
Operational Semantics of a Focusing Debugger

(Full version)

Karen L. Bernstein, Eugene W. Stark

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

�

November 19, 1994

Abstract

This paper explores two main ideas: (1) a debugger for a programming language

ought to have a formal semantic de�nition that is closely allied to the formal de�nition

of the language itself; and (2) a debugger for very high level programming language

ought to provide support for exposing hidden information in a controlled fashion. We

investigate these ideas by giving formal semantic de�nitions for a simple functional

programming language and an associated debugger for the language. The formal de�-

nitions are accomplished using structured operational semantics, and they demonstrate

one way in which the formal de�nition of a debugger might be built \on top of" the

formal de�nition of the underlying language. The debugger itself provides the novel

capability of allowing the programmer to \focus" or shift the scope of attention in a

syntax-directed fashion to a speci�c subexpression within the program, and to view the

execution of the program from that vantage. The main formal result about the debug-

ger is that \focusing preserves meaning," in the sense that a program being debugged

exhibits equivalent (bisimilar) operational behavior regardless of the subexpression to

which the focus has been shifted.

Contact author: Karen L. Bernstein

Topics: Operational Semantics and Debuggers

�

authors' E-mail addresses: karen@cs.sunysb.edu, stark@cs.sunysb.edu

1

1 Introduction

This paper explores two main ideas. First is the idea that a debugger for a programming

language ought to have a formal semantic de�nition that is closely allied to the formal

de�nition of the language itself, so that the set of concepts the programmer uses while

debugging a program is essentially the same as the set of concepts the programmer had to

use while writing the program. For example, a programmer should not be required to think

in terms of a stack-based implementation while debugging a program in a language that is

de�ned in terms of a rewriting semantics. The second main idea is that, whereas much has

been learned in the past few decades about how programming languages can be designed

to help manage complexity by facilitating and enforcing information hiding, the design of

debuggers has in general not kept pace with these advances. In particular, a debugger for

a very high level programming language that strongly enforces information hiding ought to

provide some sort of support for exposing hidden information in a controlled fashion.

We investigate the above two themes by giving formal semantic de�nitions for a simple

functional programming language and an associated debugger for that language. The for-

mal de�nitions are accomplished using structured operational semantics [Plo81], and they

demonstrate one way in which the formal de�nition of a debugger might be built \on top

of" the formal de�nition of the underlying language. The debugger itself provides the novel

capability of allowing the programmer to \focus" or shift the scope of attention in a syntax-

directed fashion to a speci�c subexpression within the program, and to view the execution

of the program from that vantage. For example, one might shift one's focus of attention

inside the scope of a block, thereby obtaining access to a binding environment that would be

hidden at the \top level." Our main formal result about the debugger is that \focusing pre-

serves meaning," in the sense that a program being debugged exhibits equivalent (bisimilar)

operational behavior regardless of the subexpression to which the focus has been shifted.

An example of a modern very high level programming language to which our ideas might

be applied is Standard ML [MTH90]. Compilers for very high level programming languages

like Standard ML typically transform the source code rather dramatically before object code

is produced, thus increasing the discrepancy between the conceptual model used by the

programmer when writing the code and the implementation model actually used when the

program is executing. For example, the continuation-passing transformations applied by the

Standard ML of New Jersey (SML/NJ) compiler [App92] can result in object code that bears

little resemblance to the original source. Instead of trying to track the relationship between

radically di�erent source and object code, the experimental debugger shipped with SML/NJ

[Tol92] works by instrumenting the source code and capturing at run time the information

necessary to present to the programmer a traditional stack-based run-time environment. In

essence, the SML/NJ debugger creates and presents to the programmer a virtual implemen-

tation model that doesn't have very much to do with the implementation model actually

used by the compiler.

The method used by the SML/NJ debugger raises an interesting question. If a debugger

is to present the programmer with a virtual implementation model, what should that imple-

2

mentation model be? It seems reasonable to assume that the mental burden carried by the

programmer will be reduced if the same conceptual model is used during the debugging of

a program as is used when writing the code in the �rst place. Since the description of the

conceptual model underlying a programming language is properly accomplished by a formal

semantics for that language, it seems natural, then, that the conceptual model underlying

a debugger should also be described by a formal semantics, and that the formal semantics

for the debugger ought to be closely related to the formal semantics for the programming

language itself. Further, the model used for the debugger should be at least as \high-level" as

that used for the programming language, in the sense that debugging should not distinguish

two programs which the programming language semantics regards as equivalent.

In this paper, we begin to explore these issues by giving formal semantic de�nitions, of

a simple strict functional programming language, and of a debugger for this language. The

debugger allows the programmer to focus the scope of attention on a speci�c subexpression

within the program, thereby circumventing in a controlled fashion the information hiding

implied by �-bound identi�ers. We use a \transition-style" structured operational semantics

to de�ne the programming language and debugging constructs. The use of a transition-style

semantics, rather than a \natural semantics" style, allows us to de�ne in an explicit and

intuitive fashion the notion of an evaluation step, which seems essential for describing the

interaction between the debugger and the program being debugged. The transition-style

semantics also lends itself well to describing the interaction between the programmer and

the debugger.

The usual notion of semantic equivalence in a transition-style operational semantics is

bisimulation [Par81]. In writing the semantics for our programming language, we have been

careful to make sure that bisimulation yields a \minimally reasonable" notion of program

equivalence. In particular, we show that �-convertible terms are bisimilar, and that bisim-

ulation is a congruence with respect to the programming language constructs. In order to

ensure that the debugger is at least as \high-level" as the programming language, we de-

�ne the debugger as an additional level of syntactic and semantic rules on top of those for

the programming language. This extension is shown to be conservative, in the sense that

the additional rules do not permit additional transitions to be inferred for programs in the

underlying language. Furthermore, the strati�ed form of the de�nition means that the de-

bugger must extract information from the program being debugged by \synchronizing" on

the labels of the transitions executed by the program, rather than by directly inspecting the

program syntax. We expect that a debugger de�ned in this way will lend itself more readily

to implementation through source code instrumentation.

There were some di�culties in using a transition-style semantics and it seems people

have avoided transition-style semantics because of these kinds of problems [dS91, Ber91]. In

order to de�ne a semantics where we could prove some interesting properties, we tried to

restrict the rules to be in tyft format [GV92]. We were unsuccessful at �nding a completely

tyft-format semantics and we suspect that it is not possible to do it. In particular, it was

di�cult to de�ne syntactic substitution and still keep the semantics suitable abstract. As a

result, the proof that bisimulation is a congruence was di�cult. We were unable to �nd any

3

other examples of a transition-style semantics for a functional programming language and

we suspect that this is the �rst such de�nition.

The rest of this paper is organized as follows. In the remainder of this introductory

section, we describe some related work and give some necessary preliminary de�nitions. In

Section 2, we de�ne the syntax for a simple strict functional programming language and

present semantic rules that describe the evaluation steps for expressions in the language.

We prove some \healthiness properties" for the language, to provide con�dence that the

semantics is reasonable. In Section 3, we describe the syntactic and semantic rules for our

debugging constructs. We then establish our main formal results about the debugger, namely

that the debugging rules conservatively extend the programming language, that a program

has the same behavior when it is being debugged as when it is not being debugged, and that

and that \focusing" on a subexpression preserves the meaning of a program being debugged.

The appendix contains the full versions of the proofs that were only outlined in the main

sections of the paper.

1.1 Related work

Although there is a large literature on formal de�nitions of programming languages, com-

paratively little work has been done in applying formal techniques to designing debuggers.

Shapiro introduced the �rst attempt to lay a theoretical framework for debugging in Pro-

log [Sha83]. Shapiro's Algorithmic Debugger uses top-down analysis along with information

from the programmer to automatically determine the section of code that contains a bug.

Kishon, Hudak and Consel introduced a semantic framework for describing and gener-

ating program execution monitors [KHC91] [Kis92]. Monitors are tools such as debuggers,

pro�lers, and tracers that can view the execution of a program. Kishon et al. presented a

monitoring semantics as an extension to the continuation-passing denotational semantics for

a language. Partial evaluation was used to generated the debugger from the speci�cations.

DaSilva described a method for specifying and proving correct compilers and debuggers

based on structured operational semantics [dS91]. Because of the emphasis of his work was

in proving correctness, he chose to use relational semantics and de�ne an evaluation step as

a secondary notion, rather than using transitional semantics and have an evaluation step be

explicit.

Our work di�ers from that of Kishon et al. and from DaSilva in emphasis and approach.

Our work focuses on designing novel debugging environments rather than generating or prov-

ing correct traditional debugging environments. We also try a di�erent approach: whereas

Kishon et al. used continuation passing style denotational semantics as their underlying for-

malism and DaSilva used relational operational semantics, we use transitional operational

semantics.

4

1.2 Preliminaries

In this paper, we use standard notions for term deduction systems (TDS) and their corre-

sponding labeled transition systems (LTS). For complete formal de�nitions see [GV92]. A

signature consists of a set of function symbols along with a rank function that gives the

arity for each function symbol. The set of terms de�ned by a signature �, over a set W

of variables, is denoted T (�;W). The set T (�; ;) is abbreviated T (�) and elements of the

set are called ground terms. A term deduction system (TDS) is a triple (�; A;R) with � a

signature, A a set of labels, and R a set of rules of the form:

fx

i

�

i

�! x

0

i

j i 2 Ig

x

�

�! x

0

where I is a �nite index set, the x's are terms in T (�; V) and the �'s are labels. For

P = (�; A;R) a TDS, a proof from P of a transition is a �nite, upwardly branching tree

whose nodes are labeled by transitions x

�

�! x

0

such that: (1) the root is labeled with ,

and (2) if � is the label of a node q and f�

i

ji 2 Ig is the set of labels of the nodes directly

above q, then there is a rule

�

f�

i

j i 2 Ig

in R and a substitution � : V ! T (�; V) such that � = �(�) and �

i

= �(�

i

) for i 2 I.

A labeled transition system (LTS) is a structure (S;A;!) where S is a set of states, A

is set of actions, and ! � S �A� S is a transition relation. For s; t 2 S, we use s!

�

t to

mean there exists s

i

2 S (0 � i � n) such that s

0

! s

1

, s

1

! s

2

, s

2

! s

3

, . . ., s

n�1

! s

n

,

where s

0

= s and s

n

= t.

Let A = (S;A;!) be a labeled transition system, then a relation R � S � S is a

(strong) bisimulation if it satis�es: (s R t and s

�

�! s

0

) implies (9t

0

2 S; t

�

�! t

0

) and

(s R t and t

�

�! t

0

) implies (9s

0

2 S; s

�

�! s

0

and s

0

R t

0

): Two states s; t 2 S are bisimilar

in A (denoted A : s � t) if there exists a bisimulation relating them. For P = (�; A;R) a

TDS, the transition system TS(P) speci�ed by P is given by TS(P) = (T (�); A;!

P

), where

(x; �; x

0

) is in !

P

if and only if there exists a proof from P of x

�

�! x

0

.

2 Programming language

Our programming language is a simple strict functional language with a non-strict condi-

tional expression. The syntax of our language is:

k 2 Constants a 2 Identi�ers

e 2 Expressions ::= k j a j (fn a => e) j if e

1

then e

2

else e

3

j e

1

e

2

We regard the terms of the programming language as built up from primitive expressions

using syntactic constructor functions. For example, the expression (fn a => 0) is built up

5

by applying a binary constructor (fn � => �) to two arguments, the �rst of which is an

identi�er a, and the second of which is a constant 0. A value is an expression that is either

a constant or an expression of the form (fn a => e).

We now give an operational semantics for our programming language, in the form of

a term deduction system. In presenting this semantics, we use the following naming con-

ventions: x; y; z; w are variables that range over terms; a; b denote identi�ers; k denotes a

constant; e denotes an expression; v denotes a value; and � denotes an arrow label. There

are three groups of transitions in our language de�nition. Typing transitions serve to classify

fully evaluated terms, substitution transitions perform syntactic substitution, and evaluation

transitions are the actual evaluation steps.

The rules for typing transitions are given in Figure 1. Each typing transition is labeled

either by an identi�er a, a constant k, the special symbol v, or the label 2e, where 2

is a special symbol and e is an expression. Most of the rules in Figure 1 (except (tp4))

k

k

�! k (tp1) a

a

�! a (tp2) k

v

�! k (tp3)

(fn x => y)

v

�! (fn x => y) (tp4)

x

a

�! x

0

y

[e=a]

�! y

0

(fn x => y)

2e

�! y

0

(tp5)

Figure 1: Typing rules

are actually rule schemata, which de�ne a possibly in�nite collection of actual rules. For

example, (tp1) is a rule schema that de�nes a separate rule for each constant k. The rules

de�ned by schema (tp5) are obtained by instantiating a to a particular identi�er and e to a

particular expression.

The intuition behind the typing rules is as follows: Each identi�er and constant can

perform a transition to announce its identity (rules tp1 and tp2). This has the e�ect of

making identi�ers and constants bisimilar if and only if they are identical. Constants and

function de�nitions are fully evaluated and can perform a \v" (means value) transition to

announce this fact (rules tp3 and tp4). Function de�nitions can do 2e transitions (tp5).

Intuitively, the transition x

2e

�! x

0

means \x when applied to argument e becomes x

0

". As

a result of (tp5), two function de�nitions will end up being bisimilar if and only if they give

bisimilar results when applied to argument expressions.

Substitution rules (see �gure 2) have labels of the form [e=a], where e is an expression and

a is an identi�er. The transition x

[e=a]

�! x

0

should be read \x with e substituted for a becomes

x

0

." With this reading, the intuitive interpretation of the rules is straightforward except

perhaps for rule (sub5). Rule (sub5) performs a change of name for the bound identi�er

in order to avoid capturing free occurrences of identi�ers when performing the substitution.

6

Rule (sub3) is a rule schema which de�nes a transition b

[e=a]

�! b for each expression e and

each pair of distinct identi�ers a and b. The \premise" b 6= a in rule (sub5) is interpreted

similarly.

k

[e=a]

�! k (sub1) a

[e=a]

�! e (sub2)

b 6= a

b

[e=a]

�! b

(sub3)

x

[e=a]

�! x

0

y

[e=a]

�! y

0

x y

[e=a]

�! x

0

y

0

(sub4)

x

b

�! x

0

y

[b

0

=b]

�! y

0

y

0

[e=a]

�! y

00

b 6= a

(fn x => y)

[e=a]

�! (fn b

0

=> y

00

)

(sub5)

where b

0

is the �rst identi�er name that does not occur in (fn x => y) or e

x

a

�! x

0

(fn x => y)

[e=a]

�! (fn x => y)

(sub6)

x

[e=a]

�! x

0

y

[e=a]

�! y

0

z

[e=a]

�! z

0

if x then y else z

[e=a]

�! if x

0

then y

0

else z

0

(sub7)

Figure 2: Substitution rules

Evaluation transitions (see �gure 3) are unlabeled; that is to say, they have a special

null label that we do not bother to write. Rule schema (ap3) de�nes a separate rule for

each value v and each expression e. The evaluation rules de�ne a strict right-to-left order of

evaluation for our language.

Notice that the semantics we have given is almost in tyft format [GV92]. The only

exceptions are the rules de�ned by rule schema (ap3), since in general the left-hand side of

the conclusions of those rules will contain more than one function symbol. Expressing the

semantics in this way is a help in proving theorems about it; for example, that bisimilarity is

a congruence with respect to the programming language constructs. Another motivating idea

behind the semantics is to make sure that transition labels do not expose too much syntactic

information about the expression that is executing. In particular, we want �-convertible

terms to be bisimilar. We were unsuccessful at �nding a completely tyft-format semantics

that has this property, and we suspect that it is not possible to do it.

2.1 Properties of the Programming Language

The following proposition, which states that substitution transitions exactly correspond to

syntactic substitution, is proved by structural induction on x:

7

x �! x

0

y

v

�! y

0

x y �! x

0

y

(ap1)

y �! y

0

x y �! x y

0

(ap2)

x

2v

�! x

0

x v �! x

0

(ap3)

x �! x

0

if x then y else z �! if x

0

then y else z

(if1)

x

k

�! x

0

k 6= 0

if x then y else z �! y

(if2)

x

0

�! x

0

if x then y else z �! z

(if3)

Figure 3: Evaluation rules

Proposition 2.1 For all expressions x; x

0

all expressions e, and all identi�ers a:

x

[e=a]

�! x

0

() x

0

= x[e=a]:

Proof Outline: The proof is by structural induction on x. See the appendix for the full

version of the proof.

2

We say that an expression x is fully evaluated if and only if no evaluation (unlabeled)

transition x �! y is provable.

Proposition 2.2 For all expressions x, if a typing transition x

�

�! y is provable, then x is

fully evaluated.

Proof:

All of the typing rules have a constant, identi�er or a function de�nition as the function

symbol on the left-hand side of the conclusion. The evaluation rules all have an application

or a conditional as the function symbol on the left-hand side of the conclusion. Therefore

if a typing transition is provable for a term, the the term must have an outermost function

symbol of a constant, an identi�er, or a function de�nition and no evaluation transition is

provable.

2

The semantics we have de�ned is deterministic:

Proposition 2.3 For all expressions x, at most one evaluation transition x �! y is prov-

able.

Proof:

The proof by is structural induction on x. If the outermost function symbol is a con-

stant, function de�nition, or an identi�er then no evaluation transition is provable since no

8

evaluation rules have any of these function symbols on the left-hand side of the conclusion.

Therefore we only need to consider the cases where the outermost function symbol in x is

either an application or a conditional expression.

If the outermost function symbol is an application of the form (u v) then any provable

transition will have a proof of one of the following forms:

.

.

.

u �! u

0

v

v

�! v

0

u v �! u

0

v

(ap1)

.

.

.

v �! v

0

u v �! u v

0

(ap2)

.

.

.

u

2v

�! u

0

u v �! u

0

(ap3)

In the �rst proof an evaluation transition is provable for u and v is fully evaluated. In the

second proof an evaluation transition is provable for v. In the third proof both u and v are

fully evaluated. By the induction hypothesis, only one evaluation transition is provable for

either u or v and therefore only one evaluation transition is provable for the term (u v).

If the outermost function symbol is a conditional expression of the form (if u then v else w)

then any provable transition for x will have a proof with one of the following forms:

.

.

.

u �! u

0

if u then v else w �! if u

0

then v else w

(if1)

u

k

�! u

0

k 6= 0

if u then v else w �! v

(if2)

u

0

�! u

0

if u then v else w �! w

(if3)

In the �rst proof an evaluation transition is provable for u. In the second proof, u is a

constant other than 0. In the third proof, u is the constant 0. By the induction hypothesis,

only one evaluation transition is provable for u. Therefore only one evaluation transition is

provable for the term (if u then v else w).

2

We say that an expression x evaluates to an expression y, and we write x#y, if x !

�

y

and y is fully evaluated.

Corollary 2.4 For all expressions x, there is at most one expression y such that x#y.

Our semantics is somewhat unusual in the sense that transition labels in many cases

contain expressions of the programming language. In doing this, we run the risk that too

much of the syntactic structure of a term might be exposed by the transition labels, making

bisimilarity an insu�ciently abstract, and therefore uninteresting, equivalence on expres-

sions. Although we don't have a full characterization of bisimilarity for our language, the

following result shows that at least the worst doesn't happen:

Proposition 2.5 If expressions x and y are identical up to renaming of bound identi�ers,

then they are bisimilar.

9

Proof Outline: Consider the relation S that relates all terms that are identical up to

renaming of bound identi�ers. We will show that this relation is a bisimulation. To do this,

we need to show that for all expressions x; x

0

such that x S x

0

, it follows that for every

provable transition x

�

�! z there is provable transition x

0

�

�! z

0

such that z S z

0

. The proof

is by structural induction on the nesting depth of function symbols in x. See the appendix

for the full version of the proof.

2

Finally, bisimilarity is compatible with the constructs of our language (i.e. is a congru-

ence). The trick in this proof is identifying the proper relation to be shown a bisimulation.

We need to show that for any bisimulation relation R that relates x and y and any context

C, we can construct a bisimulation relation R

0

that relates C[x] and C[y]. The lemmas below

de�nes just such a bisimulation relation.

Lemma 2.6 Let S : T (�) � T (�) be the relation that relates all terms that are identical

up to the renaming of bound identi�ers and I : T (�)� T (�) the identity relation. For any

bisimulation relation R, let R

0

be the transitive closure of (R

S

S

S

I) and for all i let R

i+1

be the transitive closure of:

(1) x R

i

x

0

=) x R

i+1

x

0

(2) x R

i

x

0

=) (fn a => x) R

i+1

(fn a => x

0

)

(3) x R

i

x

0

; y R

i

y

0

=) x y R

i+1

x

0

y

0

(4) x R

i

x

0

; y R

i

y

0

; z R

i

z

0

=) if x then y else z R

i+1

if x

0

then y

0

else z

0

(5) y R

i

y

0

=) x[y=a] R

i+1

x[y

0

=a]

For all R

i

, w, w

0

, e, a,

w R

i

w

0

) w[e=a] R

i

w

0

[e=a]:

Proof Outline:

We will prove this by induction on i. For the base case, R

0

= R

S

S

S

I. By proposition

2.5, S is a bisimulation relation. The identity relation is trivially a bisimulation relation.

By hypothesis R is a bisimulation relation. Since the union of bisimulation relations is

also a bisimulation relation, R [S [I is a bisimulation relation. Since by proposition 2.1,

w

[e=a]

�! w[e=a] and w

0

[e=a]

�! w

0

[e=a] we know that w[e=a] R

0

w

0

[e=a].

For our induction step we will show, if

8w;w

0

; e; a; (w R

i

w

0

) w[e=a] R

i

w

0

[e=a]):

then

8w;w

0

; e; a; (w R

i+1

w

0

) w[e=a] R

i+1

w

0

[e=a]):

We will prove the induction by case analysis of the de�nition of R

i+1

: See the appendix for

the full version of the proof.

2

10

Lemma 2.7 Let S : T (�) � T (�) be the relation that relates all terms that are identical

up to the renaming of bound identi�ers and I : T (�)� T (�) the identity relation. For any

R : T (�)� T (�), let R

0

be the least relation such that:

(1) x I x

0

=) x R

0

x

0

(2) x S x

0

=) x R

0

x

0

(3) x R x

0

=) x R

0

x

0

(4) x R

0

x

0

=) (fn a => x) R

0

(fn a => x

0

)

(5) x R

0

x

0

; y R

0

y

0

=) x y R

0

x

0

y

0

(6) x R

0

x

0

; y R

0

y

0

; z R

0

z

0

=) if x then y else z R

0

if x

0

then y

0

else z

0

(7) y R

0

y

0

=) x[y=a] R

0

x[y

0

=a]

(8) x R

0

x

0

; x

0

R

0

x

00

=) x R

0

x

00

If R is a bisimulation relation, then the relation R

0

is a bisimulation relation.

Proof Outline:

We can can construct R

0

as

S

R

i

where R

0

is the transitive closure of (R

S

S

S

I) and for

all i, R

i+1

is the transitive closure of:

(1) x R

i

x

0

=) x R

i+1

x

0

(2) x R

i

x

0

=) (fn a => x) R

i+1

(fn a => x

0

)

(3) x R

i

x

0

; y R

i

y

0

=) x y R

i+1

x

0

y

0

(4) x R

i

x

0

; y R

i

y

0

; z R

i

z

0

=) if x then y else z R

i+1

if x

0

then y

0

else z

0

(5) y R

i

y

0

=) x[y=a] R

i+1

x[y

0

=a]

We would like to show that R

0

is a bisimulation relation. That is, for all expressions

w;w

0

,

(w R

0

w

0

and w

�

�! z)) (9z

0

; w

0

�

�! z

0

and z R

0

z

0

)

and

(w R

0

w

0

and w

0

�

�! z

0

)) (9z;w

�

�! z and z R

0

z

0

):

We will show this by induction on i. For the base case R

0

= R

S

S

S

I. By proposition 2.5,

S is a bisimulation relation. The identity relation is trivially a bisimulation relation. By

hypothesis R is a bisimulation relation. Since the union of bisimulation relations is also a

bisimulation relation, R [S [I is a bisimulation relation.

For the induction step, we will show:

if

8w;w

0

; [(w R

i

w

0

and w

�

�! z)) (9z

0

; w

0

�

�! z

0

and z R

0

z

0

)]

then

8w;w

0

; [(w R

i+1

w

0

and w

�

�! z)) (9z

0

; w

0

�

�! z

0

and z R

0

z

0

)]:

Once we have show this property, the desired result holds immediately. That is, if w R

0

w

0

then by the de�nition of R

0

there exists some R

i

such that w R

i

w

0

. So if w

�

�! z then by

the proposition above there exists some z

0

such that w

0

�

�! z

0

and z R

0

z

0

.

11

We will do the proof by considering each case of the de�nition of R

i+1

separately.

See the appendix for the full version of the proof.

2

Proposition 2.8 For all contexts C[] and all expressions x; y 2 T (�), if x � y then

C[x] � C[y].

Proof: We need to show that for any bisimulation relation R that relates x and y and any

context C, we can construct a bisimulation relation R

0

that relates C[x] and C[y]. The result

follows immediately from the previous lemma.

2

3 Debugging language

In this section, we de�ne our debugger as an extension of the syntax and semantics of the

programming language. In particular, we extend the syntax of the programming language

with a focusing operator (h[]i) that allows the scope of attention to be focused on the eval-

uation of a particular subexpression. A debugging state consists of an expression from the

programming language together with a debugging context, which is a list of \coexpressions."

A coexpression, in essence, is either an ordinary programming language expression that has

a designated missing subterm, or else is a substitution coexpression indicating that we have

moved within the scope of a substitution that has yet to be applied. The coexpression

corresponding to the conditional statement (if e

1

then e

2

else e

3

) is abbreviated fe

1

?e

2

; e

3

g.

Formally, the syntax for our language is extended with the following debugging constructs:

c 2 Coexps ::= f - eg j fe - g j f - ?e

1

; e

2

g j fe

1

? - ; e

2

g j fe

1

?e

2

; - g j fe=ag

� 2 Contexts ::= � j �: c d 2 DBStates ::= �h[x]i

Any term x in the programming language can be packaged together with an empty debugging

context � to form a debugging state �h[x]i. The transition rules for the debugger are de�ned

in such a way that the term x and the term �h[x]i evaluate the same way.

The debugger allows the focus of attention to be shifted to a particular subexpression

through focusing operations. The various focusing operations are de�ned in Figure 4. These

operations can be viewed as explicit actions taken by the user to modify the debugging

state. For example, \focusing left" (

l

+) on an application focuses the scope of attention on

the operator and places an application coexpression containing the operand into the debug-

ging context. Transitions labeled by

fn

+ are unusual in that not only do they require that the

expression in the focus of attention be a function de�nition, but also the rightmost coex-

pression in the debugging context must correspond to an application with an operand. This

situation reects the fact that function de�nitions have �rst-class status in our programming

language. That is, a function de�nition can be used either as an operator in an application

12

�h[x y]i

l

+ �: f - ygh[x]i �h[if x then y else z]i

if

+ �: f - ?y; zgh[x]i

�h[x y]i

r

+ �: fx - gh[y]i �h[if x then y else z]i

then

+ �: fx? - ; zgh[y]i

�: f - ygh[(fn a => x)]i

fn

+ �: fy=a

0

gh[x[a

0

=a]]i �h[if x then y else z]i

else

+ �: fx?y; - gh[z]i

where a

0

does not occur in �: f - ygh[(fn a => x)]i

Figure 4: Focusing rules

or simply as a fully evaluated data value. If a function de�nition is used as operator in an

application, then focusing inside the function de�nition corresponds to binding the operand

to the identi�er speci�ed by the function de�nition, and then focusing on the function body.

On the other hand, if the function de�nition is used as a fully evaluated data value then

focusing inside it makes no more sense than focusing inside any other constant.

The evaluation of debugging states is de�ned by several di�erent groups of transition

rules. For clarity, we use a double arrow (=)) to distinguish transitions inferred using the

debugging rules from those inferred using the programming language rules. In the debugger,

as in the underlying programming language, unlabeled transitions once again correspond

to evaluation steps, transitions labeled with v, k, 2e, or a correspond to typing steps and

transitions labeled with [e=a] correspond to substitution steps. Transitions labeled with \!"

are called trigger transitions. These transitions of the debugging context serve to trigger, or

control, the evaluation of the expression in focus. The reason the debugging context needs to

exercise this control is because we want to make sure that the same evaluation order applies

to a program when it is being debugged as when it is not being debugged. The transitions

labeled with \�" are used for special handling of conditional expressions that appear within a

debugging context. If the focus of attention is moved inside one of the arms of a conditional

expression before the condition has been fully evaluated, then it is not known whether or not

the chosen arm is the one that will actually be executed. If the chosen arm is not the one that

will actually be executed, then at the point where the condition becomes fully evaluated, a

\�" transition executed by the debugging context will serve to replace the useless debugging

state containing the wrong branch of the conditional by a new debugging state containing

the correct branch.

For a simple example of a debugging transition, consider the case where the constant

function (fn a => 1) is applied to the argument 2. From the semantic de�nition of the

13

programming language we can infer the following transition for the expression:

a

a

�! a 1

[2=a]

�! a

(fn a => 1)

22

�! 1

(tp5)

(fn a => 1) 2 �! 1

(ap3)

:

Now, suppose that we wish to debug this expression with the scope of attention focused on

the body of the function. We start from the debugging expression with the empty debugging

context and focus left on the function de�nition. This results in the operand 2 moving into

the debugging context as the coexpression f - 2g. We can then focus our attention on the

function body, which causes the argument 2 to combine with the �-bound identi�er a to

yield the substitution f2=ag in the debugging context:

�h[(fn a => 1) 2]i

l

+ �: f - 2gh[(fn a => 1)]i

fn

+ �: f2=agh[1]i:

In the corresponding transition of the debugging state, we see the substitution get triggered

and propagate through the debugging expression

�

!

=) �

(tr0)

�: f2=ag

[2=a]

=) �

(sb1)

1

[2=a]

�! 1

(sub1)

�: f2=agh[1]i =) �h[1]i

(db3)

:

Figure 5 de�nes the evaluation steps for debugging states. Evaluation can occur within

the debugging context (db1) or, if triggered by the debugging context, within the expression

in focus (db2). Labeled transitions for the expression in focus \synchronize" with com-

plementary transitions of the debugging context, to ensure that the overall evaluation is

consistent with the programming language de�nition (db3 - db8). Finally, as already men-

tioned, if evaluation within the debugging context determines that the expression in focus is

in the wrong arm of a conditional, then the \wrong" debugging context is replaced by the

correct one (db9).

Figure 6 de�nes the typing steps for debugging states. As with the programming language

typing rules, the debugging language typing rules serve to classify fully evaluated terms.

Since the term must be fully evaluated, the typing rules only apply when the debugging

context is empty.

Figure 7 de�nes the evaluation steps for debugging contexts. Rule (ke1) says that any

evaluation step that can be executed by a debugging context can still be executed even if

an additional coexpression is appended. Rules (ke2) - (ke7) state that coexpressions can

perform evaluation steps in a fashion consistent with the programming language de�nition,

as long as these steps are permitted by the debugging context to their left. Finally, rule

(ke8) states that substitution transitions are hidden by substitution coexpressions for the

same bound variable. This rule corresponds to rule (sub5) for the programming language.

14

� =) �

0

�h[x]i =) �

0

h[x]i

(db1)

�

!

=) �

0

x �! x

0

�h[x]i =) �h[x

0

]i

(db2)

�

[e=a]

=) �

0

x

[e=a]

�! x

0

�h[x]i =) �

0

h[x

0

]i

(db3)

�

!

=) �

0

x

2v

�! x

0

�: f - vgh[x]i =) �h[x

0

]i

(db4)

�

!

=) �

0

x �! x

0

y

v

�! y

0

�: fx - gh[y]i =) �: fx

0

- gh[y]i

(db5)

�

!

=) �

0

x

2v

�! x

0

�: fx - gh[v]i =) �h[x

0

]i

(db6)

�

!

=) �

0

x

k

�! x

0

k 6= 0

�: f - ?y; zgh[x]i =) �h[y]i

(db7)

�

!

=) �

0

x

0

�! x

0

�: f - ?y; zgh[x]i =) �h[z]i

(db8)

�

�

=) d

�h[x]i =) d

(db9)

Figure 5: Evaluation rules for debugging states

x

k

�! x

0

�h[x]i

k

=) �h[x

0

]i

(dt1)

x

a

�! x

0

�h[x]i

a

=) �h[x

0

]i

(dt2)

x

v

�! x

0

�h[x]i

v

=) �h[x

0

]i

(dt3)

x

2e

�! x

0

�h[x]i

2e

=) �h[x

0

]i

(dt4)

Figure 6: Typing rules for debugging states

The rules in Figure 8 specify how conditionals are evaluated within a debugging context,

in the event that the expression in focus is in the \wrong" arm of the conditional. If the test

expression evaluates to 0, but the focus is on the \then" branch, then the current debugging

context is abandoned and a new debugging context containing the \else" branch is installed

(br2). The case in which the test expression evaluates to a nonzero value, but the focus is

one the \else" branch is similar (br3). Rule (br1) has the e�ect of deleting any coexpressions

in the debugging context that pertain to the \wrong" arm of the conditional.

The rules in Figure 9 describe the generation and propagation of control information

within a debugging context. These rules (tr1 - tr3) ensure that a program evaluates in the

same order when it is being debugged as when it is not being debugged.

The last set of rules (see Figure 10) speci�es how substitutions are applied to debugging

contexts (see �gure 9). Application of substitutions is controlled by trigger transitions from

the debugging context to the left (sb1). Once triggered, substitutions propagate to the right,

applying themselves to any coexpressions they encounter (sb2 - sb7).

15

� =) �

0

�:x =) �

0

:x

(ke1)

�

!

=) �

0

y �! y

0

�: f - yg =) �: f - y

0

g

(ke2)

�

!

=) �

0

x �! x

0

�: fx=ag =) �: fx

0

=ag

(ke3)

�

!

=) �

0

x �! x

0

�: fx? - ; zg =) �: fx

0

? - ; zg

(ke4)

�

!

=) �

0

x

k

�! x

0

k 6= 0

�: fx? - ; zg =) �

(ke5)

�

!

=) �

0

x �! x

0

�: fx?y; - g =) �: fx

0

?y; - g

(ke6)

�

!

=) �

0

x

0

�! x

0

�: fx?y; - g =) �

(ke7)

�

[e=a]

=) �

0

x

[e=a]

�! x

0

�: fx=ag =) �

0

: fx

0

=ag

(ke8)

Figure 7: Evaluation rules for debugging contexts

�

�

=) d

�:x

�

=) d

(br1)

�

!

=) �

0

x

0

�! x

0

�: fx? - ; zg

�

=) �h[z]i

(br2)

�

!

=) �

0

x

k

�! x

0

k 6= 0

�: fx?y; - g

�

=) �h[y]i

(br3)

Figure 8: Conditional branching rules for debugging contexts

3.1 Properties of the Debugger

In this section, we establish some results that show the de�nitions we have given for the

debugger are sensible. The �rst result states that the debugging rules conservatively extend

those of the programming language, in the sense that no transitions can be inferred for a

program using the debugging rules, that cannot already be inferred for that program using

the programming language rules alone.

Proposition 3.1 For all programming language expressions x, a transition x

�

�! y is prov-

able using the programming language rules and the debugger rules if and only if it is provable

using the programming language rules alone.

Proof: The left-hand side of the conclusion of each debugging rule contains a function

symbol that is not a function symbol of the programming language. This means that none

of these rules can be used to draw inferences about pure programming language expressions.

2

16

�

!

=) � (tr0)

�

!

=) �

0

y

v

�! y

0

�: f - yg

!

=) �: f - yg

(tr1)

�

!

=) �

0

�: fx - g

!

=) �: fx - g

(tr2)

�

!

=) �

0

�: f - ?y; zg

!

=) �: f - ?y; zg

(tr3)

Figure 9: Trigger rules for debugging contexts

�

!

=) �

0

�: fv=ag

[v=a]

=) �

(sb1)

�

[e=a]

=) �

0

x

[e=a]

�! x

0

�: f - xg

[e=a]

=) �

0

: f - x

0

g

(sb2)

�

[e=a]

=) �

0

x

[e=a]

�! x

0

�: fx - g

[e=a]

=) �

0

: fx

0

- g

(sb3)

�

[e=a]

=) �

0

y

[e=a]

�! y

0

z

[e=a]

�! z

0

�: f - ?y; zg

[e=a]

=) �

0

: f - ?y

0

; z

0

g

(sb4)

�

[e=a]

=) �

0

x

[e=a]

�! x

0

z

[e=a]

�! z

0

�: fx? - ; zg

[e=a]

=) �

0

: fx

0

? - ; z

0

g

(sb5)

�

[e=a]

=) �

0

x

[e=a]

�! x

0

y

[e=a]

�! y

0

�: fx?y; - g

[e=a]

=) �

0

: fx

0

?y

0

; - g

(sb6)

�

[e=a]

=) �

0

x

[e=a]

�! x

0

a 6= b

�: fx=bg

[e=a]

=) �

0

: fx

0

=bg

(sb7)

Figure 10: Substitution rules for debugging contexts

The second result states that bisimilar expressions placed in the same debugging context

yield bisimilar debugging states.

Proposition 3.2 For all programming language expressions x; x

0

, if x � x

0

then for all

debugging contexts �, �h[x]i� �h[x

0

]i.

Proof Outline: Any proof of a transition of �h[x]i, will have an evaluation rule or a typing

rule as the last step, since those are the only rules with the debugging state function symbol

on the left-hand side of the conclusion. We will do the proof by case analysis on the last rule

in the proof of the transition. For the full version of the proof, see the appendix.

2

If X is a subset of the set of transitions of a transition system, then de�ne two states

q and r to be bisimilar excluding X transitions, if q and r are bisimilar in the transition

system obtained by deleting all transitions in X from the original transition system. The

next result states that a program evaluates the same way in an empty debugging context as

17

it does when it is not being debugged. A particular consequence of this result is that, if a

program x evaluates to a constant k, then debugging state �h[x]i evaluates to �h[k]i.

Proposition 3.3 For all programming language expressions x, x is bisimilar to �h[x]i, ex-

cluding substitution transitions.

Proof: For any proof of a transition of �h[x]i the last step in the proof must be by (db2),

(dt1), (dt2), (dt3) or (dt4). In all �ve cases the result is immediate.

2

Our main result is the following, which states that \focusing preserves meaning," in the

sense that shifting the focus of attention in a debugging state results in a new debugging

state that is bisimilar (excluding substitution transitions) to the original one. The result is

proved by a case analysis of the possible focusing operations and transitions.

Theorem 3.1 For all debugging states d and d

0

, if d

�

+ d

0

, then d is bisimilar to d

0

, excluding

substitution transitions.

Proof Outline: Let S relate debugging terms �h[x]i and �h[x

0

]i i� x and x

0

are identical up

to the renaming of bound identi�ers. Let I be the identity relation. Let R be the transitive

closure of S[I[f(d; d

0

): d

�

+ d

0

g. We will show that R

0

is a bisimulation relation. Since S and

I are bisimulation relations, it is su�cient to show f(d; d

0

) : d

�

+ d

0

g is a bisimulation relation.

By inspection of the focusing rules, we know that the programming language expression in

focus must be an application, function de�nition or conditional expression. Since the only

such expression that can do a typing rule is a function de�nition and from the focusing rule

we know in this case the debugging context is not empty, therefore the last rule in a proof of

a transition of d, cannot be a typing rule and must in fact be an evaluation rule. Similarly,

the debugging context for d

0

cannot be empty, therefore the last rule in a proof of a transition

of d

0

, cannot be a typing rule and must in fact be an evaluation rule. We will do the proof by

a case analysis on the last rule in the proof of the possible transitions. For the full version

of the proof, see the appendix.

2

In this paper we presented a transition-style operational semantics for a simple functional

language and an associated debugger for that language. The debugger provides the novel

capability of allowing the programmer to focus the scope of attention in a syntax directed

fashion. Our main formal result was that \focusing preserves meaning", that is a program

exhibits bisimilar behavior regardless of the subexpression in focus. For the next step in this

research, we are working on using our semantic de�nition as the foundation for implementing

a debugger for a subset of SML.

18

References

[App92] Andrew W. Appel. Compiling with Continuatations. Cambridge University Press,

Cambridge, 1992.

[Ber91] Dave Berry. Generating Program Animators from Programming Language Seman-

tics. PhD thesis, University of Edinburgh,Edinburgh, Scotland, June 1991. LFCS,

Department of Computer Science.

[dS91] Fabio Q.B. da Silva. Correctness Proofs of Compilers and Debuggers: an Ap-

proach Based on Structured Operational Semantics. PhD thesis, University of

Edinburgh,Edinburgh, Scotland, October 1991. LFCS, Department of Computer

Science.

[GV92] Jan Friso Groote and Frits Vaandrager. Structured operational semantics and

bisimulation as a congruence. Information and Computation, 100:202{260, 1992.

[KHC91] Amir Kishon, Paul Hudak, and Charles Consel. Monitoring semantics: A formal

framework for specifying, implementing, and reasoning about execution monitors.

In Proceedings of the ACM SIGPLAN '91 Conference on Programming Language

Design and Implementation, pages 338{352. ACM Press, June 1991.

[Kis92] Amir Shai Kishon. Theory and Art of Semantics-Directed Program Execution

Monitoring. PhD thesis, Yale University, May 1992.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML.

MIT Press, Cambridge, MA, 1990.

[Par81] D. M. R. Park. Concurrency and automata on in�nite sequences. In Theoretical

Computer Science, volume 104 of Lecture Notes in Computer Science. Springer-

Verlag, 1981.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Aarhus University, Computer Science Department, 1981.

[Sha83] Ehud Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Disserta-

tions. The MIT Press, Cambridge, MA, 1983.

[Tol92] Andrew Tolmach. Debugging Standard ML. PhD thesis, Princeton University,

October 1992.

19

A Proposition 2.1

For all expressions x; x

0

all expressions e, and all identi�ers a:

x

[e=a]

�! x

0

() x

0

= x[e=a]:

Proof: The proof is by structural induction on x. If x is an arbitrary constant k, then the

transition k

[e=a]

�! k is the only transition, labeled with [e=a], provable by rule (sub1). Since

no other substitution rule has a constant as a function symbol on the left-hand side of the

conclusion, no other transitions are provable for k. Since k[e=a] = k, it follows that for all

constants k,

k

[e=a]

�! x

0

() x

0

= k[e=a]:

If x is an identi�er then we need to consider both the case where x = a and the case

when x 6= a. If x = a then the transition a

[e=a]

�! e is the only transition, labeled with [e=a],

provable by the rule (sub2). Since no other rules have the function symbol a on the left-hand

side of the conclusion and a[e=a] = e, we have for all identi�ers a,

a

[e=a]

�! x

0

() x

0

= a[e=a]:

If x is an arbitrary identi�er b, where b 6= a, then the transition b

[e=a]

�! b is provable by

the rule (sub3). Since no other rules have the function symbol b on the left-hand side of the

conclusion and b[e=a] = b, we have for all identi�ers a; b such that a 6= b,

b

[e=a]

�! x

0

() x

0

= b[e=a]:

If the outermost function symbol of x is an application then x is of the form (u v). Since

(sub4) is the only rule with the application function symbol on the left-hand side of the

conclusion, any proof of a transition of x labeled with [e=a] will be of the form:

.

.

.

u

[e=a]

�! u

0

.

.

.

v

[e=a]

�! v

0

u v

[e=a]

�! u

0

v

0

(sub4)

:

By the induction hypothesis, (u

[e=a]

�! u

0

() u

0

= u[e=a]) and (v

[e=a]

�! v

0

() v

0

= v[e=a]).

Since (u[e=a] v[e=a]) = (u v)[e=a],

u v

[e=a]

�! x

0

() x

0

= (u v)[e=a]:

If the outermost function symbol is a function de�nition then x is of the form (fn b => u)

and we need to consider both the case where b = a and the case where b 6= a. If b = a then

any proof of a transition of x labeled with [e=a] will be of the form:

a

a

�! a

(fn a => u)

[e=a]

�! (fn a => u)

(sub6)

:

20

Since (fn a => u)[e=a] = (fn a => u),

(fn a => u)

[e=a]

�! x

0

() x

0

= (fn a => u)[e=a]:

If b 6= a then any proof of a transition of x labeled with [e=a] will be of the form:

b

b

�! b

.

.

.

u

[b

0

=b]

�! u

0

.

.

.

u

0

[e=a]

�! u

00

(fn b => u)

[e=a]

�! (fn b

0

=> u

00

)

(sub5)

;

where b

0

is the �rst identi�er name that does not occur in either (fn b => u) or e. By

the induction hypothesis, (u

[b=b

0

]

�! u

0

() u

0

= u[b=b

0

]). Since b and b

0

are both identi�ers,

the nesting depth of function symbols is the same in u and u[b

0

=b]. Therefore it follows by

the induction hypothesis, (u

0

[e=a]

�! u

00

() u

00

= u

0

[e=a]): So if b 6= a, we have (fn b =>

u)

[e=a]

�! (fn b

0

=> u[b

0

=b][e=a]): Since (fn b => u)[e=a] = (fn b

0

=> u[b

0

=b][e=a]), we have

shown that for all identi�ers b,

(fn b => u)

[e=a]

�! x

0

() x

0

= (fn b => u)[e=a]:

If the outermost function symbol is a conditional expression, then x is of the form

(if u then v else w) and any proof of a transition of x labeled with [e=a] will be of the

form:

.

.

.

u

[e=a]

�! u

0

.

.

.

v

[e=a]

�! v

0

.

.

.

w

[e=a]

�! w

0

if u then v else w

[e=a]

�! if u

0

then v

0

else w

0

(sub7)

:

By the induction hypothesis (u

[e=a]

�! u

0

() u

0

= u[e=a]), (v

[e=a]

�! v

0

() v

0

= v[e=a])

and (w

[e=a]

�! w

0

() w

0

= w[e=a]). Therefore, since (if u[e=a] then v[e=a] else w[e=a]) =

(if u then v else w)[e=a], we have:

(if u then v else w)

[e=a]

�! x

0

() x

0

= (if u then v else w)[e=a]:

2

B Proposition 2.5

If expressions x and y are identical up to renaming of bound identi�ers, then they are

bisimilar.

Proof

Consider the relation S that relates all terms that are identical up to renaming of bound

identi�ers. We will show that this relation is a bisimulation. Since the relation S is symmetric

21

it is su�cient to show that for all expressions x; x

0

such that x S x

0

, it follows that for every

provable transition x

�

�! z there is a provable transition x

0

�

�! z

0

such that z S z

0

. The

proof is by structural induction on the nesting depth of function symbols in x.

In the base case, x is a constant or an identi�er and x S x

0

() x = x

0

. The result is

immediate in this case. In order to prove the induction step, we will do a case analysis on

the possible proofs for a transition x

�

�! z. Since the outermost function symbol in x is a

function de�nition, an application or a conditional expression, it follows we need to consider

the cases where the last rule in the proof has one of these function symbols on the left-hand

side of the conclusion. The relevant rules are: (tp4), (tp5), (sub4), (sub5), (sub6), (sub7),

(ap1), (ap2), (ap3), (if1), (if2) and (if3).

Case 1: (tp4) If the last rule in the proof of the transition is (tp4), then the proof is of the

form:

(fn a => u)

v

�! (fn a => u) (tp4);

where x = (fn a => u) and x

0

= (fn a

0

=> u

0

). It follows immediately that:

(fn a

0

=> u

0

)

v

�! (fn a

0

=> u

0

) (tp4);

where by assumption (fn a => u) S (fn a

0

=> u

0

).

Case 2: (tp5) If the last rule in the proof of the transition is (tp5), then the proof is of the

form:

a

a

�! a

.

.

.

u

[e=a]

�! v

(fn a => u)

2e

�! v

(tp5)

;

where x = (fn a => u) and x

0

= (fn a

0

=> u

0

). By proposition 2.1, v = u[e=a] and the

transition u

0

[e=a

0

]

�! u

0

[e=a

0

] is provable. Since by assumption (fn a => u) S (fn a

0

=> u

0

)

we know that u[a

0

=a] S u

0

and u[a

0

=a][e=a

0

] S u

0

[e=a

0

]. Since (fn a => u) S (fn a

0

=> u

0

)

the terms have the same free identi�ers and a

0

does not occur free in either u or u

0

. Since

u[a

0

=a][e=a

0

] S u[e=a], we have that u[e=a] S u

0

[e=a

0

]. Therefore we have:

a

0

a

0

�! a

0

.

.

.

u

0

[e=a

0

]

�! v

0

(fn a

0

=> u

0

)

2e

�! v

0

(tp5)

where v S v

0

.

Case 3: (sub4) If the last rule in the proof of the transition is (sub4), then the transition is

of the form (u v)

[e=a]

�! z where x = (u v), x

0

= (u

0

v

0

) and by proposition 2.1, z = (u v)[e=a].

By proposition 2.1, there is a proof that (u

0

v

0

)

[e=a]

�! (u

0

v

0

)[e=a] where by the de�nition of S,

22

(u v)[e=a] S (u

0

v

0

)[e=a].

Case 4: (sub5),(sub6) If the last rule in the proof of the transition is (sub5) or (sub6), then

the transition is of the form (fn a => u)

[e=b]

�! z, where x = (fn a => u), x

0

= (fn a

0

=> u

0

)

and by proposition 2.1, z = (fn a => u)[e=b]. By proposition 2.1, there is a proof

that (fn a

0

=> u

0

)

[e=b]

�! (fn a

0

=> u

0

)[e=b] where by the de�nition and properties of S,

(fn a => u)[e=b] S (fn a

0

=> u

0

)[e=b].

Case 5: (sub7) If the last rule in the proof of the transition is (sub7), then the transition is of

the form: (if u then v else w)

[e=a]

�! z where x = (if u then v else w), x

0

= (if u

0

then v

0

else w

0

)

and by proposition 2.1, z = (if u then v else w)[e=a]. By proposition 2.1, there is a proof

that (if u

0

then v

0

else w

0

)

[e=a]

�! (if u

0

then v

0

else w

0

)[e=a] where by the de�nition of S,

(if u then v else w)[e=a] S (if u

0

then v

0

else w

0

)[e=a].

Case 6: (ap1) If the last rule in the proof of the transition is (ap1), then the proof is of

the form:

.

.

.

u �! y v

v

�! z

u v �! y v

(ap1)

;

where x = (u v) and x

0

= (u

0

v

0

). By the induction hypothesis, there exists y

0

and z

0

where

there are proofs of the transitions u

0

�! y

0

and v

0

v

�! z

0

such that y S y

0

. Therefore there

is a proof:

.

.

.

u

0

�! y

0

v

0

v

�! z

0

u

0

v

0

�! y

0

v

0

(ap1)

;

where from the de�nition of S, (y v) S (y

0

v

0

).

Case 7: (ap2) If the last rule in the proof of the transition is (ap2), then the proof is of

the form:

.

.

.

v �! z

u v �! u z

(ap2)

;

where x = (u v) and x

0

= (u

0

v

0

). By the induction hypothesis, there exists z

0

where there

exists a proof of v

0

�! z

0

such that z S z

0

. Therefore there is a proof:

.

.

.

v

0

�! z

0

u

0

v

0

�! u

0

z

0

(ap2)

;

where from the de�nition of S, (u z) S (u

0

z

0

).

23

Case 8: (ap3) If the last rule in the proof of the transition is (ap3), then the proof is of

the form:

.

.

.

u

2v

�! z

u v �! z

(ap3)

;

where x = (u v) and x

0

= (u

0

v

0

). Since the only rule that can prove a \2" transition is

(tp5), we know the proof of u

2v

�! z is of the form:

a

a

�! a

.

.

.

w

[v=a]

�! z

(fn a => w)

2v

�! z

(tp5)

;

where u = (fn a => w) and by proposition 2.1, z = w[v=a]. Since u S u

0

, it follows that

u

0

= (fn a

0

=> w

0

) and w[a

0

=a] S w

0

. By proposition 2.1, there is a proof of the transition

w

0

[v

0

=a

0

]

�! w

0

[v

0

=a

0

]. By the de�nition of S and since v S v

0

and a

0

is not free in w

0

and hence

also w, w[a

0

=a][v=a

0

] S w

0

[v

0

=a

0

] where w[a

0

=a][v=a

0

] S w[v=a]. Therefore:

a

0

a

0

�! a

0

.

.

.

w

0

[v

0

=a

0

]

�! w

0

[v

0

=a

0

]

(fn a

0

=> w

0

)

2v

0

�! w

0

[v

0

=a

0

]

(tp5)

(fn a

0

=> w

0

) v

0

�! w

0

[v

0

=a

0

]

(ap3)

:

where w

0

[v

0

=a

0

] S z.

Case 9: (if1) If the last rule in the proof of the transition is (if1), then the proof is of the

form:

.

.

.

u �! z

if u then v else w �! if z then v else w

(if1)

;

where x = (if u then v else w) and x

0

= (if u

0

then v

0

else w

0

). By the induction hypothesis,

there exists some z

0

such that u

0

�! z

0

is provable and z S z

0

. Therefore there is a proof:

.

.

.

u

0

�! z

0

if u

0

then v

0

else w

0

�! if z

0

then v

0

else w

0

(if1)

;

where by the de�nition of S, (if z then v else w) S (if z

0

then v

0

else w

0

).

Case 10: (if2) If the last rule in the proof of the transition is (if2), then the proof is of the

form:

u

k

�! u k 6= 0

if u then v else w �! v

(if2)

;

24

where x = (if u then v else w) and x

0

= (if u

0

then v

0

else w

0

). By the induction hypothesis,

there is a proof that u

0

k

�! u

0

. So there is a proof:

u

0

k

�! u

0

k 6= 0

if u

0

then v

0

else w

0

�! v

0

(if2)

;

where v S v

0

.

Case 11: (if3) If the last rule in the proof of the transition is (if3), then the proof is of the

form:

u

0

�! u

if u then v else w �! w

(if3)

;

where x = (if u then v else w) and x

0

= (if u

0

then v

0

else w

0

). By the induction hypothesis,

there is a proof that u

0

0

�! u

0

. So there is a proof:

u

0

0

�! u

0

if u

0

then v

0

else w

0

�! w

0

(if3)

;

where w S w

0

.

2

C Lemma 2.6

Let S : T (�)�T (�) be the relation that relates all terms that are identical up to the renaming

of bound identi�ers and I : T (�)� T (�) the identity relation. For any bisimulation relation

R, let R

0

be the transitive closure of (R

S

S

S

I) and for all i let R

i+1

be the transitive closure

of:

(1) x R

i

x

0

=) x R

i+1

x

0

(2) x R

i

x

0

=) (fn a => x) R

i+1

(fn a => x

0

)

(3) x R

i

x

0

; y R

i

y

0

=) x y R

i+1

x

0

y

0

(4) x R

i

x

0

; y R

i

y

0

; z R

i

z

0

=) if x then y else z R

i+1

if x

0

then y

0

else z

0

(5) y R

i

y

0

=) x[y=a] R

i+1

x[y

0

=a]

For all R

i

, w, w

0

, e, a,

w R

i

w

0

) w[e=a] R

i

w

0

[e=a]:

Proof:

We will prove this by induction on i. For the base case R

0

= R

S

S

S

I. By proposition

2.5, S is a bisimulation relation. The identity relation is trivially a bisimulation relation.

By hypothesis R is a bisimulation relation. Since the union of bisimulation relations is

also a bisimulation relation, R [S [I is a bisimulation relation. Since by proposition 2.1,

w

[e=a]

�! w[e=a] and w

0

[e=a]

�! w

0

[e=a] we know that w[e=a] R

0

w

0

[e=a].

25

For our induction hypothesis, we will assume

8w;w

0

; e; a; (w R

i

w

0

) w[e=a] R

i

w

0

[e=a]);

and show

8w;w

0

; e; a; (w R

i+1

w

0

) w[e=a] R

i+1

w

0

[e=a]):

We will prove the induction by case analysis of the de�nition of R

i+1

Case 1: w = x and w

0

= x

0

where x R

i

x

0

The result follows immediately from the induction hypothesis.

Case 2: w = (fn b => x) and w

0

= (fn b => x

0

) where x R

i

x

0

In this case, we need to consider both when a = b and when a 6= b. If a = b then

(fn b => x)[e=a] = (fn b => x) and (fn b => x

0

)[e=a] = (fn b => x

0

) and the result is

immediate.

If a 6= b then (fn b => x)[e=a] = (fn c => x[c=b][e=a]) and (fn b => x

0

)[e=a] =

(fn c

0

=> x[c

0

=b][e=a]) where c is the �rst identi�er that does not occur in (fn b => x) or e

and c

0

is the �rst identi�er that does not occur in (fn b => x

0

) or e. Let d be an identi�er

that does not occur in (fn a => x), (fn a => x

0

), or e. By the induction hypothesis,

x[d=b] R

i

x

0

[d=b]. And again by the induction hypothesis, x[d=b][e=a] R

i

x

0

[d=b][e=a]. By

case 2 of of the de�nition of R

i+1

, (fn d => x[d=b][e=a]) R

i+1

(fn d => x

0

[d=b][e=a]). By

changing bound variables and since d does not occur in e, we have:

(fn d => x[d=b][e=a]) S (fn c => x[d=b][e=a][c=d])

S (fn c => x[d=b][c=d][e=a]) S (fn c => x[c=b][e=a])

and

(fn d => x

0

[d=b][e=a]) S (fn c

0

=> x

0

[d=b][e=a][c

0

=d])

S (fn c

0

=> x

0

[d=b][c

0

=d][e=a]) S (fn c

0

=> x

0

[c

0

=b][e=a]):

Therefore we have (fn c => x)[e=a] R

i+1

(fn c => x

0

)[e=a].

Case 3: w = x y and w

0

= x

0

y

0

where x R

i

x

0

and y R

i

y

0

In this case (x y)[e=a] = x[e=a] y[e=a] and (x

0

y

0

)[e=a] = x

0

[e=a] y

0

[e=a]. By the induction

hypothesis x[e=a] R

i

x

0

[e=a] and y[e=a] R

i

y

0

[e=a]. Therefore by case 3 of the de�nition of

R

i+1

, (x y)[e=a] R

i+1

(x

0

y

0

)[e=a].

Case 4: w = if x then y else z and w

0

= if x

0

then y

0

else z

0

where x R

i

x

0

, y R

i

y

0

and

z R

i

z

0

In this case,

(if x then y else z)[e=a] = (if x[e=a] then y[e=a] else z[e=a])

and

(if x

0

then y

0

else z

0

)[e=a] = (if x

0

[e=a] then y

0

[e=a] else z

0

[e=a]):

26

By the induction hypothesis x[e=a] R

i

x

0

[e=a], y[e=a] R

i

y

0

[e=a] and z[e=a] R

i

z

0

[e=a]. There-

fore by case 4 of the de�nition of R

i+1

,

(if x then y else z)[e=a] R

i+1

(if x

0

then y

0

else z

0

)[e=a]:

Case 5: w = x[y=b] and w

0

= x[y

0

=b] where y R

i

y

0

We need to consider both the case where a = b and where a 6= b. If a = b then

x[y=b][e=a] = x[y[e=b]=b] and x[y

0

=b][e=a] = x[y

0

[e=b]=b]:By the induction hypothesis y[e=b]R

i

y

0

[e=b]

therefore by case 5 of the de�nition of R

i+1

, x[y[e=b]=b] R

i+1

x[y

0

[e=b]=b].

If a 6= b, then by the induction hypothesis y[e=a] R

i

y

0

[e=a]. Let d be a fresh identi�er.

By case 5 of the de�nition of R

i+1

, x[d=b][e=a][y[e=a]=d] R

i+1

x[d=b][e=a][y

0

[e=a]=d]. By

commuting the substitutions we get

x[d=b][e=a][y[e=a]=d] S x[d=b][y=d][e=a] S x[y=b][e=a]

and similarly

x[d=b][e=a][y

0

[e=a]=d] S x[d=b][y

0

=d][e=a] S x[y

0

=b][e=a]:

Therefore we have that x[y=b][e=a] R

i+1

x[y

0

=b][e=a].

2

D Lemma 2.7

Let S : T (�)�T (�) be the relation that relates all terms that are identical up to the renaming

of bound identi�ers and I : T (�)� T (�) the identity relation. For any R : T (�)� T (�), let

R

0

be the least relation such that:

(1) x I x

0

=) x R

0

x

0

(2) x S x

0

=) x R

0

x

0

(3) x R x

0

=) x R

0

x

0

(4) x R

0

x

0

=) (fn a => x) R

0

(fn a => x

0

)

(5) x R

0

x

0

; y R

0

y

0

=) x y R

0

x

0

y

0

(6) x R

0

x

0

; y R

0

y

0

; z R

0

z

0

=) if x then y else z R

0

if x

0

then y

0

else z

0

(7) y R

0

y

0

=) x[y=a] R

0

x[y

0

=a]

(8) x R

0

x

0

; x

0

R

0

x

00

=) x R

0

x

00

If R is a bisimulation relation, then the relation R

0

is a bisimulation relation.

Proof:

We can can construct R

0

as

S

R

i

where R

0

is the transitive closure of (R

S

S

S

I) and for

all i, R

i+1

is the transitive closure of:

(1) x R

i

x

0

=) x R

i+1

x

0

(2) x R

i

x

0

=) (fn a => x) R

i+1

(fn a => x

0

)

(3) x R

i

x

0

; y R

i

y

0

=) x y R

i+1

x

0

y

0

(4) x R

i

x

0

; y R

i

y

0

; z R

i

z

0

=) if x then y else z R

i+1

if x

0

then y

0

else z

0

(5) y R

i

y

0

=) x[y=a] R

i+1

x[y

0

=a]

27

We would like to show that R

0

is a bisimulation relation. That is, for all expressions

w;w

0

,

(w R

0

w

0

and w

�

�! z)) (9z

0

; w

0

�

�! z

0

and z R

0

z

0

)

and

(w R

0

w

0

and w

0

�

�! z

0

)) (9z;w

�

�! z and z R

0

z

0

):

We will show this by induction on i. For the base case R

0

= R

S

S

S

I. By proposition 2.5,

S is a bisimulation relation. The identity relation is trivially a bisimulation relation. By

hypothesis R is a bisimulation relation. Since the union of bisimulation relations is also a

bisimulation relation, R [S [I is a bisimulation relation.

For the induction step, we will show:

if

8w;w

0

; [(w R

i

w

0

and w

�

�! z)) (9z

0

; w

0

�

�! z

0

and z R

0

z

0

)]

then

8w;w

0

; [(w R

i+1

w

0

and w

�

�! z)) (9z

0

; w

0

�

�! z

0

and z R

0

z

0

)]:

Once we have show this property, the desired result holds immediately. That is, if w R

0

w

0

then by the de�nition of R

0

there exists some R

i

such that w R

i

w

0

. So if w

�

�! z then by

the proposition above there exists some z

0

such that w

0

�

�! z

0

and z R

0

z

0

.

We will do the proof by considering each case of the de�nition of R

i+1

separately.

Case 1: w = x and w

0

= x

0

where x R

i

x

0

By the induction hypothesis, w R

i

w

0

.

Case 2: w = (fn b => x) and w

0

= (fn b => x

0

) where x R

i

x

0

For any provable transition of (fn a => x), the last rule in the proof is (sub5), (sub6),

(tp4) or (tp5). We will consider each form of the proof as a separate case.

Case 2a: (sub5)(sub6) If last rule is (sub5) or (sub6) then by proposition 2.1 z = w[e=a]

and z

0

= w

0

[e=a] and by the previous lemma z R

i+1

z

0

.

Case 2b: (tp4) If (tp4) is the last rule, then the proof of the transition of (fn a => x)

is of the form:

(fn a => x)

v

�! (fn a => x) (tp4):

It follows immediately that:

(fn a => x

0

)

v

�! (fn a => x

0

) (tp4);

where (fn a => x) R

i+1

(fn a => x

0

) by hypothesis.

28

Case 2c: (tp5) If (tp5) is the last rule, then the proof of the transition of (fn a => x)

is of the form:

a

a

�! a

.

.

.

x

[e=a]

�! y

(fn a => x)

2e

�! y

(tp5)

:

Since x R

i

x

0

, it follows from the previous lemma and proposition 2.1 that x

0

[e=a]

�! y

0

is

provable where y R

i

y

0

. Therefore we have:

a

a

�! a

.

.

.

x

0

[e=a]

�! y

0

(fn a => x

0

)

2e

�! y

0

(tp5)

;

where y R

i

y

0

.

Case 3: w = x y and w

0

= x

0

y

0

where x R

i

x

0

and y R

i

y

0

For any provable transition of (x y), the last rule in the proof is (sub4), (ap1), (ap2), or

(ap3).

Case 3a: (sub4) If last rule is (sub4) then by proposition 2.1 z = w[e=a] and z

0

= w

0

[e=a]

and by the previous lemma z R

i+1

z

0

.

Case 3b: (ap1) If the last rule in the proof is (ap1) then the proof is of the form:

.

.

.

x �! u y

v

�! y

x y �! u y

(ap1)

By the induction hypothesis, x

0

�! u

0

such that u R

0

u

0

and y

0

v

�! y

0

. Therefore we have:

.

.

.

x

0

�! u

0

y

0

v

�! y

0

x

0

y

0

�! u

0

y

0

(ap1)

;

where, by case 5 of the de�nition of R

0

, (u y) R

0

(u

0

y

0

).

Case 3c: (ap2) If the last rule in the proof is (ap2) then the proof is of the form:

.

.

.

y �! u

x y �! x u

(ap2)

:

29

By the induction hypothesis, y

0

�! u

0

such that u R

0

u

0

. Therefore we have:

.

.

.

y

0

�! u

0

x

0

y

0

�! x

0

u

0

(ap2)

;

where by case 5 of the de�nition of R

0

, (x u) R

0

(x

0

u

0

).

Case 3d: (ap3) If the last rule in the proof is (ap3) then the proof is of the form:

.

.

.

u

[v=a]

�! z

(fn a => u)

2v

�! z

(fn a => u) v �! z

(ap3)

:

By the induction hypothesis, there must be a proof that x

0

can do a 2 transition therefore

x

0

is of the form (fn a

0

=> u

0

). Since v is a value we know that v

v

�! v, therefore by the

induction hypothesis v

0

v

�! v

0

. Therefore we have:

.

.

.

u

0

[v

0

=a]

�! z

0

(fn a

0

=> u

0

)

2v

0

�! z

0

(fn a

0

=> u

0

) v

0

�! z

0

(ap3)

:

By proposition 2.1, z = u[v=a] and z

0

= u

0

[v

0

=a

0

]. By the de�nition of R

0

, u[v=a] R

0

u[v

0

=a].

Since (fn a => u)R

i

(fn a

0

=> u

0

), and (fn a => u)

2v

0

�! u[v

0

=a] and (fn a

0

=> u

0

)

2v

0

�! u

0

[v

0

=a

0

]

it follows from the induction hypothesis that u[v

0

=a] R

0

u

0

[v

0

=a

0

]. Therefore by the transitive

property of R

0

, u[v=a] R

0

u

0

[v

0

=a

0

] that is z R

0

z

0

.

Case 4: w = if x then y else z and w

0

= if x

0

then y

0

else z

0

where x R

i

x

0

, y R

i

y

0

and

z R

i

z

0

For any provable transition of if x then y else z, the last rule in the proof is (sub7),

(if1), (if2) or (if3).

Case 4a: (sub7) If last rule is (sub7) then by proposition 2.1 z = w[e=a] and z

0

= w

0

[e=a]

and by the previous lemma z R

i+1

z

0

.

Case 4b: (if1) If the last rule in the proof is (if1) then the proof is of the form:

.

.

.

x �! u

if x then y else z �! if u then y else z

(if1)

:

30

By the induction hypothesis, x

0

�! u

0

such that u R

0

u

0

. So we have:

.

.

.

x

0

�! u

0

if x

0

then y

0

else z

0

�! if u

0

then y

0

else z

0

(if1)

:

where by case 6 of the de�nition of R

0

, if u then y else z R

0

if u

0

then y

0

else z

0

.

Case 4c: (if2) If the last rule in the proof is (if2) then the proof is of the form:

x

k

�! x k 6= 0

if x then y else z �! y

(if2)

:

By the induction hypothesis, x

0

k

�! x

0

. So we have:

x

0

k

�! x

0

k 6= 0

if x

0

then y

0

else z

0

�! y

(if2)

;

where by case 3 of the de�nition of R

0

, y R

0

y

0

.

Case 4d: (if3) If the last rule in the proof is (if3) then the proof is of the form:

x

0

�! x

if x then y else z �! z

(if3)

:

By the induction hypothesis, x

0

0

�! x

0

. So we have:

x

0

0

�! x

0

if x

0

then y

0

else z

0

�! z

0

(if3)

:

where by case 3 of the de�nition of R

0

, z R

0

z

0

.

Case 5: w = x[y=b] and w

0

= x[y

0

=b] where y R

i

y

0

We prove will this case by structural induction on x.

Case 5 (Base): If x is a constant then x[y=a] = x = x[y

0

=a] and the result is trivially

true. If x is an identi�er other than a then again x[y=a] = x = x[y

0

=a] and the result is

trivially true. If x is the identi�er a, then x[y=a] = y and x[y

0

=a] = y

0

and since y R

i

y

0

, by

the induction hypothesis the result is true.

For all of the cases, if the transition is a substitution transition then by proposition 2.1

z = w[e=a] and z

0

= w

0

[e=a] and by the previous lemma z R

i+1

z

0

.

Case 5a: (x = (fn b => u))

If x is the function de�nition (fn b => u) then there are two possible last rules in a proof

of a transition of x, (tp4) and (tp5).

31

If (tp4) is the last rule in the proof, then the proof is of the form:

(fn b => u)[y=a]

v

�! (fn b => u)[y=a] (tp4):

It follows immediately that:

(fn b => u)[y

0

=a]

v

�! (fn b => u)[y

0

=a] (tp4)

where from the de�nition of R

0

, (fn b => u)[y=a] R

0

(fn b => u)[y

0

=a].

If (tp5) is the last rule in the proof, then we need to consider two cases. If a = b then

(fn b => u)[y=a] = (fn b => u) and (fn b => u)[y

0

=a] = (fn b => u) and the result is

immediate.

If a 6= b then (fn b => u)[y=a] = (fn c => u[c=b][y=a]) and (fn b => u)[y

0

=a] =

(fn c

0

=> u[c

0

=b][y

0

=a]), where c is the �rst identi�er that does not occur in (fn b => u)[y=a]

or e and c

0

is the �rst identi�er that does not occur in (fn b => u)[y

0

=a] or e. In this case

the proof is of the form:

b

b

�! b

.

.

.

u[c=b][y=a]

[e=c]

�! u[c=b][y=a][e=c]

(fn c => u[c=b][y=a])

2e

�! u[c=b][y=a][e=c]

(tp5)

:

By proposition 2.1, there is also a proof that:

b

b

�! b

.

.

.

u[c

0

=b][y

0

=a]

[e=c

0

]

�! u[c

0

=b][y

0

=a][e=c

0

]

(fn c

0

=> u[c

0

=b][y

0

=a])

2e

�! u[c

0

=b][y

0

=a][e=c

0

]

(tp5)

;

Let d be an identi�er that does not occur in (fn b => u)[y=a], (fn b => u)[y

0

=a] or

e. Since d is an identi�er, the nesting depth of function symbols is the same in u and

u[d=b]. Therefore by the induction hypothesis, u[d=b][y=a] R

0

u[d=b][y

0

=a] and by the pre-

vious lemma u[d=b][y=a][e=d] R

0

u[d=b][y

0

=a][e=d]. Where by the properties of substitution

u[d=b][y=a][e=d] = u[c=b][y=a][e=c] and u[d=b][y

0

=a][e=d] = u[c

0

=b][y

0

=a][e=c

0

]:

Case 5b: (x = u v)

If x is the application, (u v) then x[y=a] = (u v)[y=a] = u[y=a] v[y=a] and x[y

0

=a] =

(u v)[y

0

=a] = u[y

0

=a] v[y

0

=a]. By case 5 of the de�nition of R

i+1

, we have u[y=a] R

i+1

u[y

0

=a]

and v[y=a] R

i+1

v[y

0

=a]. Again we have to consider each possible form of transition. The

last rule in the proof can be (ap1), (ap2) or (ap3).

If (ap1) is the last rule in the proof of the transition , then the proof is of the form:

.

.

.

u[y=a] �! w v[y=a]

v

�! v[y=a]

u[y=a] v[y=a] �! w v[y=a]

(ap1)

32

By the induction hypothesis, u[y

0

=a] �! w

0

such that w R

0

w

0

and v[y

0

=a]

v

�! v[y

0

=a].

Therefore we have:

.

.

.

u[y

0

=a] �! w

0

v[y

0

=a]

v

�! v[y

0

=a]

u[y

0

=a] v[y

0

=a] �! w

0

v[y

0

=a]

(ap1)

where, by case 5 of the de�nition of R

0

, (w v[y=a]) R

0

(w

0

v[y

0

=a]).

If (ap2) is the last rule in the proof of the transition , then the proof is of the form:

.

.

.

v[y=a] �! w

u[y=a] v[y=a] �! u[y=a] w

(ap2)

:

By the induction hypothesis, v[y

0

=a] �! w

0

such that w R

0

w

0

. Therefore we have:

.

.

.

v[y

0

=a] �! w

0

u[y

0

=a] v[y

0

=a] �! u[y

0

=a] w

0

(ap2)

:

where, by case 5 of the de�nition of R

0

, (u[y=a] w) R

0

(u[y

0

=a] w

0

).

If (ap3) is the last rule in the proof of the transition , then we know u = (fn b => w)[y=a].

If b = a then (fn a => w)[y=a] = (fn a => w) and the proof is of the form:

w

2v[y=a]

�! w[v[y=a]=a]

(fn a => w) v[y=a] �! w[v[y=a]=a]

(ap3)

:

Therefore we have:

w

2v[y

0

=a]

�! w[v[y

0

=a]=a]

(fn a => w) v[y

0

=a] �! w[v[y

0

=a]=a]

(ap3)

;

where by case 7 of the de�nition of R

0

, v[y=a] R

0

v[y

0

=a] and again by case 7 of the de�nition

of R

0

w[v[y=a]=a] R

0

w[v[y

0

=a]=a].

If b 6= a then (fn b => w)[y=a] = (fn c => w[c=b][y=a]) and the proof is of the form:

w[c=b][y=a]

2v[y=a]

�! w[c=b][y=a][v[y=a]=c]

(fn c => w[c=b][y=a]) v[y=a] �! w[c=b][y=a][v[y=a]=c]

(ap3)

:

We know that by reversing the order of substitutions, we have

w[c=b][y=a][v[y=a]=c] S w[c=b][v=c][y=a] S w[v=b][y=a]:

33

Therefore we have:

(fn c

0

=> w[c

0

=b][y

0

=a])

2v[y

0

=a]

�! w[c

0

=b][y

0

=a][v[y

0

=a]=c

0

]

(fn c

0

=> w[c

0

=b][y

0

=a]) v[y

0

=a] �! w[c

0

=b][y

0

=a][v[y

0

=a]=c

0

]

(ap3)

;

where w[c

0

=b][y

0

=a][v[y

0

=a]=c

0

] S w[c

0

=b][v=c

0

][y

0

=a] S w[v=b][y

0

=a] and by case 7 of the de�ni-

tion of R

0

we have w[v=b][y=a] R

0

w[v=b][y

0

=a].

Case 5c: (x = if u then v else w)

If x is the conditional, (if u then v else w) then

x[y=a] = (if u then v else w)[y=a] = (if u[y=a] then v[y=a] else w[y=a])

and

x[y

0

=a] = (if u then v else w)[y

0

=a] = (if u[y

0

=a] then v[y

0

=a] else w[y

0

=a]):

By the de�nition of R

i+1

, u[y=a] R

i+1

u[y

0

=a], v[y=a] R

i+1

v[y

0

=a] and w[y=a] R

i+1

w[y

0

=a].

The last rule in the proof can be (if1), (if2) or (if3).

If the last rule in the proof is (if1) then the proof is of the form:

.

.

.

u[y=a] �! t

if u[y=a] then v[y=a] else w[y=a] �! if t then v[y=a] else w[y=a]

(if1)

:

By the induction hypothesis, there is a proof of u[y

0

=a] �! t

0

such that t R

0

t

0

. Therefore

we have:

.

.

.

u[y

0

=a] �! t

0

if u[y

0

=a] then v[y

0

=a] else w[y

0

=a] �! if t

0

then v[y

0

=a] else w[y

0

=a]

(if1)

;

where by the de�nition of R

0

, (if t then v[y=a] else w[y=a] R

0

if t

0

then v[y

0

=a] else w[y

0

=a]).

If the last rule in the proof is (if2) then the proof is of the form:

u[y=a]

k

�! u[y=a] k 6= 0

if u[y=a] then v[y=a] else w[y=a] �! v[y=a]

(if2)

:

By the induction hypothesis, there is a proof of u[y

0

=a]

k

�! u[y

0

=a]. Therefore we have:

u[y

0

=a]

k

�! u[y

0

=a] k 6= 0

if u[y

0

=a] then v[y

0

=a] else w[y

0

=a] �! v[y

0

=a]

(if2)

:

where by the de�nition of R

0

, v[y=a] R

0

v[y

0

=a].

34

If the last rule in the proof is (if3) then the proof is of the form:

u[y=a]

0

�! u[y=a]

if u[y=a] then v[y=a] else w[y=a] �! w[y=a]

(if2)

:

By the induction hypothesis, there is a proof of u[y

0

=a]

k

�! u[y

0

=a]. Therefore we have:

u[y

0

=a]

k

�! u[y

0

=a]

if u[y

0

=a] then v[y

0

=a] else w[y

0

=a] �! w[y

0

=a]

(if2)

:

where by the de�nition of R

0

, w[y=a] R

0

w[y

0

=a].

2

E Proposition 3.2

For all programming language expressions x; x

0

, if x � x

0

then for all debugging contexts �,

�h[x]i� �h[x

0

]i.

Proof: Any proof of a transition of �h[x]i, will have an evaluation rule or a typing rule as

the last step, since those are the only rules with the debugging state function symbol on the

left-hand side of the conclusion. We will do the proof by case analysis on the last rule in the

proof of the transition.

Case 1: If the last step in the proof is by (db1) then we have:

�

� =) �

0

�h[x]i =) �

0

h[x]i

(db1)

�

� =) �

0

�h[x

0

]i =) �

0

h[x

0

]i

(db1)

where �

0

h[x]i� �

0

h[x

0

]i.

Case 2: If the last step in the proof is by (db2) then we have:

�

�

!

=) �

0

.

.

.

x �! y

�h[x]i =) �h[y]i

(db2)

�

�

!

=) �

0

.

.

.

x

0

�! y

0

�h[x

0

]i =) �h[y

0

]i

(db2)

Since x � x

0

, if there is a proof that x �! y then there is a proof that x

0

�! y

0

such that

y � y

0

. Likewise if there is a proof that x

0

�! y

0

then there is a proof that x �! y such

that y � y

0

. Therefore �h[y]i� �h[y

0

]i.

35

Case 3: If the last step in the proof is by (db3) then we have:

�

�

[e=a]

=) �

0

.

.

.

x

[e=a]

�! y

�h[x]i =) �

0

h[y]i

(db3)

�

�

[e=a]

=) �

0

.

.

.

x

0

[e=a]

�! y

0

�h[x

0

]i =) �

0

h[y

0

]i

(db3)

Since x � x

0

, if there is a proof that x

[e=a]

�! y then there is a proof that x

0

[e=a]

�! y

0

such that

y � y

0

. Likewise if there is a proof that x

0

[e=a]

�! y

0

then there is a proof that x

[e=a]

�! y such

that y � y

0

. Therefore �

0

h[y]i� �

0

h[y

0

]i.

Case 4: If the last step in the proof is by (db4) then we have:

�

�

!

=) �

0

.

.

.

x

2v

�! y

�: f - vgh[x]i =) �h[y]i

(db4)

�

�

!

=) �

0

.

.

.

x

0

2v

�! y

0

�: f - vgh[x

0

]i =) �h[y

0

]i

(db4)

Since x � x

0

, if there is a proof that x

2v

�! y then there is a proof that x

0

2v

�! y

0

such that

y � y

0

. Likewise if there is a proof that x

0

2v

�! y

0

then there is a proof that x

2v

�! y such

that y � y

0

. Therefore �h[y]i� �h[y

0

]i.

Case 5: If the last step in the proof is by (db5) then we have:

�

1

�

!

=) �

0

�

2

u �! w

.

.

.

x

v

�! x

�: fu - gh[x]i =) �: fw - gh[x]i

(db5)

�

1

�

!

=) �

0

�

2

u �! w

.

.

.

x

0

v

�! x

0

�: fu - gh[x

0

]i =) �: fw - gh[x

0

]i

(db5)

Since x � x

0

, if there is a proof that x

v

�! x then there is a proof that x

0

v

�! x

0

. Likewise if

there is a proof that x

0

v

�! x

0

then there is a proof that x

v

�! x. Therefore �: fw - gh[x]i�

�: fw - gh[x

0

]i.

Case 6: If the last step in the proof is by (db6) then we have:

�

1

�

!

=) �

0

�

2

u

2x

�! y

�: fu - gh[x]i =) �h[y]i

(db6)

:

Therefore u must be a function de�nition and both of the following proofs exist:

�

2

u

2x

�! y

u x �! y

(ap3)

�

3

u

2x

0

�! y

0

u x

0

�! y

0

(ap3)

:

36

Since x � x

0

and by proposition 2.8 bisimulation is a congruence, it follows that y � y

0

.

Therefore:

�

1

�

!

=) �

0

�

3

u

2x

0

�! y

0

�: fu - gh[x

0

]i =) �h[y

0

]i

(db6)

;

where �h[y]i� �h[y

0

]i. Likewise, the proof in the other direction holds.

Case 7: If the last step in the proof is by (db7) then we have:

�

�

!

=) �

0

.

.

.

x

k

�! x k 6= 0

�: f - ?y; zgh[x]i =) �h[y]i

(db7)

�

�

!

=) �

0

.

.

.

x

0

k

�! x

0

k 6= 0

�: f - ?y; zgh[x

0

]i =) �h[y]i

(db7)

Since x � x

0

, if there is a proof that x

k

�! x then there is a proof that x

0

k

�! x

0

. Likewise

if there is a proof that x

0

k

�! x

0

then there is a proof that x

k

�! x. Therefore �h[y]i� �h[y]i.

Case 8: If the last step in the proof is by (db8) then the proof is of the form:

�

�

!

=) �

0

.

.

.

x

0

�! x

�: f - ?y; zgh[x]i =) �h[z]i

(db8)

�

�

!

=) �

0

.

.

.

x

0

0

�! x

0

�: f - ?y; zgh[x

0

]i =) �h[z]i

(db8)

Since x � x

0

, if there is a proof that x

0

�! x then there is a proof that x

0

0

�! x

0

. Likewise

if there is a proof that x

0

0

�! x

0

then there is a proof that x

0

�! x. Therefore �h[y]i� �h[y]i.

Case 9: If the last step in the proof is by (db9) then the proof is of the form:

�

�

�

=) d

�h[x]i =) d

(db9)

�

�

�

=) d

�h[x

0

]i =) d

(db9)

where d � d.

Case 10: If the last step in the proof is by (dt1) then we have:

.

.

.

x

k

�! x

�h[x]i

k

=) �h[x]i

(dt1)

.

.

.

x

0

k

�! x

0

�h[x

0

]i

k

=) �h[x

0

]i

(dt1)

Since x � x

0

, if there is a proof that x

k

�! x then there is a proof that x

0

k

�! x

0

. Likewise

if there is a proof that x

0

k

�! x

0

then there is a proof that x

k

�! x. Therefore �h[x]i� �h[x

0

]i.

37

Case 11: If the last step in the proof is by (dt2) then we have:

x

a

�! x

�h[x]i

a

=) �h[x]i

(dt2)

:

x

0

a

�! x

0

�h[x

0

]i

a

=) �h[x

0

]i

(dt2)

;

Since x � x

0

, if there is a proof that x

a

�! x then there is a proof that x

0

a

�! x

0

. Likewise

if there is a proof that x

0

a

�! x

0

then there is a proof that x

a

�! x. Therefore �h[x]i� �h[x

0

]i.

Case 12: If the last step in the proof is by (dt3) then we have:

x

v

�! x

�h[x]i

v

=) �h[x]i

(dt3)

x

0

v

�! x

0

�h[x

0

]i

v

=) �h[x

0

]i

(dt3)

Since x � x

0

, if there is a proof that x

v

�! x then there is a proof that x

0

v

�! x

0

. Likewise

if there is a proof that x

0

v

�! x

0

then there is a proof that x

v

�! x. Therefore �h[x]i� �h[x

0

]i.

Case 13: If the last step in the proof is by (dt4) then we have:

.

.

.

x

2e

�! y

�h[x]i

2e

=) �h[y]i

(dt4)

.

.

.

x

0

2e

�! y

0

�h[x

0

]i

2e

=) �h[y

0

]i

(dt4)

Since x � x

0

, if there is a proof that x

2e

�! x then there is a proof that x

0

2e

�! x

0

. Likewise

if there is a proof that x

0

2e

�! x

0

then there is a proof that x

2e

�! x. Therefore �h[x]i� �h[x

0

]i.

2

F Theorem 3.1

For all debugging states d and d

0

, if d

�

+ d

0

, then d is bisimilar to d

0

, excluding [e=a] labeled

transitions.

Proof: Let S relate debugging terms �h[x]i and �h[x

0

]i i� x and x

0

are identical up to the

renaming of bound identi�ers. Let I be the identity relation. Let R be the transitive closure

of S [I [f(d; d

0

): d

�

+ d

0

g. We will show that R

0

is a bisimulation relation. Since S and I are

bisimulation relations, it is su�cient to show f(d; d

0

) : d

�

+ d

0

g is a bisimulation relation. By

inspection of the focusing rules, we know that the programming language expression in focus

must be an application, function de�nition or conditional expression. Since the only such

expression that can do a typing rule is a function de�nition and from the focusing rule we

know in this case the debugging context is not empty, therefore the last rule in a proof of a

transition of d, cannot be a typing rule and must in fact be an evaluation rule. Similarly, the

debugging context for d

0

cannot be empty, therefore the last rule in a proof of a transition of

38

d

0

, cannot be a typing rule and must in fact be an evaluation rule. We will do the proof by a

case analysis on the last rule in the proof of the possible transitions. First we will consider

the possible transitions of d.

Case 1:(db1)

First we will consider if � 2 f l, r, if, then or else g then we will consider the case where

� = �.

Case 1a: d = �h[x]i, d

0

= �: ch[x

0

]i, � 2 f l, r, if, then or else g

In this case the proof is of the form:

�

� =) �

0

�h[x]i =) �

0

h[x]i

(db1)

�

� =) �

0

�: c =) �

0

: c

(ke1)

�: ch[x

0

]i =) �

0

: ch[x

0

]i

(db1)

;

where �

0

h[x]i

�

+ �

0

: ch[x

0

]i.

Case 1b: d = �: f - ygh[(fn a => x)]i, d

0

= �: fy=agh[x]i, � = �

The proof can take one of two forms since the second to last rule in the proof can be

either (ke1) or (ke2). If the second to last rule is (ke1), then the proof is of the form:

�

� =) �

0

�: f - yg =) �

0

: f - yg

(ke1)

�: f - ygh[(fn a => x)]i =) �

0

: f - ygh[(fn a => x)]i

(db1)

:

Then we have:

�

� =) �

0

�: fy=a

0

g =) �

0

: fy=a

0

g

(ke1)

�: fy=a

0

gh[x[a

0

=a]]i =) �

0

: fy=a

0

gh[x[a

0

=a]]i

(db1)

;

where �

0

: f - ygh[(fn a => x)]i

�

+ �

0

: fy=a

0

gh[x[a

0

=a]]i.

If the second to last rule is (ke2), then the proof is of the form:

�

1

�

!

=) �

�

2

y �! y

0

�: f - yg =) �: f - y

0

g

(ke2)

�: f - ygh[(fn a => x)]i =) �: f - y

0

gh[(fn a => x)]i

(db1)

:

39

Then we have:

�

1

�

!

=) �

�

2

y �! y

0

�: fy=a

0

g =) �: fy

0

=a

0

g

(ke3)

�: fy=a

0

gh[x[a

0

=a]]i =) �: fy

0

=a

0

gh[x[a

0

=a]]i

(db1)

;

where �: f - y

0

gh[(fn a => x)]i

�

+ �: fy

0

=a

0

gh[x[a

0

=a]]i.

Case 2: (db2)

The second to last rule in the proof of the transition of d can be any of the six program

language evaluation rules.

Case 2a: (ap1)

In this case, d = �h[x y]i and either d

0

= �: f - ygh[x]i or �: fx - gh[y]i depending on

whether � = l or � = r. The proof has the form:

�

1

�

!

=) �

0

�

2

x �! x

0

y

v

�! y

x y �! x

0

y

(ap1)

�h[x y]i =) �h[x

0

y]i

(db2)

:

In the �rst case:

�

1

�

!

=) �

0

y

v

�! y

0

�: f - yg

!

=) �: f - yg

(tr1)

�

2

x �! x

0

�: f - ygh[x]i =) �: f - ygh[x

0

]i

(db2)

;

where �h[x

0

y]i

l

+ �: f - ygh[x

0

]i. In the second case:

�

1

�

!

=) �

�

2

x �! x

0

y

v

�! y

�: fx - gh[y]i =) �: fx

0

- gh[y]i

(db5)

where �h[x

0

y]i

r

+ �: fx

0

- gh[y]i.

Case 2b: (ap2)

In this case, d = �h[x y]i and either d

0

= �: f - ygh[x]i or �: fx - gh[y]i depending on

whether � = l or � = r. The proof has the form:

�

1

�

!

=) �

0

�

2

y �! y

0

x y �! x y

0

(ap2)

�h[x y]i =) �h[x y

0

]i

(db2)

:

40

In the �rst case:

�

1

�

!

=) �

0

�

2

y �! y

0

�: f - yg =) �: f - y

0

g

(ke2)

�: f - ygh[x]i =) �: f - y

0

gh[x]i

(db1)

where �h[x y

0

]i

l

+ �: f - y

0

gh[x]i. In the second case:

�

1

�

!

=) �

�: fx - g

!

=) �: fx - g

(tr2)

�

2

y �! y

0

�: fx - gh[y]i =) �: fx - gh[y

0

]i

(db2)

;

where �h[x y

0

]i

r

+ �: fx - gh[y

0

]i.

Case 2c: (ap3)

In this case, d = �h[x y]i and either d

0

= �: f - ygh[x]i or �: fx - gh[y]i depending on

whether � = l or � = r. The proof has the form:

�

1

�

!

=) �

0

�

2

x

2v

�! x

0

x v �! x

0

(ap3)

�h[x v]i =) �h[x

0

]i

(db2)

:

In the �rst case:

�

1

�

!

=) �

0

�

1

x

2v

�! x

0

�: f - vgh[x]i =) �h[x

0

]i

(db4)

where �h[x

0

]i = �h[x

0

]i. In the second case:

�

1

�

!

=) �

�

2

x

2v

�! x

0

�: fx - gh[v]i =) �h[x

0

]i

(db6)

where �h[x

0

]i = �h[x

0

]i.

Case 2d: (if1)

In this case, d = �h[if x then y else z]i and d

0

can be any one of �: f - ?y; zgh[x]i, �: fx? - ; zgh[y]i

or �: fx?y; - gh[z]i. The proof has the form:

�

!

=) �

0

x �! x

0

if x then y else z �! if x

0

then y else z

(if1)

�h[if x then y else z]i =) �h[if x

0

then y else z]i

(db2)

41

In the �rst case:

�

!

=) �

0

�: f - ?y; zg

!

=) �

0

: f - ?y; zg

(tr3)

x �! x

0

�: f - ?y; zgh[x]i =) �: f - ?y; zgh[x

0

]i

(db2)

;

where �h[if x

0

then y else z]i

if

+ �: f - ?y; zgh[x

0

]i. In the second case:

�

!

=) �

0

x �! x

0

�: fx? - ; zg =) �: fx

0

? - ; zg

(ke4)

�: fx? - ; zgh[y]i =) �: fx

0

? - ; zgh[y]i

(db1)

where �h[if x

0

then y else z]i

then

+ �: fx

0

? - ; zgh[y]i. In the third case:

�

!

=) �

0

x �! x

0

�: fx?y; - g =) �: fx

0

?y; - g

(ke6)

�: fx?y; - gh[y]i =) �: fx

0

?y; - gh[z]i

(db1)

where �h[if x

0

then y else z]i

else

+ �: fx

0

? - ; ygh[z]i.

Case 2e: (if2)

In this case, d = �h[if x then y else z]i and d

0

can be any one of �: f - ?y; zgh[x]i, �: fx? - ; zgh[y]i

or �: fx?y; - gh[z]i. The proof has the form:

�

!

=) �

0

x

k

�! x

0

k 6= 0

if x then y else z �! y

(if2)

�h[if x then y else z]i =) �h[y]i

(db2)

In the �rst case:

�

!

=) �

0

x

k

�! x

0

k 6= 0

�: f - ?y; zgh[x]i =) �h[y]i

(db7)

;

where �h[y]i= �h[y]i. In the second case:

�

!

=) �

0

x

k

�! x

0

k 6= 0

�: fx? - ; zg =) �

(ke5)

�: fx? - ; zgh[y]i =) �h[y]i

(db1)

where �h[y]i= �h[y]i. In the third case:

�

!

=) �

0

x

k

�! x

0

k 6= 0

�: fx?y; - g

�

=) �h[y]i

(br3)

�: fx?y; - gh[z]i =) �h[y]i

(db9)

42

where �h[y]i= �h[y]i.

Case 2f: (if3)

In this case, d = �h[if x then y else z]i and d

0

can be any one of �: f - ?y; zgh[x]i, �: fx? - ; zgh[y]i

or �: fx?y; - gh[z]i. The proof has the form:

�

!

=) �

0

x

0

�! x

0

if x then y else z �! z

(if3)

�h[if x then y else z]i =) �h[z]i

(db2)

In the �rst case:

�

!

=) �

0

x

0

�! x

0

�: f - ?y; zgh[x]i =) �h[z]i

(db8)

;

where �h[z]i= �h[z]i. In the second case:

�

!

=) �

0

x

0

�! x

�: fx? - ; zg

�

=) �h[z]i

(br2)

�: fx? - ; zgh[y]i =) �h[z]i

(db9)

;

where �h[z]i= �h[z]i.

In the third case:

�

!

=) �

0

x

0

�! x

0

�: fx?y; - g =) �

(ke7)

�: fx?y; - gh[z]i =) �h[z]i

(db1)

where �h[z]i= �h[z]i.

Case 3: (db3)

The second to last rule in the proof can be (sub4), (sub5) (sub6) or (sub7).

Case 3a: (sub4) There are two cases depending on whether � = l or � = r. The proof

is of the form:

�

1

�

[e=a]

=) �

0

�

2

x

[e=a]

�! x

0

�

3

y

[e=a]

�! y

0

x y

[e=a]

�! x

0

y

0

(sub4)

�h[x y]i =) �

0

h[x

0

y

0

]i

(db3)

In the �rst case:

�

1

�

[e=a]

=) �

0

�

3

y

[e=a]

�! y

0

�: f - yg

[e=a]

=) �

0

: f - y

0

g

(sb2)

�

2

x

[e=a]

�! x

0

�: f - ygh[x]i =) �

0

: f - y

0

gh[x

0

]i

(db3)

43

where �

0

h[x

0

y

0

]i

l

+ �

0

: f - y

0

gh[x

0

]i. In the second case:

�

1

�

[e=a]

=) �

0

�

2

x

[e=a]

�! x

0

�: fx - g

[e=a]

=) �

0

: fx

0

- g

(sb3)

�

3

y

[e=a]

�! y

0

�: fx - gh[y]i =) �

0

: fx

0

- gh[y

0

]i

(db3)

where �

0

h[x

0

y

0

]i

r

+ �

0

: fx

0

- gh[y

0

]i.

Case 3b: (sub5) The proof is of the form:

�

1

�

[e=b]

=) �

0

�

2

y

[e=b]

�! y

0

�: f - yg

[e=b]

=) �

0

: : f - y

0

g

(sb2)

a

a

�! a

.

.

.

x

[a

0

=a]

�! x[a

0

=a]

.

.

.

x[a

0

=a]

[e=b]

�! x[a

0

=a][e=b] b 6= a

(fn a => x)

[e=b]

�! (fn a

0

=> x[a

0

=a][e=b])

(sub5)

�: f - ygh[(fn a => x)]i =) �

0

: f - y

0

gh[(fn a

0

=> x[a

0

=a][e=b])]i

(db3)

;

Therefore

�

1

�

[e=b]

=) �

0

�

2

y

[e=b]

�! y

0

b 6= a

�: fy=a

0

g

[e=b]

=) �

0

: fy

0

=a

0

g

(sb7)

.

.

.

x[a

00

=a]

[e=b]

�! x[a

00

=a][e=b]

�: fy=a

00

gh[x[a

00

=a]]i =) �

0

: fy

0

=a

00

gh[x[a

00

=a][e=b]]i

(db3)

:

Therefore we have

�

0

: f - y

0

gh[(fn a

0

=> x[a

0

=a][e=b])]i

�

+ �

0

: fy

0

=a

00

gh[x[a

0

=a][e=b][a

00

=a

0

]]i:

and since

x[a

0

=a][e=b][a

00

=a

0

] S x[a

00

=a][e=b];

we have that

�

0

: fy

0

=a

00

gh[(fn a

0

=> x[a

00

=a])]i R

0

�

0

: fy

0

=a

00

gh[(fn a

0

=> x[a

0

=a][e=b][a

00

=a

0

])]i:

Case 3c: (sub6)

The proof is of the form:

�

1

�

[e=a]

=) �

0

�

2

y

[e=a]

�! y

0

�: f - yg

[e=a]

=) �

0

: f - y

0

g

(sb2)

(fn a => x)

[e=a]

�! (fn a => x)

(sub6)

�: f - ygh[(fn a => x)]i =) �

0

: f - y

0

gh[(fn a => x)]i

(db3)

44

Therefore:

�

1

�

[e=a]

=) �

0

�

2

y

[e=a]

�! y

0

�: fy=a

0

g =) �

0

: fy

0

=a

0

g

(ke8)

�: fy=a

0

gh[x[a

0

=a]]i =) �

0

: fy

0

=a

0

gh[x[a

0

=a]]i

(db1)

where �

0

: f - y

0

gh[(fn a => x)]i

�

+ �

0

: fy

0

=a

0

gh[x[a

0

=a]]i.

Case 3d: (sub7) There are three cases depending on whether � = if, then or else. The

proof is of the form:

�

[e=a]

=) �

0

x

[e=a]

�! x

0

y

[e=a]

�! y

0

z

[e=a]

�! z

0

if x then y else z

[e=a]

�! if x

0

then y

0

else z

0

(sub7)

�h[if x then y else z]i =) �

0

h[if x

0

then y

0

else z

0

]i

(db3)

:

In the �rst case:

�

[e=a]

=) �

0

y

[e=a]

�! y

0

z

[e=a]

�! z

0

�: f - ?y; zg

[e=a]

=) �

0

: f - ?y

0

; z

0

g

(sb4)

x

[e=a]

�! x

0

�: f - ?y; zgh[x]i =) �

0

: f - ?y

0

; z

0

gh[x

0

]i

(db3)

where �h[if x

0

then y

0

else z

0

]i

if

+ �: f - ?y

0

; z

0

gh[x

0

]i. In the second case:

�

:

=) [e=a]�

0

x

[e=a]

�! x

0

z

[e=a]

�! z

0

�: fx? - ; zg

[e=a]

=) �

0

: fx

0

? - ; z

0

g

(sb5)

y

[e=a]

�! y

0

�: fx? - ; zgh[y]i =) �

0

: fx

0

? - ; z

0

gh[y

0

]i

(db3)

where �h[if x

0

then y

0

else z

0

]i

then

+ �: fx

0

? - ; z

0

gh[y

0

]i. In the third case:

�

[e=a]

=) �

0

x

[e=a]

�! x

0

y

[e=a]

�! y

0

�: fx?y; - g

[e=a]

=) �

0

: fx

0

?y

0

; - g

(sb6)

z

[e=a]

�! z

0

�: fx?y; - gh[z]i =) �

0

: fx

0

?y

0

; - gh[z

0

]i

(db3)

where �h[if x

0

then y

0

else z

0

]i

then

+ �: fx

0

?y

0

; - gh[z

0

]i.

Case 4: (db4)

The proof is of the form:

�

!

=) �

0

x

[v=a]

�! x[v=a]

(fn a => x)

2v

�! x[v=a]

(tp5)

�: f - vgh[(fn a => x)]i =) �h[x[v=a]]i

(db4)

45

Therefore

�

!

=) �

�: fv=a

0

g

[v=a

0

]

=) �

(sb1)

x[a

0

=a]

[v=a

0

]

�! x[a

0

=a][v=a

0

]

�: fv=a

0

gh[x[a

0

=a]]i =) �h[x[a

0

=a][v=a

0

]]i

(db3)

where �h[x[v=a]]i S �h[x[a

0

=a][v=a

0

]]i.

Case 5: (db5),(db6),(db7),(db8)

In all of these cases, the expression in focus must be a constant or function de�nition

and no focusing step is possible.

Case 6: (db9) First we will consider if � 2 f l, r, if, then or else g then we will consider

the case where � = �.

Case 6a: d = �h[x]i, d

0

= �: ch[x

0

]i, � 2 f l, r, if, then or else g

�

�

�

=) d

�h[x]i =) d

(db9)

Therefore

�

�

�

=) d

�: c

�

=) d

(br1)

�: ch[x

0

]i =) d

(db9)

where d = d.

Case 6b: d = �: f - ygh[(fn a => x)]i, d

0

= �: fy=a

0

gh[x[a

0

=a]]i, � = �

�

�

�

=) d

�: f - yg

�

=) d

(br1)

�: f - ygh[x]i =) d

(db9)

Therefore

�

�

�

=) d

�: fy=ag

�

=) d

(br1)

�: fy=a

0

gh[x[a

0

=a]]i =) d

(db9)

where d = d.

Now we will consider the possible transitions of d

0

. Actually, we will see that we have

already considered all the necessary cases.

46

Case 1:(db1) This case was considered as Case 1 in the �rst part of this proof.

Case 2:(db2) The last rule in the proof can be

(tr1): considered in Case 2a

(tr2): considered in Case 2b

(tr3): considered in Case 2d

Case 3:(db3) The last rule in the proof can be (sb1) - (sb7)

(sb1): considered in Case 4

(sb2): considered in Case 3a

(sb3): considered in Case 3a

(sb4): considered in Case 3d

(sb5): considered in Case 3d

(sb6): considered in Case 3d

(sb7): considered in Case 3b

Case 4:(db4) This case was considered in Case 2c.

Case 5:(db5) This case was considered in Case 2a.

Case 6:(db6) This case was considered in Case 2c.

Case 7:(db7) This case was considered in Case 2e.

Case 8:(db8) This case was considered in Case 2f.

Case 9:(db9) The last rule in the proof can be (br1) - (br3)

(br1): considered in Case 6.

(br2): considered in Case 2f.

(br3): considered in Case 2e.

2

