which all

indeterminacy arises from the choices made by an \oracle" (represented by D

0

) that operates

independently of the network input. These behaviors were called \semi-determinate" in [39].

We may associate with such a semi-determinate behavior the set F (B) of all functions

f

d

0

: HX � HZ ! HY satisfying f

d

0

hx; zi = l(phx; zihhx; zi; d

0

i) = l(hhx; zi; d

0

i), where

d

0

is a maximal element of D

0

. Notice that the special form of B ensures that the set

F (B) contains enough information to recover the input/output relation R(B) of B, because

R(B) = fhhx; zi; fhx; zii : f 2 F (B)g. Now, if B

	�

is the (X;Y)-behavior obtained by

applying our generalized Kahn Principle to B, and if f

	�

: HX ! HY denotes the result of

applying the original Kahn Principle to a function f : HX �HZ ! HY , then F (B

	�

) =

ff

	�

: f 2 F (B)g.

The comments of the previous paragraph apply only to semi-determinate behaviors. All

networks built using functional processes and in�nity-fair merge are semi-determinate, how-

ever it can be shown [39] that angelic merge is not semi-determinate. Thus, when viewed

in this way, it would appear that our generalized Kahn principle applies to a larger class

of networks than does the pointwise version of Abramsky. However, B. A. Trakhtenbrot

and A. Rabinovich [private communication] have recently reminded the author that there is

another way to associate a set of functions with a behavior, and that is to assign to each

(X � Z; Y)-behavior B = (D; p; l) the set G(B) of all functions g

d

: HX �HZ ! D �HY

satisfying g

d

hx; zi = hphx; zid; l(phx; zid)i, where d is an arbitrary element of D. If B is

not semi-determinate, then we cannot discard the D component of the codomains of the

functions g

d

, since to do so would mean that the set G(B) would no longer contain su�-

cient information to recover the input/output relation of B.

2

As in the previous paragraph,

we have that G(B

	�

) = fg

	�

: g 2 G(B)g (this is an easy corollary of Theorem 1), so

from this standpoint it appears that the \set of functions" model and the \pointwise lifted

Kahn Principle" is just about as good as the behavior model and generalized Kahn Principle

presented here. Our generalized Kahn Principle serves to reduce the problem of reasoning

about indeterminate networks to that of reasoning about continuous functions, whereas the

pointwise version requires reasoning about sets of continuous functions. However, in favor of

the behavior model over the set of functions model we advance the argument that the former

shows more clearly the underlying mathematical structure, because it makes evident the way

in which all the functions in a set must relate to each other, if that set is to represent the

behavior of an indeterminate network. It should also be noted that, because of the presence

of the domain D, neither of the two models is su�ciently abstract, and therefore further

investigation is required to reach the goal of a highly structured, fully abstract model of

indeterminate data
ow networks.

2

If however, as in the work of Trakhtenbrot and Rabinovich to date [29], one does not insist that only

\completed" computation sequences contribute to the input/output relation, then it is no problem to throw

away the domain D.

23

References

[1] S. Abramsky. Experiments, powerdomains, and fully abstract models for applicative

multiprogramming. In Foundations of Computation Theory, pages 1{13, Springer-

Verlag. Volume 158 of Lecture Notes in Computer Science, 1983.

[2] S. Abramsky. A generalized Kahn principle for abstract asynchronous networks. In

Mathematical Foundations of Program Semantics, Springer Verlag. Lecture Notes in

Computer Science, 1990. (to appear).

[3] S. Abramsky. On the semantic foundations for applicative multiprogramming. In ICALP

83, Springer Verlag. Lecture Notes in Computer Science, 1983.

[4] R. J. Back and N. Mannila. A re�nement of Kahn's semantics to handle nondeterminism

and communication. In Proc. ACM Symposium on Principles of Distributed Computing,

pages 111{120, 1982.

[5] M. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, University of Sussex,

October 1987.

[6] J. D. Brock. A Formal Model of Non-Determinate Data
ow Computation. PhD thesis,

Massachusetts Institute of Technology, 1983. Available as MIT/LCS/TR-309.

[7] J. D. Brock and W. B. Ackerman. Scenarios: a model of non-determinate compu-

tation. In Formalization of Programming Concepts, pages 252{259, Springer-Verlag.

Volume 107 of Lecture Notes in Computer Science, 1981.

[8] M. Broy. Fixed point theory for communication and concurrency. In D. Bj�rner, editor,

Formal Description of Programming Concepts II, pages 125{148, North-Holland. 1983.

[9] A. A. Faustini. An operational semantics for pure data
ow. In Automata, Languages,

and Programming, 9th Colloquium, pages 212{224, Springer-Verlag. Volume 140 of

Lecture Notes in Computer Science, 1982.

[10] H. Gaifman and V. Pratt. Partial order models of concurrency and the computation of

functions. In Symposium on Logic in Computer Science, pages 72{85, Ithaca, NY, June

1987.

[11] B. Jonsson. Compositional Veri�cation of Distributed Systems. PhD thesis, Uppsala

University, Uppsala, Sweden, 1987.

[12] B. Jonsson. A fully abstract trace model for data
ow networks. In Sixteenth Annual

ACM Symposium on Principles of Programming Languages, pages 155{165, January

1989.

[13] A. Jung. Cartesian Closed Categories of Domains. PhD thesis, University of Darmstadt,

1988.

24

[14] G. Kahn. The semantics of a simple language for parallel programming. In J. L.

Rosenfeld, editor, Information Processing 74, pages 471{475, North-Holland, 1974.

[15] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In B.

Gilchrist, editor, Information Processing 77, pages 993{998, North-Holland, 1977.

[16] R. M. Keller. Denotational models for parallel programs with indeterminate operators.

In E. J. Neuhold, editor, Formal Description of Programming Concepts, pages 337{366,

North-Holland. 1978.

[17] R. M. Keller and P. Panangaden. Semantics of networks containing indeterminate

operators. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar on

Concurrency, pages 479{496, Springer-Verlag. Volume 197 of Lecture Notes in Computer

Science, 1984.

[18] J. N. Kok. Denotational semantics of nets with nondeterminism. In ESOP 86, pages 237{

249, Springer-Verlag. Volume 213 of Lecture Notes in Computer Science, March 1986.

[19] J. N. Kok. A fully abstract semantics for data
ow nets. pages 351{368, Springer-Verlag.

Volume 259 of Lecture Notes in Computer Science, 1987.

[20] M. Kwiatkowska. Fairness for Non-Interleaving Concurrency. PhD thesis, University

of Leicester, May 1989.

[21] N. A. Lynch and E. W. Stark. A proof of the Kahn principle for input/output automata.

Information and Computation, 82(1):81{92, July 1989.

[22] M. G. Main and D. B. Benson. Functional behavior of nondeterministic and concurrent

programs. Information and Control, 62:144{189, 1984.

[23] J. Misra. Equational reasoning about nondeterministic processes (preliminary version).

In ACM Symposium on Principles of Distributed Computing, pages 29{44, 1989.

[24] P. Panangaden and E. W. Stark. Computations, residuals, and the power of indetermi-

nacy. In T. Lepisto and A. Salomaa, editors, Automata, Languages, and Programming,

pages 439{454, Springer-Verlag. Volume 317 of Lecture Notes in Computer Science,

1988.

[25] D. M. R. Park. The \fairness problem" and nondeterministic computing networks. In

Proceedings, 4th Advanced Course on Theoretical Computer Science, pages 133{161,

Mathematisch Centrum, 1982.

[26] V. R. Pratt. On the composition of processes. In Ninth Annual ACM Symposium on

Principles of Programming Languages, pages 213{223, January 1982.

25

[27] V. R. Pratt. The pomset model of parallel processes: unifying the temporal and the

spatial. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar on Con-

currency, pages 180{196, Springer-Verlag. Volume 197 of Lecture Notes in Computer

Science, July 1984.

[28] A. Rabinovich. Pomset semantics is consistent with data
ow semantics. EATCS

Bulletin, 107{117, June 1987.

[29] A. Rabinovich and B. A. Trakhtenbrot. Communication among relations. In Automata,

Languages, and Programming: 17th International Colloquium, pages 294{307, Springer

Verlag. Volume 443 of Lecture Notes in Computer Science, 1990.

[30] A. Rabinovich and B. A. Trakhtenbrot. Nets and data
ow interpreters. In Logic in

Computer Science, IEEE, 1989.

[31] J. Russell. Full abstraction for nondeterministic data
ow networks. June 1989. Unpub-

lished manuscript, Cornell University.

[32] D. A. Schmidt. Denotational Semantics: A Methodology for Language Development.

Allyn and Bacon, 1986.

[33] M. W. Shields. Deterministic asynchronous automata. In E. J. Neuhold and G. Chroust,

editors, Formal Methods in Programming, pages 317{345, North-Holland. 1985.

[34] J. Staples and V. L. Nguyen. A �xpoint semantics for nondeterministic data
ow.

Journal of the ACM, 32(2):411{444, April 1985.

[35] E. W. Stark. Compositional relational semantics for indeterminate data
ow networks.

In Category Theory and Computer Science, pages 52{74, Springer-Verlag. Volume 389

of Lecture Notes in Computer Science, Manchester, U. K., 1989.

[36] E. W. Stark. Concurrent transition system semantics of process networks. In Fourteenth

ACM Symposium on Principles of Programming Languages, pages 199{210, January

1987.

[37] E. W. Stark. Concurrent transition systems. Theoretical Computer Science, 64:221{269,

1989.

[38] E. W. Stark. Connections between a concrete and abstract model of concurrent sys-

tems. In Fifth Conference on the Mathematical Foundations of Programming Semantics,

Springer-Verlag. Lecture Notes in Computer Science, New Orleans, LA, 1990. (to ap-

pear).

[39] E. W. Stark. On the relations computed by a class of concurrent automata. In Seven-

teenth Annual ACM Symposium on Principles of Programming Languages, pages 329{

340, January 1990.

26

