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Abstract. Beginning with the categoryDom of Scott domains and con-

tinuous maps, we introduce a syntax for data
ow networks as \systems

of inequalities," and provide an associated operational semantics. We ob-

serve that, under this semantics, a system of inequalities determines a

two-sided �bration in Dom. This leads to the introduction of a certain

class of cartesian arrows of spans as a notion of morphism for systems.

The resulting structure Sys, consisting of domains, systems, and mor-

phisms, forms a bicategory that embeds Dom up to equivalence and is

suitable as a semantic model for nondeterministic networks. Isomorphism

in Sys amounts to a notion of system equivalence \up to deterministic

internal computations."

1 Introduction

Since the seminal paper of Kahn [Kah74], it has been known that networks of

concurrently and asynchronously executing deterministic processes, communi-

cating with each other by sending data values over unbounded FIFO commu-

nication channels, admit a simple and elegant semantics in which the function

computed by a network of processes is determined via a least �xed point con-

struction from the functions computed by the component processes. However,

when one introduces the possibility that processes may make nondeterministic

choices, the way in which to generalize this structure, so as to preserve best its

spirit, is not immediately evident. In spite of the large number of papers (see

e.g. [Bc94, JK89, Mis89] for pointers to earlier references) that have been pub-

lished on the subject of nondeterministic data
ow networks, in the opinion of

this author, we still cannot say that we have a fundamental understanding of

the algebra of such networks and the precise way in which this algebra extends

or generalizes the deterministic case.

The main thrust of the present paper is to explore whether a continuous

function semantics for deterministic data
ow networks can in a certain sense be

completed to yield a semantics for nondeterministic networks, so that the new

semantics embeds the original one via an embedding that preserves important

structure of the deterministic case. More precisely, we ask whether there is a way

of embedding the locally posetal bicategory [B�en67] Dom of Scott domains and

continuous maps, into a larger bicategory Sys whose 1-cells (arrows) can serve
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as interpretations for nondeterministic data
ow networks, via a homomorphism

of bicategories Dom ! Sys that respects the network-forming operations of

series composition, parallel composition, and feedback. The main result of the

paper is that this can be done, resulting in a bicategory Sys that is in a sense

equivalent to a certain bicategory of two-sided �brations inDom, with cartesian

arrows of spans as 2-cells [Gra66, Str74, Str80].

In more explicit detail, our construction starts with Dom and produces a

new structure Sys, which has as its objects the objects of Dom (i.e. the Scott

domains), as its 1-cells (arrows) certain systems of inequalities, which are syn-

tactic objects denoting nondeterministic networks, and as its 2-cells suitable

morphisms of systems of inequalities. There is, in addition, an important third

dimension to Sys: for given systems (1-cells) S and S

0

, the collection of mor-

phisms (2-cells) from S to S

0

is a dCPO, in which the ordering relationships (the

3-cells of Sys) re
ect information about the progress of computation, including

nondeterministic choice. The structure Sys embeds Dom, not just in the sense

that each object of Dom corresponds to an object of Sys and each arrow of

Dom to a 1-cell of Sys, but also in the stronger sense that ordering relation-

ships between arrows inDom manifest themselves as unique 2-cells between the

corresponding 1-cells of Sys, so that the embedding of Dom into Sys becomes

a homomorphism of bicategories [B�en67].

The relationship between Sys and Dom is analogous to, but more compli-

cated than, the relationship between the category Set of sets and functions and

the bicategory Rel of sets, binary relations between sets (1-cells), with inclu-

sion relationships between binary relations as (2-cells), or more generally, the

relationship between a regular category C and the bicategory of relations in C

[CKS84]. The homomorphism from Dom into Sys is analogous to the homo-

morphism of bicategories that takes each function between sets to the relation

(1-cell of Rel) that is its graph. The bicategory Sys is generated by Dom, in

analogy to the way in which Rel is generated by Set. Though analogous, the

relationship between Dom and Sys is of necessity more complicated than the

case of Set and Rel, because, as is well known [BA81], ordinary binary relations

do not support a denotational semantics for nondeterministic data
ow networks

that gives results in agreement with the intuitively correct operational semantics

for such networks. More generally, we observe that discrete �brations are also

inadequate for such a semantics. However, the bicategory Sys can be regarded

as a bicategory of \generalized relations" between domains, if we expand our

concept of relation to include the possibility that a single input value a and

output value b can be related in more than one way, and in addition the set of

all ways of relating a and b may have some additional structure (e.g. that of a

Scott domain).

Finally, we come to the relationship with �brations. We show that, for each

pair of domains A and B, the ordered category Sys(A;B) is equivalent to a

full subcategory of the category of two-sided �brations [Str74] from A to B

in Dom, with cartesian arrows of spans as morphisms. We use the term sys-

temic �bration to refer to �brations that correspond to systems, and we obtain a



characterization of the systemic �brations. We can then show that the syntactic

operation of series composition of systems of inequalities corresponds to the clas-

sical �brational composite, or \tensor product of bimodules" [Str74, Str80] of the

corresponding systemic �brations, and that parallel composition of systems cor-

responds simply to a cartesian product of �brations. Thus, the entire structure

Sys can be regarded as equivalent to the structure having domains as objects,

systemic �brations as 1-cells, cartesian arrows of spans as 2-cells, extensional or-

dering relationships between cartesian arrows of spans as 3-cells, in which 1-cells

are composed (vertically) by �brational composite and horizontally by cartesian

product, and \comma objects" [Str74] serve as the identities for the vertical

composition. We are also able to show that feedback of systems of inequalities

can be characterized abstractly as a construction on systemic �brations, though

this result is outside the scope of the present paper.

The results of this paper are a continuation of the author's previous work

[Sta89a, Sta89b, Sta90, Sta91], in which the relationship between data
ow net-

works and �brations was observed. The main new contributions of the present

paper are the formulation of the syntactic notion of systems of inequalities, and

the identi�cation of a suitable notion of morphism for such systems, together

with a related notion of \deterministic equivalence" of systems. The latter is

what permits us to construct a bicategory Sys that is \su�ciently abstract" to

embedDom up to equivalence. These results seem to justify the appropriateness

of a systematic study of bicategory of systemic �brations in Dom as a model

of nondeterministic data
ow networks. In particular, a characterization of this

bicategory along the lines of those given in [CKS84] for \bicategories of spans"

and \bicategories of relations" would be interesting, as would a kind of axiomatic

description like that used by [CW87]. The result of such investigations would be

an understanding of how best to strengthen and improve systems for reasoning

about data
ow networks, such as those presented in [Bc94, Sta92, Mis89].

Due to space limitations, we have omitted all proofs, and have provided

sketches of proofs only only when they serve to explain critical ideas.

2 Systems of Inequalities

We begin with the categoryDom of Scott domains, (countably algebraic, bound-

ed-complete, directed-complete partial orders), with continuous maps as mor-

phisms. The hom-sets of this category are again domains under the extensional

ordering, which we denote by v, and composition of morphisms in Dom is

monotone and continuous with respect to this ordering. This structure can be

summarized by the statement that Dom is a \category enriched in Dom," or a

\Dom-category" [Kel82].

By an inequality over Dom, we mean an expression of the form fv v gu;

where v and u are formal variables, with u called the independent variable and

v the dependent variable, and where f : B ! C and g : A ! C are arrows of

Dom. We say that variables u and v have sorts A and B, respectively, in the

above inequalities. An inequality is called covariant if the map f is an identity,



so that the inequality may be written in the abbreviated form v v gu: Similarly,

an inequality is called contravariant if the map g is an identity.

A system of inequalities over Dom consists of a �nite set S of inequalities,

together with a partitioning of the set of variables appearing in the inequalities

into covariant and contravariant variables, such that the following conditions are

satis�ed:

1. Every inequality in S is either covariant or contravariant.

2. A covariant variable is only permitted to appear as the dependent variable

in a covariant inequality, and as the independent variable in a contravariant

inequality. In addition, a covariant variable may have at most one dependent

occurrence in S.

3. A contravariant variable is only permitted to appear as the dependent vari-

able in a contravariant inequality, and as the independent variable in a co-

variant inequality.

4. There is a unique variable i

S

that has no dependent occurrence in any of the

inequalities of S; we call this variable the input variable. There is a unique

variable o

S

that has no independent occurrence in any of the inequalities of

S; we call this variable the output variable. The input and output variables

are required to be covariant.

5. All occurrences of the same variable v in S have the same sort, which we

denote by jvj

S

.

6. For every contravariant inequality in S of the form fv v u, the map f is

required to be strict (f? = ?), additive (f(bt b

0

) = fbt fb

0

, whenever bt b

0

exists), and has the following accessibility property: for all b 2 jvj

S

, and for

every chain a

0

v a

1

v a

2

v : : : in juj

S

with t

i

a

i

= fb, there exists a chain

b

0

v b

1

v b

2

v : : : in jvj

S

such that fb

i

v a

i

for all i and such that t

i

b

i

= b.

When the system S is clear from the context, we abbreviate i

S

and o

S

as i

and o, respectively, and we drop the subscript S from jvj

S

. The sort jij of the

distinguished input variable is called the input sort of the system S, the sort joj

is called the output sort of S, and we say that S is a system from jij to joj.

The role of the technical condition (6) will be (cf. Proposition 1) to ensure

that the \comma poset" f(a; b) : fb v ag is a domain, which embeds \nicely"

as a subdomain of the product domain A � B. The embedding will be such

that the operational notion \reachability by a computation sequence" exactly

coincides with the componentwise ordering on pairs (a; b), and such that every

pair (a; b) with fb v a is reachable from (?;?) by a computation sequence.

These relationships are necessary to maintain a tight correspondence between

operational and denotational semantics.

It will often be convenient to describe particular systems of inequalities, or

construction on such systems, using a graphical notation. In this notation, a

system is represented as a directed graph, with two types of arrows, covariant,

which we represent by B A

oo

g

, and contravariant, which we represent by

B A

oo

f

. The nodes of the graph are labeled by objects of Dom, and the

edges are labeled by arrows of Dom, in such a way that if there is a g-labeled



covariant edge from a node labeled by A to a node labeled by B, then g : A! B

in Dom, and if there is an f-labeled contravariant edge from a node labeled

by A to a node labeled by B, then f : B ! A in Dom. Each node in the

graph corresponds to a distinct formal variable, each covariant edge to a distinct

covariant inequality in the system, and each contravariant edge to a contravariant

inequality in the system.

Using our graphical notation, we now describe some particular systems of

inequalities, and constructions on such systems, which will be of interest to us.

Basic Systems

If f : C ! A and g : C ! B, then the basic system determined by f and g is

the three-variable, two-inequality system from A to B described by the graph:

B C

oo

g

A

oo

f

A basic system in which the map f is an identity is called a basic covariant

system. Similarly, a basic system in which the map g is an identity is called

a basic contravariant system. The basic systems in which both f and g are

identities play a special role. We call them bu�ers.

Series Composition

If R is a system from A to C, and S is a system from C to B, then the series

composition of R and S is the system S � R described by the graph:

B : : :S : : :

oo

C

oo

: : :R : : :

oo

A

oo

where it is understood that the labeled boxes stand for the graphs of R and S.

Parallel Composition

If S

1

is a system from A

1

to B

1

, and S

2

is a system from A

2

to B

2

, then the

parallel composition of S

1

and S

2

is the system S

1

� S

2

described by the graph:

B

1

vv

pr

B

1

l

l

l

l

: : : S

1

: : :

oo

A

1

oo

B

1

�B

2

B

1

�B

2

oo

1

A

1

� A

2

hh
pr

A

1

R

R

R

R

R

vv

pr

A

2

l

l

l

l

l

A

1

�A

2

oo

1

B

2

hh

pr

B

2

R

R

R

R

: : : S

2

: : :

oo

A

2

oo

where the pr

X

denote the evident projections. Note that \bu�ers" have been

inserted to satisfy the requirement that the input and output variables of a

system be covariant.

Feedback

If S is a system from A � C to B � C, then the feedback of S by C is the

system S

?C

from A to B described by the graph:

B

B �C

oo

pr

B

++

pr

C

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

B �C

oo

1

: : :S : : :

oo

A� C

oo

A�C

oo

1

A

oo

pr

A

C

33

pr

C

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h



The regular (resp. regular covariant) systems of inequalities are those that can

be constructed from basic (resp. basic covariant) systems using the operations

of series composition, parallel composition, and feedback.

The idea that systems of inequalities could be used to describe nondeter-

ministic data
ow networks was �rst proposed by Misra [Mis89]. The operational

semantics we give in the next section is essentially a re�nement and elaboration

of Misra's \smooth solution" idea.

3 Operational Semantics

An assignment for a system of inequalities S consists of a collection of elements

q

v

2 jvj, one for each variable v appearing in the inequalities in S. The set of all

assignments for S, with the componentwise ordering, is a Scott domain, which

we denote by Asgt

S

. Note that Asgt

S

is simply the cartesian product of the

sorts of all variables in S. As a special role will be played by the mappings that

take an assignment q of S to the value q

i

of the input variable and the q

o

of the

output variable, it will be convenient to use the symbols i and o to denote these

mappings. Thus, i : Asgt

S

! A and o : Asgt

S

! B; and we write iq for q

i

2 A

and oq for q

o

2 B. It is easy to see that the maps i and o are continuous. Thus,

the triple (o;Asgt

S

; i) is a span from A to B in the category Dom:

B

Asgt

S

oo

o

//

i

A

In general, a span in a category consists of an object and two arrows in the

con�guration shown above.

The system S is said to be satis�ed by an assignment q if for each inequality

gv v fu of S the relationship gq

v

v fq

u

holds in Dom. The satisfying assign-

ments for a system of inequalities are called the con�gurations of the system.

Let Conf

S

denote the set of all con�gurations of system S.

If S is a system from A to B, then a transition of S is a pair of con�gurations

q v r, such that for all inequalities fv v gu in S, we have fr

v

v gq

u

. We write

q ) r to denote a transition from q to r. A transition q ) r is called �nitary if

r = q t c for some compact element c of Asgt

S

.

A �nite computation sequence from q to q

0

for a system of inequalities S

is a sequence of transitions: q

0

) q

1

) q

2

) : : : ) q

n

with q

0

= q and

q

n

= q

0

. An in�nite computation sequence from q to q

0

is a sequence of transitions:

q

0

) q

1

) q

2

) : : : with q

0

= q and t

i

q

i

= q

0

. A �nite or in�nite computation

sequence is called �nitary if each transition q

i

) q

i+1

is a �nitary transition. We

say that a con�guration q

0

is �nitarily reachable from q if there exists a �nite,

�nitary computation sequence from q to q

0

, reachable from q if there exists a

�nite computation sequence from q to q

0

, ultimately �nitarily reachable from q if

there exists an in�nite �nitary computation sequence from q to q

0

, and ultimately

reachable from q if there exists an in�nite computation sequence from q to q

0

.

A con�guration of a system S is called a �nitary state if it is �nitarily reach-

able from ?, and it is called a state if it is ultimately �nitarily reachable from



?. We use State

S

to denote the set of states of system S, ordered by ultimate

reachability, and we shall refer to intervals in State

S

as computations.

The following result says that ultimate reachability between states of a system

of inequalities coincides with the extensional ordering on assignments. Thus,

the computations of a system S already \live" within the domain Asgt

S

of

assignments for S. The result also says that \ultimate �nitary reachability from

?" coincides with the simpler notion \ultimate reachability from ?." The proof

of this result depends crucially on the technical condition (6) in the de�nition

of a system of inequalities.

Proposition1. Let S be a system of inequalities. Then a con�guration q of S

is a state if and only if it is ultimately reachable from ?. The set State

S

of

states, ordered by ultimate reachability, is a normal subdomain ([GS90], p. 642)

of Asgt

S

, the compact elements of which are precisely the �nitary states. More-

over, State

S

is transition-closed in Asgt

S

, in the sense that whenever q 2 State

S

and q ) r is a transition, then r 2 State

S

as well.

A state q of a system S is called completed if whenever q

0

is a state of

S such that q v q

0

and iq = iq

0

, then q = q

0

. Intuitively, completed states

represent states in which all computation that is enabled by the available input

has already occurred. The input/output relation of a system S from A to B is

de�ned to be the set R

S

of all pairs (iq;oq), such that q is a state of S. The

completed input/output relation of S is the set R

S

of all pairs (iq;oq) such that

q is a completed state of S. Both the input/output relation and the completed

input/output relation give basic information about the input/output behavior

of a system of inequalities. The input/output relation simply gives the set of

input/output pairs that can be observed as the results of computations from

?. The completed input output relation gives only those pairs corresponding

to computations that are \completed" in the sense of having made \maximal

progress," given the available input.

To illustrate the expressive power of the systems of inequalities model, we

now consider brie
y an example, originally given by Misra [Mis89]. Let V be a

set of data values, which we assume contains at the two distinct elements 0 and

1. Let V

1

denote the domain of �nite and in�nite sequences of elements of V ,

with the pre�x ordering. Let V + V = (V � f0g) [ (V � f1g) be the disjoint

union of two copies of V , and let (V + V )

1

be the domain of �nite and in�nite

sequences of elements of V + V .

Let the maps

proj

0

; proj

1

: (V + V )

1

! V

1

be the projection maps that take a sequence of elements of V +V and extract the

subsequences of values in the left summand and the right summand, respectively.

De�ne

deal = hproj

0

; proj

1

i : (V + V )

1

! V

1

� V

1

;

that is, deal is a map that distributes a \tagged" input sequence onto two un-

tagged output sequences, using the tags to determine the destination of each



value in the input sequence. Let strip : (V + V )

1

! V

1

be the map that

\strips tags" from its input sequence. Now, consider the system:

V

1

(V + V )

1

oo

strip

V

1

� V

1

oo

deal

By examining the possible computation sequences for this system, one sees that

it nondeterministically performs a \tagged merge" of two input sequences, then

strips the tags before outputting the resulting sequence. This nondeterministic

system corresponds to what has generally been called \angelic merge" in the

literature on data
ow networks (though [Mis89] calls it \fair merge"). See [PS92,

PS88] for further discussion on various types of nondeterministic merging that

have been considered.

4 Properties of the State Space

The state space State

S

of a system of inequalities S has a number of special

properties, which we explore in this section. Our objective here is not just to

make a list of properties that are simple consequences of properties of partial

orders, but rather to forge a connection between the concrete, syntactic systems

of inequalities model and its associated operational semantics on the one hand,

and the abstract theory of �brations on the other hand. This development leads

directly to (1) the identi�cation of an appropriate notion of morphism of sys-

tems, so that domains, systems, and morphisms become a bicategory Sys, and

isomorphism in Sys turns out to be an appropriate and useful notion of system

equivalence; (2) the characterization of Sys up to equivalence as a bicategory

of �brations in Dom, with corresponding characterizations of the operations of

sequential composition, parallel composition, and feedback. Ultimately, we hope

to achieve an axiomatization of Sys as a \bicategory of �brations," within which

reasoning about data
ow networks could be carried out categorically.

Proposition2. Suppose S is a system from A to B. Then the maps i : State

S

!

A and o : State

S

! B are strict, additive, and accessible.

Proposition3. Suppose S is a system from A to B. If q is a state of S, then:

1. For all a w iq, there exists a least state qt a of S such that a v i(q t a) and

such that q v q t a. Moreover, i(q t a) = a.

2. For all b v oq, there exists a greatest state b u q of S such that o(b u q) v b

and such that b u q v q. Moreover, o(b u q) = b.

3. For all a w iq and all b v oq we have b u (q t a) = (b u q) t a.

A partially ordered set S, equipped with monotone maps i : S ! A and

o : S ! B having the properties stated in Proposition 3 above is called a (two-

sided) �bration from A to B [Gra66, Str74]. We can thus restate Proposition 3

as follows: If S is a system from A to B, then the span:

B

State

S

oo

o

//

i

A



is a �bration from A to B in the 2-category of posets and monotone maps.

A �bration can be thought of as a kind of generalized monotone relation,

which allows a particular input/output pair (a; b) to be related in more than

one way. The set fq 2 State

S

: oq = b; iq = ag of di�erent ways in which a

particular pair (a; b) can be related is called the �ber over b and a. The sense in

which �brations are \monotone" is that an interval a v a

0

in A, representing an

increase in input, and an interval b

0

v b in B, representing a decrease in output,

induce a transformation from the \ways of relating a and b" (the �ber over a

and b) to the \ways of relating a

0

and b

0

" (the �ber over a

0

and b

0

). Speci�cally,

this transformation takes q to b

0

u q t a

0

.

An interesting special case of �brations occurs when each of the �bers is a

discrete partial order (i.e. a set); these are called discrete �brations. A discrete

�bration corresponds to a kind of generalized input/output relation for which

each given pair (a; b) can be related in multiple ways, but for which there is

no connection between the di�erent ways of relating b and a. The �brations

determined by systems of inequalities are not discrete, in general, because in

general there will be nontrivial ordering (ultimate reachability) relationships

between ways of relating b and a. These ordering relationships are signi�cant

from the point of view of computational intuition. States q and q

0

, in the the

�ber over a and b, that are incomparable with respect to the ultimate reachability

ordering but nevertheless consistent in the sense of having an upper bound within

the same �ber, can be thought of as representing situations that could occur

in a single concurrent computation. States q and q

0

that are inconsistent with

respect to the ultimate reachability ordering represent situations that re
ect two

distinct, incompatible resolutions of some nondeterministic choice, and thus do

not represent situations that could occur in a single concurrent computation.

If S is a system from A to B, then there exist \comma posets":

i

S

=A = f(q; a) : iq v ag B=o

S

= f(b; q) : b v oqg :

Proposition 3 gives us monotone maps:

t : i

S

=A! State

S

: (q; a) 7! q t a u : B=o

S

! State

S

: (b; q) 7! b u q :

It can be shown that the posets i

S

=A and B=o

S

are in fact domains, and the

maps t and u are continuous.

In the theory of �brations [Gra66, Str74], the above maps t and u play a

special role. We refer to t as the input action and to u as the output action of

the �bration associated with the system S. These maps turn out [Str74] to give

State

S

(more precisely, the span (o; State

S

; i)) a structure of algebra for two

monads that correspond to the constructions of i

S

=A and B=o

S

from State

S

(to be precise, these have to be viewed as constructions on spans from A to

B), and in fact the notion of �bration can actually be characterized in terms

of the existence of such structure maps. Thus, State

S

is not just a �bration in

the 2-category of posets and monotone maps, but in fact also in the 2-category

Dom.



In the context of Proposition 3 above, we call computations of the form

q v qta pure-input computations, and we call computations of the form buq v b

pure-output computations. (In the standard terminology associated with �bra-

tions [Gra66], these would be called \opcartesian" and \cartesian" morphisms,

respectively.) Computations q v q

0

such that iq = iq

0

and oq = oq

0

are called

internal computations. An interesting and useful result that follows from gen-

eral considerations is that every interval in State

S

has a unique factorization as

a pure-input computation, followed by an internal computation, followed by a

pure-output computation.

The following result does not hold for �brations in general, but does hold for

�brations derived from systems of inequalities, due to the syntactic restrictions

we have placed on the occurrence of the output variable in such systems.

Proposition4. Suppose S is a system of inequalities from A to B. Then the

output action u : B=o

S

! State

S

has a right adjoint:

u

�

: State

S

! B=o

S

: q 7! (oq; q)

with identity counit, where q is obtained from q by increasing the value of the out-

put variable until the unique inequality having the output variable as a dependent

variable is satis�ed exactly.

The above result implies the existence, for any state q, of a largest state q for

which there exists a pure-output computation q v q

0

. We call the state q in the

previous result the pure-output completion of state q. This property turns out to

be equivalent to the statement that systems of inequalities are \output bu�ered,"

in the sense of being equivalent to their series compositions on the output side

with a bu�er. This property is an important characteristic of data
ow networks.

5 Deterministic Computations

We are not interested in distinctions between systems arising solely from certain

details of internal computation. For example, even though the systems

B C

oo

g

C

oo

1

C

A

oo

g

0

A

oo

1

A

B A

oo

gg

0

A

oo

1

A

do not have state spaces that are isomorphic as spans, the di�erence between

the two has only to do with the fact that the former has internal variables whose

values in a sense depend functionally on the input variable. This di�erence is

uninteresting from the point of view of input/output behavior. We wish to de-

�ne and investigate a notion of system equivalence that ignores this type of

distinction between systems. Our basic approach in addressing these issues is to

characterize a class of internal computations of systems that we regard as \unin-

teresting", and then to de�ne a notion of isomorphism of systems by essentially

arranging for all such uninteresting computations to be mapped to identities.

The most obvious candidate class of \uninteresting internal computations" is



the class of all internal computations. In a formal mathematical sense, it is in-

deed possible to factor the set of states of a system into classes \connected by

internal computation." In �brational terms, the result of this construction would

be a discrete �bration, because all the �bers would be reduced to unstructured

sets. Since the theory of discrete �brations is well-developed, this idea, of trying

to \discretize" the �brations derived from systems of inequalities, is very tempt-

ing. However, from a computational point of view, it is wrong, as the necessary

quotienting construction fails to distinguish systems having distinct completed

input/output relations. In particular, if

pr

1

: V

1

� V

1

! V

1

: (a; a

0

) 7! a u : V

1

� V

1

! V

1

: (a; a

0

) 7! a u a

0

then the systems

V

1

V

1

� V

1

oo

u

V

1
oo

pr

1

V

1

V

1
oo

1

V

1
oo

1

have distinct completed input/output relations, but determine the same discrete

�bration. Essential information about the completed input/output relation of a

system is thus lost if we completely ignore internal computations.

So, if we are to ensure that completed input/output relations are respected

by system equivalence, we must stop short of identifying all states that are

connected by internal computations. In light of this fact, it is appropriate to

look for a suitable class of uninteresting internal computations that is smaller

than the full class of internal computations. A class of internal computations with

particularly nice properties is the class of \deterministic internal computations,"

which we now de�ne and investigate.

Formally, suppose S is a system of inequalities from A to B. An endomor-

phism � : State

S

! State

S

in Dom is called increasing if the inequality 1

A

v �

holds. It is called a re
exive if it is increasing and also idempotent (�� = �).

The map � is called an arrow of spans if it preserves input and output; that

is, if i� = i and o� = o hold. An internal computation q v q

0

of S is called

deterministic if there exists an increasing arrow of spans � on State

S

such that

�q = �q

0

. De�ne states q and q

0

of S to be deterministically equivalent if �q = �q

0

for some increasing arrow of spans � on State

S

.

It can be shown that any two increasing arrows of spans on State

S

have a

least upper bound (by taking the colimit of a \tower" of composites). It follows

from this, using directed completeness and continuity, that there always exists

a largest increasing arrow of spans on State

S

, which is necessarily a re
exive.

Proposition5. Suppose S is a system of inequalities. Then the following are

equivalent statements about an internal computation q v q

0

of S:

1. �q = �q

0

, where � is the largest increasing arrow of spans on State

S

.

2. �q = �q

0

for some re
exive arrow of spans � : State

S

! State

S

.

3. �q = �q

0

, for some increasing arrow of spans � : State

S

! State

S

.



Proposition 5 can be used to establish that the class of deterministic internal

computations is the largest class of internal computations that is stable under

pushout along arbitrary internal computations. We prefer the abstract de�nition

in terms of re
exives because it lends itself more readily to categorical reasoning.

We can characterize the class of deterministic internal computations of sys-

tems of inequalities formed by series composition, parallel composition, and feed-

back. This is done by characterizing the largest increasing arrows of spans on

such systems. The next result gives this characterization in the case of feedback,

which is the most interesting case. The cases of series and parallel composition

are similar, but simpler, and are omitted.

Proposition6. Suppose S is a system from A�C to B�C. Let � be the largest

increasing arrow of spans on State

S

. Then the largest increasing arrow of spans

on State

S

?C

is the colimit t

i

�

i

of the chain 1 v � v �� v : : :, where � is the

map that takes a state of the form

b

oo

pr

B

))

pr

C

T

T

T

T

T

T

T

T

T

T

T

T

T

oo

1

: : : s : : :

oo oo oo

1

a

oo

pr

A

c

55

pr

C

j

j

j

j

j

j

j

j

j

j

j

j

to the state

b

hb

0

; c

0

i

oo

pr

B

++

pr

C

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

hb

0

; c

0

i

oo

1

: : :
�(s t

S

ha; ci)
: : :

oo

ha; ci

oo

ha; ci

oo

1

a

oo

pr

A

c

0

33

pr

C

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

where hb

0

; c

0

i = o(�(s t

S

ha; ci)).

In the preceding result, we have extended the use of our graphical notation

for systems in an obvious way to serve as a notation for representing assignments

for a system.

6 Morphisms of Systems

Suppose S and S

0

are systems of inequalities from A to B. A weak morphism

from S to S

0

is an arrow of spans: h : State

S

! State

S

0

such that the following

conditions are satis�ed:

1. h is input quasi-cartesian: for all q 2 State

S

and all a 2 A with iq v a, the

internal computation (hq) t a v h(q t a) of State

S

0

is deterministic.

2. h is output quasi-cartesian: for all q 2 State

S

and all b 2 B with b v oq, the

computation h(b u q) v b u (hq) in State

S

0

is deterministic.

3. h preserves deterministic computations: whenever q v r is a deterministic

computation of S, then hq v hr is a deterministic computation of S

0

.



Note that the existence of the computations referred to in conditions (1) and (2)

is ensured by the universal properties of t and u. In conditions (1) and (2) of the

above de�nition, if the computation (hq)ta v h(qta) (resp. h(buq) v bu (hq))

is an identity, so that (hq) t a = h(q t a) (resp. h(b u q) = b u (hq)), then h is

called input cartesian (resp. output cartesian). We call a map quasi-cartesian if

it is both input and output quasi-cartesian, and cartesian if it is both input and

output cartesian.

A morphism from S to S

0

is a weak morphism h that satis�es the additional

property:

4. h is deterministically complete: if �

0

: State

S

0

! State

S

0

is the largest in-

creasing arrow of spans on State

S

0

, then �

0

h = h.

Note that in fact property (4) implies property (3).

Proposition7. Suppose S is a system of inequalities from A to B. Then

1. Every increasing arrow of spans on State

S

is input quasi-cartesian.

2. The largest increasing arrow of spans on State

S

is output cartesian.

Though the proof of (1) above is reasonably straightforward, the proof of

(2) is nontrivial, and it involves using the right adjoint to the output action u

S

to construct an increasing arrow of spans � such that if � denotes the largest

increasing arrow of spans on State

S

, then all computations �(b u q) v �(b u �q)

are identities.

Proposition8. Suppose h : State

S

! State

S

0

is a weak morphism. If �

0

denotes

the largest increasing arrow of spans on State

S

0

, then �

0

h is a morphism.

The next result states that, if we restrict our attention to basic covariant

systems, morphisms correspond exactly to the extensional ordering v.

Proposition9. Consider the basic covariant system: S : B A

oo

g

A

oo

1

A

:

If S

0

is an arbitrary system from A to B, then there can be at most one morphism

h : S

0

! S. Moreover, if S

0

is the basic covariant system B A

oo

g

0

A

oo

1

A

;

then there is a morphism h : S

0

! S if and only if g

0

v g.

Let dCPO

?

denote the category of directed-complete posets with least ele-

ment.

Theorem 1 The systems of inequalities from A to B are the objects of a

dCPO

?

-category Sys(A;B), whose arrows are the morphisms of systems, with

ordinary function composition as composition of morphisms, and with the largest

increasing arrow of spans on State

S

as the identity morphism of S. The order-

ing on homs is the extensional ordering. The full subcategory determined by the



basic covariant systems is a poset isomorphic to Dom(A;B). The syntactic op-

erations of series composition, parallel composition and feedback of systems of

inequalities extend to locally continuous functors:

- � - : Sys(C;B)� Sys(A;C)! Sys(A;B)

- � - : Sys(A

1

; B

1

) � Sys(A

2

; B

2

)! Sys(A

1

�A

2

; B

1

�B

2

)

( - )

?C

: Sys(A� C;B � C)! Sys(A;B) :

We call systems S and S

0

from A to B deterministically equivalent if they

are isomorphic objects in the category Sys(A;B).

Proposition10. If systems S and S

0

are deterministically equivalent, then they

have the same completed input/output relation.

Proposition11. Every system of inequalities S from A to B is deterministically

equivalent to a basic system B

State

S

oo

o

S

A

oo

i

S

Theorem 2 If S and S

0

are regular covariant systems from A to B, then S and

S

0

are deterministically equivalent if and only if they denote the same function

under the classical (Kahn) semantics, in which series composition of systems

corresponds to function composition, parallel composition of systems to carte-

sian product of functions, and feedback of systems to the usual least �xed point

construction.

We are now able to organize domains, systems of inequalities, morphisms

of systems, and their computations into a single algebraic structure Sys, which

might be called a \bicategory with homs in dCPO

?

-Cat."

Theorem 3 The dCPO

?

-categories Sys(A;B) are the homs of a bicategory

Sys, where composition is given by the series composition functors

- � - : Sys(C;B)� Sys(A;C)! Sys(A;B)

and for each domain A, the identity element of Sys(A;A) is the \A-bu�er":

A A

oo

1

A

A :

oo

1

A

Moreover, there is a homomorphism of bicategories ( - )

�

: Dom ! Sys that

takes each function g : A! B to the basic covariant system g

�

:

B A

oo

g

A

oo

1

A

and takes each ordering relationship g v g

0

to the unique morphism: g

�

! g

0

�

.

It is natural to ask what happens if we factor the �bration State

S

associated

with a system of inequalities S by splitting the largest re
exive arrow of spans

on State

S

. It turns out that we can do this, and the result is again a �bra-

tion. Let us call a �bration systemic if it results by this splitting construction



from a system of inequalities. Systemic �brations can be characterized as spans

in the subcategory of strict, additive and accessible maps in Dom, which are

in addition �brations in Dom whose output actions have right adjoints with

identity counit, and which admit no nontrivial re
exive arrows of spans. A sys-

temic �bration B S

oo

g

//

f

A from A to B thus determines a basic system

B S

oo

g

A:

oo

f

Series composition of systems translates under the split-

ting construction to the classical \�brational composite" or \tensor product of

bimodules" [Str74, Str80]. Morphisms of systems translate to \cartesian arrows

of spans," which are the standard notion of morphism for �brations.

7 Conclusion

We conclude with a very brief comparison with the closely related paper

[HPW98], in this same Proceedings, where the use of profunctors is proposed

as a model for data
ow. Profunctors between posets are equivalent to discrete

�brations between posets, and the composition of profunctors using coends is

equivalent to �brational composite of discrete �brations. A �brational version of

feedback can also be given corresponding to the \secured coend" characterization

in [HPW98]. We have noted in Sect. 5 the inadequacy of discrete �brations if

completed input/output relations are of interest. The paper [HPW98] avoids this

and some other important technicalities by treating only �nite computations.

In �brational terms, the \stability" condition in [HPW98] ensures the exis-

tence of minimal representatives in each �ber. In this case, the \discretization

mapping" taking State

S

to a discrete �bration (i.e. profunctor) amounts to split-

ting the least core
exive arrow of spans, in contrast to the present paper, where

we split the greatest re
exive. In intuitive terms, splitting the least core
exive

amounts to equating q and q

0

if we can reach a common state by \computing

backward codeterministically" from both q and q

0

. Splitting the largest re
exive

amounts to identifying q and q

0

if we can reach the same state by \computing for-

ward deterministically." In the presence of stability, every internal computation

is codeterministic. The stability condition would seem to be a signi�cant restric-

tion on the expressiveness of the model, though [HPW98] does not make this

clear. For example, can any non-stable functions between domains be expressed

as stable profunctors?
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