
Proving Entailment Between Conceptual

State Speci�cations

Eugene W. Stark

�y

September 24, 1986

Abstract

The lack of expressive power of temporal logic as a speci�cation language can be compensated

to a certain extent by the introduction of powerful, high-level temporal operators, which are

di�cult to understand and reason about. A more natural way to increase the expressive power

of a temporal speci�cation language is by introducing conceptual state variables, which are

auxiliary (unimplemented) variables whose values serve as an abstract representation of the

internal state of the process being speci�ed. The kind of speci�cations resulting from the latter

approach are called conceptual state speci�cations.

This paper considers a central problem in reasoning about conceptual state speci�cations:

the problem of proving entailment between speci�cations. A technique, based on the notion of

simulation between machines, is shown to be sound for proving entailment. A kind of complete-

ness result can also be shown, if speci�cations are assumed to satisfy certain well-formedness

conditions. The role played by entailment in proofs of correctness is illustrated by the problem

of proving that the concatenation of two FIFO bu�ers implements a FIFO bu�er.

�

This research was performed in part while the author was a graduate student at the Massachusetts Institute of

Technology, during which period the author was supported in part by ARO grant DAAG29-84-K-0058, NSF grant

DCR-83-02391, and DARPA grant N00014-82-K-0125.

y

Author's present address: Department of Computer Science, State University of New York at Stony Brook, Stony

Brook, New York 11794-4400 USA.

1

1 Introduction

A process

1

can be characterized in terms of the possible histories of its accesses to variables.

A speci�cation describes a process by stating properties that are required to hold of all possible

histories for that process. As has been shown by a number of authors ([BK83], [BK84], [Lam83],

[HO80], [SM81]), such process speci�cations can be expressed as sentences in linear-time temporal

logic. One of the di�culties with temporal logic as a speci�cation language is that, at least in the

most basic formulations, it is lacking in expressive power. This lack of expressive power can be

compensated to a certain extent by the introduction of a number of powerful temporal operators

such as until, chop or combine, and iterated combine ([BK84], [Wol81]). However, these operators

do not permit ones intuitive understanding of the desired process behavior to be formalized in

the most direct and natural way, and also make reasoning about the resulting speci�cations more

di�cult.

An alternative to the use of powerful temporal operators is the technique of conceptual state

speci�cation. In a conceptual state speci�cation, the behavior of a process with respect to a

collection of program variables is speci�ed with the help of a collection of conceptual state or

auxiliary variables, whose values serve as an abstract representation of the internal state of the

process. Conceptual state variables appearing in a speci�cation are not intended to be implemented;

their introduction serves merely to increase the expressive power of the temporal logic. A process

satis�es a conceptual state speci�cation if every computation of that process can be augmented or

\explained" through the addition of a history of values for the conceptual state variables, in such

a way that the temporal sentence comprising the speci�cation is satis�ed.

In contrast to speci�cations involving the use of powerful temporal operators, conceptual state

speci�cations appear to be a rather direct and natural way to formalize an intuitive understanding

of the desired process behavior. For example, a conceptual state speci�cation of a FIFO bu�er

process B directly formalizes an informal description that begins: \Imagine that process B contains

an internal variable queue, whose value at any instant records the sequence of messages input to the

bu�er but not yet output . . .," and continues with a description of the initial state of a bu�er process,

the kinds of state transitions that may be taken by a bu�er process, and a collection of liveness

1

In this paper, we use the term \process" to refer both to a sequential process and a system of concurrently

executing sequential processes.

2

properties that must be satis�ed. Conceptual state speci�cations generally do not require the

use of temporal operators other than \henceforth," \eventually," and \next," because conceptual

state variables, rather than temporal formulas, are used to summarize the past history of module

behavior.

The basic idea of conceptual state speci�cations is not new, having been proposed previously

in various forms by a number of authors. Yonezawa ([Yon77]) describes a speci�cation method

that uses \conceptual representations," to specify behaviors in the actor model of computation.

The history variables of Hailpern and Owicki ([HO80]) can be viewed as a kind of conceptual

state variables, whose values represent the sequences of values passed between processes up until a

particular instant. Lamport ([Lam83]) describes a speci�cation technique in which a speci�cation

is permitted to refer to a collection of indeterminate state functions, whose values summarize the

state of a process. The style of speci�cation that results is essentially similar to the conceptual state

style illustrated in this paper. However, to show that a particular process satis�es a speci�cation,

it is necessary to provide de�nitions of the state functions in terms of the implemented process

state. It would therefore appear that Lamport views state functions as playing more than just an

auxiliary role.

Although conceptual state speci�cations seem to be a natural way to describe process behavior,

it is not quite as clear how to perform reasoning with them as it is in the case of ordinary temporal

speci�cations. The somewhat nonstandard appearance of the quanti�er \there exists a history for

the conceptual state variables such that" in the de�nition of what it means for a process to satisfy a

speci�cation causes a certain amount of di�culty. A central problem in reasoning with conceptual

state speci�cations is the problem of proving an entailment or logical implication between two

speci�cations, which in general involve di�erent sets of conceptual state variables.

This paper introduces the notion of conceptual state speci�cations, de�nes what it means for

the entailment relation to hold between two conceptual state speci�cations, and develops a tech-

nique for proving that this relation holds. We are able to show a kind of completeness result for our

technique, which states that a true entailment relation can always be proved, assuming the speci�-

cations involved satisfy certain well-formedness conditions that can be independently checked. The

technique is illustrated by considering the problem of proving that the tandem connection of two

FIFO bu�ers again implements a FIFO bu�er.

3

Our entailment proof technique makes use of the concept of a simulation between machines,

and can be viewed as a generalization of the standard representation function, abstraction function,

or interpretation techniques for proving an implementation relationship between an abstract data

type and its concrete representation ([GHM78], [Hoa72], [Jon81]) If an abstract data type is viewed

as a process, whose communications correspond to invocations of operations of the data type,

then standard techniques are capable of proving only safety or invariance properties. In contrast,

our technique permits both safety properties and liveness or eventuality properties to be proved.

The technique used by Goree and Lynch ([Gor81], [Lyn83]) in a hierarchical proof of invariance

properties of a concurrency control algorithm can also be viewed as a special case of the technique

presented here.

The results of this paper are a reformulation of results reported in [Sta84]. In that document,

a number of processes are speci�ed using the conceptual state technique, and several correctness

proofs are performed using the technique described here. Experience with these examples forms the

basis of the author's opinion that conceptual state speci�cations are a natural speci�cation method

that can support the systematic construction of correctness proofs by the techniques described

here.

2 Processes

In this section we de�ne a mathematical model of processes, in which the notion of process is

identi�ed with that of certain sets of histories, where each history records the accesses to variables

made during a particular system execution. In the next section, conceptual state speci�cations will

be de�ned, and it will be shown how a conceptual state speci�cation is satis�ed by a process.

Our model is based on the intuitive conception of a system of concurrently executing sequential

processes that interact through changes to the values of shared variables. Only one process is

permitted to access each particular variable at any given instant of time. Although we �nd the

shared variable assumption convenient for this paper, it is not essential for the results, and in

fact easily can be replaced by a message-passing model, or a model in which processes interact by

synchronized communication.

We will represent the computation of such a system of processes in terms of the history of

values taken on by the variables. In addition, we shall always be describing a computation from

4

the vantage of a distinguished process in the system, and our representation of computations

will include information about which variables were accessed, at each instant of time, by the

distinguished process, and which were accessed by the environment of that process. The presence

of this information in the model allows us to obtain composable temporal speci�cations ([BK84]).

There is a nonstandard feature of our model that requires some prior explanation. Below we

shall de�ne a history to be a certain kind of function from the nonnegative real line to a set of events.

We shall then de�ne the semantics of our temporal logic language in terms of these \continuous"

histories, rather than in terms of discrete sequences as is usually done. A consequence of our

approach is that the \next state" operator
 becomes meaningless, and we replace it with the

somewhat weaker notions of \before" and \after" states. The reason for making these nonstandard

de�nitions is to obtain a temporal logic whose sentences are incapable of distinguishing between

histories that are identical except for occurrences of \null events," in which no changes are made to

the values of variables. The formal statement of the property we require is the Projection Lemma

(Lemma 3). Ordinary formulations of temporal logic in terms of discrete sequences do not satisfy

the Projection Lemma.

To begin our formal treatment, we assume the existence of a universe V of program variables,

and a universe U of values. If V � V then a V -state is a function q : V ! U. If q is a V -state, q

0

is a V

0

-state and U � V \ V

0

, then de�ne q =

U

q

0

if q(u) = q

0

(u) for all u 2 U . If q =

V\V

0

q

0

, then

de�ne the join q t q

0

to be the unique (V [V

0

)-state r such that r =

V

q and r =

V

0
q

0

. If q is a

V -state and U � V , then de�ne the projection �

U

(q) to be the unique U -state q

0

such that q

0

=

U

q.

De�nition 1 (Event) A V -event is a pair e = (e;

b

e; e), where e and e are V -states, called the before

state and the after state, respectively, and

b

e is a subset of V , called the access set of e. The event

e is a null event if

b

e = ; and e = e.

We extend the =

U

notation to events by de�ning e =

U

e

0

i� e =

U

e

0

, e =

U

e

0

, and

b

e\ U =

b

e

0

\ U .

The notations t and �

U

() can then be extended to events in an obvious way.

Intuitively, a V -event records the results of a single step of execution, viewed from the vantage

of a particular process, say P , in a system. The before state e of a V -event e records the values of

the variables V \just before" the step in question, and the after state e records the values of the

variables \just after" the step in question. The access set

b

e records the set of variables accessed by

5

the process in the step. Changes to the values of variables in

b

e are attributed to the action of process

P . Changes to the values of variables not in

b

e are attributed to the action of the environment of

process P . Access sets are a re�nement of, and serve the same purpose as, the environment and

process actions of [BK84].

De�nition 2 (History) Let R

+

be the set of nonnegative real numbers. A V -history is a function

x from R

+

to V -events, with the following property: For all t 2 R

+

, there exists � > 0 such that

1. x(t

0

) = x(t

0

) = x(t) and

b

x(t

0

) = ; for all t

0

2 R

+

with t� � < t

0

< t,

2. x(t) = x(t

0

) = x(t

0

) and

b

x(t

0

) = ; for all t

0

2 R

+

with t < t

0

< t + �.

We extend the notations =

U

, t, and �

V

() to histories in the obvious way.

Intuitively, a V -history is a record of all steps that occur during a single execution of a process,

along with their time of occurrence. The two requirements state that each instant of time at which

a nonnull event occurs is surrounded by an interval of time during which only null events occur.

These requirements intuitively correspond to the idea that processes execute at a �nite rate, and

formally ensure that histories have a certain local �niteness property, as we now show.

De�ne a subset T � R

+

to be locally �nite if T \ I is �nite whenever I is a bounded interval

of R

+

. Note that a locally �nite set T always has a unique enumeration as an increasing sequence,

viz. t

0

< t

1

< . . ., and if the set T is in�nite, then this sequence is unbounded.

Lemma 1 Suppose x is a V -history. Then the set of all t 2 R

+

for which x(t) is nonnull is locally

�nite.

Proof { Suppose not, then there is some bounded interval I � R

+

, such that x(t) is nonnull for

in�nitely many t 2 I . We can assume without loss of generality that I is closed. Since the closed,

bounded subsets of R

+

are compact, it follows that ft 2 I : x(t) nonnullg has an accumulation

point, say t

0

, in I . Then t

0

is also an accumulation point of one of the sets ft

0

< t

0

: x(t

0

) nonnullg

or ft

0

> t

0

: x(t

0

) nonnullg. Suppose the former, the argument for the latter case is symmetric.

Then for all � > 0 there exists t

0

2 (t

0

� �; t

0

) with x(t

0

) nonnull. This is in contradiction with the

de�nition of a history.

6

Lemma 2 Given an in�nite locally �nite set T = ft

0

< t

1

< . . .g with t

0

= 0, a sequence q

0

; q

1

; . . .

of V -states, and a sequence U

0

; U

1

; . . . of subsets of V , there corresponds a unique V -history x

such that x(t

k

) = (q

k

; U

k

; q

k+1

) for all k, and x(t) = (q

k+1

; ;; q

k+1

) for all k and all t 2 (t

k

; t

k+1

).

Conversely, if x is a V -history, then there exists a set T , a sequence q

0

; q

1

; . . . of V -states, and a

sequence U

0

; U

1

; . . . of subsets of U with the stated properties.

Proof { Given T , q

0

; q

1

; . . ., and U

0

; U

1

; . . ., the stated properties uniquely de�ne a function x from

R

+

to V -events, which is easily seen to be a V -history.

Conversely, suppose x is a V -history. Then the in�nite set T = f0; 1; 2; . . .g [ft 2 R

+

:

x(t) nonnullg is locally �nite by Lemma 1. Suppose T = ft

0

< t

1

< . . .g. A straightforward

argument, which we omit, making use of the compactness of the closed, bounded subsets of R

+

,

shows that x(t

k

) = x(t

k+1

) for all k, and x(t) = (x(t

k

); ;; x(t

k+1

)) for all k and all t 2 (t

k

; t

k+1

).

We can therefore obtain the required q

k

and U

k

by de�ning q

k

= x(t

k

) and U

k

=

b

x(t

k

).

De�nition 3 (Process) A V -process is a set of V -histories.

It should be noted that, although we have here de�ned a process to be an arbitrary set of V -

histories, not every such set should be regarded as computable or realizable in the sense that it is

the behavior of a process de�nition expressed in a particular concurrent programming language.

For example, the empty set of histories is evidently not realizable, since any program must have at

least one execution. In general, we shall have in mind a particular subset of all processes, which

we call the realizable processes, and which are the processes denotable in a particular programming

language under consideration. The de�nition of entailment between speci�cations, and subsequent

results based on this de�nition, should then be relativized to the set of realizable processes. Since

this relativization introduces certain complications which are inessential for the purposes of this

paper, we suppose here that every process is realizable. The reader is referred to [Sta84] for an

attempt to address the general situation.

3 Conceptual State Speci�cations

As a concrete medium in which to express conceptual state speci�cations, we de�ne, for each set

of variables V , a corresponding �rst-order temporal logic T (V), whose sentences are interpreted

7

as properties of V -histories. The language T (V) is syntactically similar to other linear-time tem-

poral logics ([Lam80], [MP83], [Pnu77]), containing the temporal operators 2 (henceforth) and 3

(eventually). However, we do not permit the use of the next state operator
, since the notion of

the \next" state is (by design) meaningless for histories. We draw a distinction between program

variables, which are those in V and which cannot be bound by quanti�ers, and logical variables,

which are drawn from a setX, disjoint from V , and which are permitted to be bound by quanti�ers.

In a temporal formula, we refer to the state portion of a history through the use of program

variables in terms. A program variable v 2 V can appear in a term only in the form v, which

denotes the value of a program variable just before the current instant, or in the form v, which

denotes the value of v just after the current instant. Through the use of the v and v constructs,

we obtain some, but not all, of the expressive power normally provided by the
 operator. We

refer to the access set portion of a history through the use of special predicates

b

v, of which there is

one for each program variable v 2 V . The predicate

b

v is true i� the variable v is accessed by the

process under consideration at the current instant.

To avoid issues concerning the possibility of expressing various functions and relations on the

underlying universe U, we assume that for each such function or relation there is a corresponding

function or relation symbol in the language T (V).

The precise syntax of T (V) is as follows:

Terms:

1. If v 2 V is a program variable, then v and v are terms.

2. If x 2 X is a logical variable, then x is a term.

3. If f is an n-ary function on U and t

1

; . . . ; t

n

are terms, then f(t

1

. . . t

n

) is a term, where f is

the function symbol corresponding to f .

Formulas:

1. If v 2 V is a program variable, then

b

v is a formula.

2. If r is an n-ary relation on U and t

1

; . . . ; t

n

are terms, then r(t

1

. . . t

n

) is a formula, where r

is the relation symbol corresponding to r.

8

3. If �; are formulas and v 2 X is a logical variable, then :�, � ^ and (9v)� are formulas.

4. If � is a formula, then 2� is a formula.

Additional logical connectives, universal quanti�cation, and 3 are treated as de�ned constructs

in the usual way.

To de�ne the semantics of T (V), we �rst de�ne the meaning of a term t to be a function that

takes a V -event e and an X-state q to a value t(e; q).

Terms:

1. v(e; q) = e(v); v(e; q) = e(v).

2. x(e; q) = q(x).

3. f(t

1

. . . t

n

)(e; q) = f(t

1

(e; q); . . .t

n

(e; q)).

We next de�ne the satisfaction relation j= between a V -history x, an X-state q, and a formula

� of T (V).

Formulas:

1. x; q j=

b

v i� v 2

b

x(0).

2. x; q j= r(t

1

. . . t

n

) i� r(t

1

(x(0); q); . . . ; t

n

(x(0); q)) holds.

3. x; q j= :� i� x; q 6j= �; x; q j= � ^ i� x; q j= � and x; q j= ; x; q j= (9v)� i� there exists q

0

with q

0

=

X�fvg

q such that x; q

0

j= �.

4. x; q j= 2� i� for all t 2 R

+

, x

(t)

; q j= �, where x

(t)

is the history x

0

such that x

0

(t

0

) = x(t+ t

0

)

for all t

0

2 R

+

.

As usual, if � is a sentence (a formula with no free logical variables), then whether x; q j= �

holds is independent of q, and we may write x j= � without ambiguity. We say that a sentence �

is valid, and we write j= � if x j= � holds for all V -histories x.

By interpreting sentences of T (V) over \continuous" histories, rather than discrete sequences

as is usually done, we obtain easily the following result. It is crucial in what follows.

9

Lemma 3 (Projection Lemma) Suppose V and U are sets of variables, with U � V . If � is a

sentence of T (U) and x is a V -history, then

�

U

(x) j= � i� x j= �;

where the satisfaction on the left is taken in T (U) and that on the right is taken in T (V).

Proof { By induction on formulas { Straightforward.

De�nition 4 (Conceptual State Speci�cation) A conceptual state speci�cation is a three-tuple

S = (V; C;�), where V is a set of interface variables, C is a set of conceptual state variables

disjoint from V , and � is a sentence of the temporal language T (V [C).

A V -process P satis�es a conceptual state speci�cation S = (V; C; �) (in which case we write

P j= S) if to each V -history x 2 P there corresponds a C-history y such that (x t y) j= �.

Thus, a process satis�es a conceptual state speci�cation i� every history in the process can be

augmented or \explained" by the addition of a history for the conceptual state variables, in such a

way that the temporal sentence in the speci�cation is satis�ed.

Lemma 4 Suppose S = (V; C; �) is a conceptual state speci�cation. Suppose P; P

0

are V -processes

such that P � P

0

. If P

0

j= S , then P j= S .

Proof { Obvious.

4 Example: A Bu�er Speci�cation

As a concrete example of a conceptual state speci�cation, we treat the problem of specifying the

behavior of a process that behaves as an unbounded FIFO bu�er. Later we shall consider the

problem of proving that the tandem connection of two FIFO bu�ers is again a FIFO bu�er. This

example, although trivial from a practical point of view, nevertheless exhibits most of the interesting

theoretical issues.

10

4.1 Informal Bu�er Speci�cation

A bu�er process has two interface variables: in and out, which we assume take their values in the

set A [f?g. The set A is the set of values that the bu�er process is capable of bu�ering, and

? is a special value, denoting unde�ned, which plays an important role in the protocol by which

the bu�er process communicates with its environment. The variable in is used for receiving values

to be bu�ered from a producer process, and the variable out is used for outputting values to a

consumer process.

The behavior of a bu�er process can be described with the help of a single conceptual state

variable queue, whose values are �nite sequences of elements of A, representing the sequence of

values stored in the bu�er. The speci�cation is divided into three parts: a part describing the initial

conditions that hold at the start of execution, a part describing state-transition information, which

is concerned with the step-by-step evolution of the values of the variables, and a part describing

liveness properties.

For the bu�er process, the initial conditions state merely that the value of queue is the empty

sequence.

It is convenient to organize the state-transition part of the bu�er speci�cation by classifying

each state transition that can occur as an instance of a certain kind of event. There are three kinds

of events that can occur during the execution of a bu�er process. The �rst kind of event is an input

event in which a value, say a, is read from the external variable in, the value of in is reset to ?,

and the value of the conceptual state variable queue is changed by appending a at the end. When

an input event occurs, the variable out is not accessed by the bu�er process.

The second kind of event is an output event in which a value, say a, is removed from the

conceptual queue, and written into the output variable out. It is required that the variable out

have value ? before an output event can occur. When an output event occurs, the variable in is

not accessed by the bu�er process.

The third kind of event is an environment event, which can occur at any time, in which any

change at all to the variables in and out is permitted, but in which the conceptual state variable

queue does not change. The bu�er process does not access the variables in and out during an

environment event | rather, such an event represents a possible access of these variables by the

environment of the bu�er process.

11

There are two liveness conditions that must be satis�ed by a bu�er process: one associated with

the assimilation of input values, and one associated with the production of output values. The �rst

liveness condition states that if the variable in assumes a non-? value, and retains this value for

a su�ciently long time, then eventually an input event will occur. The second liveness condition

states that if the internal queue of the bu�er process is ever nonempty, and the variable out assumes

the value ? and retains this value for a su�ciently long time, then eventually an output event will

occur. Together these conditions ensure that the bu�er process eventually transmits values from

producer to consumer, if possible.

4.2 Formal Bu�er Speci�cation

The informal description of the behavior of a bu�er process given above can be formalized as a

conceptual state speci�cation:

S = (fin; outg; fqueueg; �

buf

(in; out;queue));

where

�

buf

(in; out;queue) �

buf

(in; out;queue) ^ �

buf

(in; out;queue) ^ �

buf

(in; out;queue);

buf

(i; o; q) � q = hi

�

buf

(i; o; q) � 2(Ievent(i; o; q)_ Oevent(i; o; q)_ Nevent(i; o; q))

�

buf

(i; o; q) � 2(2(i 6= ?) � 3Ievent(i; o; q))

^ 2(q 6= hi ^2(o = ?) � 3Oevent(i; o; q));

and

Ievent(i; o; q) �

b

{ ^ :

b

o ^ i 6= ? ^ { = ? ^ q = q � i

Oevent(i; o; q) �

b

o ^ :

b

{ ^ q 6= hi ^ o = ?

^ q = tail(q) ^ o = head(q)

Nevent(i; o; q) � :

b

{ ^ :

b

o ^ q = q:

The functions head and tail are the obvious functions on sequences.

12

The sentence

buf

(in; out;queue) expresses the condition that the conceptual state variable

queue has the empty sequence as its value in an initial state.

The sentence �

buf

(in; out;queue) asserts that for all instants of time, an event appearing in

a history for a bu�er process must either be an input event, an output event, or an environment

event, as discussed above.

The sentence �

buf

(in; out;queue) expresses the liveness properties mentioned above.

The lengthiness of the speci�cation is primarily due to the fact that we have to say explicitly

when a variable is unchanged as a result of an event, as well as how the values of variables change.

For more complex processes, it is useful to introduce notational conventions to shorten the state-

transition part of a speci�cation. Lamport's \Allowed Changes" notation ([Lam83]) is an example

of the kind of abbreviations that can be made.

5 Proving Entailment

In this section, we de�ne the notion of entailment between conceptual state speci�cations, and

consider the problem of how to prove that a conceptual state speci�cation S = (V; C; �) entails a

conceptual state speci�cation S

0

= (V; C

0

; �

0

).

De�nition 5 (Entailment) A conceptual state speci�cation S = (V; C;�) entails a conceptual state

speci�cation S

0

= (V; C

0

; �

0

) (and we write S j= S

0

) if every process that satis�es S also satis�es

S

0

.

Intuitively, one would expect it to be possible to perform a proof that S j= S

0

by proving a

certain implication in temporal logic. The evident implication is � � �

0

. Although the validity of

this implication (taken in the language T (V [C [C

0

)) is su�cient to imply that S j= S

0

, it is not

necessary, and in fact is much too strong a condition to be useful in practice. The reason is that

knowing � holds of a (V [C[C

0

)-history tells us nothing about the relationship between the values

of the C-variables and the values of the C

0

-variables. This relationship will clearly be important,

in general, for proving that �

0

holds. We would like to �nd weaker su�cient conditions for S j= S

0

,

which if not necessary, are at least of practical utility.

In this section we show that it is in fact su�cient to �nd temporal sentences �

M

and �

M

0

corresponding to \machines" M and M

0

, such that the temporal implications � � �

M

and �

M

0

^

13

� ^ � � �

0

are valid, where � is a temporal sentence derived from a \simulation relation" from

M to M

0

, which expresses the correspondence between the states of M and those of M

0

. The

simulation relation � is a generalization of, and serves a purpose similar to, the abstraction functions

or representation functions used in proofs of implementation relationships between abstract data

types ([GHM78], [Hoa72], [Jon81]).

Lemma 5 Suppose S = (V; C;�) and S

0

= (V; C

0

; �

0

) are conceptual state speci�cations. Then

S j= S

0

i� to each V -history x and C-history y such that (x t y) j= �, there corresponds a C

0

-

history y

0

such that (x t y

0

) j= �

0

.

Proof { Suppose to each V -history x and C-history y such that (x t y) j= � there corresponds

a C

0

-history y

0

such that (x t y

0

) j= �

0

. Assume P j= S , then to each V -history x 2 P there

corresponds a C-history y such that (x t y) j= �. By hypothesis, there exists a C

0

-history y

0

such

that (x t y

0

) j= �

0

. Since this is true for all x 2 P , it follows that P j= S

0

.

Conversely, suppose S j= S

0

. If x is a V -history, and y is a C-history such that (xty) j= �, then

the singleton V -process P = fxg satis�es S . Since S j= S

0

, it must also be the case that P j= S

0

.

This implies the existence of a C

0

-history y

0

such that (x t y

0

) j= �

0

.

Next, we de�ne the kind of nondeterministic machine that will be used in our entailment proof

technique. Such a machine consists of an \initial state relation," which speci�es the states in which

computation is permitted to start, and a \state transition relation," which speci�es the events that

are permitted to occur. Condition (1) of the de�nition below says that a machine must have an

initial state corresponding to any given assignment of values to interface variables. Condition (2)

says that it is always possible for a machine to execute a null event (i.e. do nothing). Condition

(3) is a technical condition which ensures that access information for conceptual state variables is

essentially irrelevant in a computation. We impose this condition because conceptual state variables

are unimplemented auxiliary variables, for which access information is meaningless.

De�nition 6 (Machine) Suppose V and C are disjoint �nite sets of variables. A (V; C)-machine

is a pair M = (

M

; �

M

), where

M

is a unary relation on (V [C)-states, called the initial state

relation and �

M

is a unary relation on (V [C)-events, called the transition relation, such that the

following conditions are satis�ed:

14

1. For all V -states q, there exists a C-state r such that

M

(q t r) holds.

2. For all V -states q and all C-states r, �

M

(q t r; ;; q t r) holds.

3. For all V -states q

0

; q

1

, all C-states r

0

; r

1

, and all subsets U; U

0

of V [C, if U \ V = U

0

\ V ,

then �

M

(q

0

t r

0

; U; q

1

t r

1

) holds i� �

M

(q

0

t r

0

; U

0

; q

1

t r

1

) holds.

The temporal sentence corresponding to a (V; C)-machineM = (

M

; �

M

) is the sentence �

M

of

T (V [C) de�ned by

�

M

�

M

(V [C) ^2�

M

(V [C;

b

V [

b

C; V [C):

Here

M

(V [C) denotes the formula, involving the terms v for each v 2 V [C, corresponding to

the initial state relation

M

, and �

M

(V [C;

b

V [

b

C; V [C) denotes the formula, involving the terms

v; v for each v 2 V [C, and the predicates

b

v for each v 2 V [C, corresponding to the transition

relation �

M

.

A computation of a (V; C)-machine M is a (V [C)-history x t y such that (x t y) j= �

M

.

We next de�ne the notion of a \simulation" from a machine M , with interface variables V and

conceptual state variables C, to a machineM

0

with the same set of interface variables, but a disjoint

set C

0

of conceptual state variables. Intuitively, a simulation relates states of M to corresponding

states ofM

0

, so that the initial state and state transition relations are preserved in a certain fashion.

De�nition 7 (Simulation) Suppose M is a (V; C)-machine, and M

0

is a (V; C

0

)-machine, where

C \ C

0

= ;. A simulation from M to M

0

is a relation � � V -states �C-states �C

0

-states, such

that the following hold:

1. For all V -states p and C-states q, if

M

(pt q) holds, then there exists a C

0

-state q

0

such that

M

0

(p t q

0

) and �(p; q; q

0

) hold.

2. For all V -states p; p

0

, C-states q; q

0

, all U � V , and all C

0

-states r, if �(p; q; r) and �

M

(p t

q; U; p

0

t q

0

) hold, then there exists a C

0

-state r

0

such that �(p

0

; q

0

; r

0

) and �

M

0

(p t r; U; p

0

t r

0

)

hold.

The following is the main technical lemma used in the proof of the Entailment Theorem below.

Intuitively, it says that the existence of a simulation from M to M

0

ensures that for each compu-

tation of M we can obtain a computation of M

0

, in such a way that the two computations can be

combined into a single \joint computation" for which the simulation relation invariantly holds.

15

Lemma 6 Suppose M is a (V; C)-machine and M

0

is a (V; C

0

)-machine. Suppose � is a simulation

from M to M

0

. Then to each computation x t y of M , there corresponds a computation x t y

0

of

M

0

, such that

(x t y t y

0

) j= 2�(V ; C; C

0

) ^2�(V ; C; C

0

):

Proof { Suppose xt y is a given computation of M . By Lemma 2, there exists an in�nite locally

�nite set T = ft

0

< t

1

< . . .g with t

0

= 0, a sequence p

0

; p

1

; . . . of V -states, a sequence q

0

; q

1

; . . . of

C-states, and a sequence U

0

; U

1

; . . . of subsets of (V [C), such that x(t

k

) = (p

k

tq

k

; U

k

; p

k+1

tq

k+1

)

for all k, and x(t) = (p

k+1

t q

k+1

; ;; p

k+1

t q

k+1

) for all k and all t 2 (t

k

; t

k+1

). Since x t y is a

computation of M , we know that

M

(q

0

) holds and �

M

(q

k

; U

k

; q

k+1

) holds for all k.

It is now a simple matter to construct by induction, using the de�ning properties of a simulation,

a sequence q

0

0

; q

0

1

; . . . of C

0

-states, such that

M

0

(p

0

tq

0

0

) holds, and �(p

k

; q

k

; q

0

k

) and �

M

0

(p

k

tq

0

k

; U

k

\

V; p

k+1

t q

0

k+1

) hold for all k. De�ne U

0

k

= ; for all k. Then an application of Lemma 2 to the set T

and sequences U

0

0

; U

0

1

; . . ., q

0

0

; q

0

1

; . . . yields a C

0

-history y

0

such that xty

0

is the desired computation

of M

0

.

The following result gives our technique for proving entailment between conceptual state spec-

i�cations.

Theorem 1 (Entailment Theorem) Suppose S = (V; C; �) and S

0

= (V; C

0

; �

0

) are conceptual state

speci�cations, with C \ C

0

= ;. Suppose we can �nd a (V; C)-machine M , a (V; C

0

)-machine M

0

,

and a simulation � from M to M

0

, such that the implications

� � �

M

�

M

0

^ � ^2�(V ; C; C

0

) ^2�(V ; C; C

0

) � �

0

are valid. Then S j= S

0

.

Proof { Suppose M ,M

0

, and � have the stated properties. By Lemma 5 above, we need only show

that to each V -history x and C

0

-history y such that (xt y) j= �, there corresponds a C

0

-history y

0

such that x t y

0

j= �

0

. Given x and y such that x t y j= �, we know from the �rst hypothesized

implication that (xty) j= �

M

. Since � is a simulation, Lemma 6 gives us a y

0

such that xty

0

j= �

M

0

and

(x t y t y

0

) j= 2�(V ; C; C

0

) ^2�(V ; C; C

0

):

16

By the Projection Lemma,

(x t y t y

0

) j= �

M

0
^ � ^ 2�(V ; C; C

0

) ^2�(V ; C; C

0

):

By modus ponens and the second implication assumed valid by hypothesis, it follows that (xt y t

y

0

) j= �

0

. Applying the Projection Lemma again gives us (xt y

0

) j= �

0

.

6 Example: Tandem Connection of Two Bu�ers

This section illustrates the role played by the Entailment Theorem in a proof that the tandem

connection of two FIFO bu�ers correctly implements a FIFO bu�er.

Let

�

0

� �

buf

(in; inout;queue

0

);

�

1

� �

buf

(inout; out;queue

1

);

and

�

abs

� �

buf

(in; out;queue

abs

):

Let S be the conceptual state speci�cation

(fin; out; inoutg; fqueue

0

;queue

1

g;Consis(finoutg) ^ �

0

^ �

1

);

which is the speci�cation satis�ed by the tandem connection of two bu�er processes. Here the

formula Consis(U), for a �nite set of variables U , is given by

Consis(U) � 2

^

v2U

(:

b

v � v = v):

Intuitively, the formula Consis(finoutg) states that if the variable inout is not accessed in an event

by one of the two bu�er processes, then its value does not change in that event. This corresponds

to the idea that the variable inout is an internal variable used for communication between the two

bu�er processes, and is hidden from access by the external environment.

Let S

0

be the speci�cation

(fin; out; inoutg; fqueue

abs

g; �

abs

);

17

which, if satis�ed by a fin; out; inoutg-process P , implies that the projection of P to the variable

set fin; outg satis�es the bu�er speci�cation.

To prove the correctness of the implementation, we must prove that the entailment S j= S

0

holds. To apply the Entailment Theorem, we must determine the machines M and M

0

, �nd a

simulation � from M to M

0

, and prove the validity of two implications in temporal logic.

The factorization of the bu�er speci�cation into initial conditions, state-transition conditions,

and liveness conditions obviously suggests an M and M

0

. De�ne

M

�

buf

(in; inout;queue

0

) ^

buf

(inout; out;queue

1

)

�

M

� �

buf

(in; inout;queue

0

) ^ �

buf

(inout; out;queue

1

) ^ Consis(finoutg)

M

0
�

buf

(in; out;queue

abs

)

�

M

0

� �

buf

(in; out;queue

abs

):

It is straightforward to check that M and M

0

are, in fact, machines, and that the implications

Consis(finoutg) ^ �

0

^ �

1

� �

M

and

�

abs

� �

M

0

are valid.

Next, we must de�ne a relation �, and show that it is a simulation from M to M

0

. The

appropriate � is the one that says that the abstract queue is the concatenation of the two component

queues, with the value of inout in between, if that value is not ?.

�(inout;queue

abs

;queue

0

;queue

1

) � (inout = ? � queue

abs

= queue

0

� queue

1

) ^

(inout 6= ? � queue

abs

= queue

0

� inout � queue

1

):

The proof that � is a simulation involves a case analysis based on the di�erent possible combi-

nations of input, output, and environment events that are permitted by the transition relations �

M

and �

M

0
. The details are straightforward but tedious, and are omitted. In general, the construction

of the simulation � is the part of the proof that requires insight; once this relation has been con-

structed, the enumeration of the various cases in the conditions required for � to be a simulation,

18

and the construction of the proof for each case, are systematic tasks that are within the ability of

automatic or semi-automatic theorem proving programs.

To complete the proof of correctness of the bu�er implementation, we must prove the implication

(�

M

0
^ Consis(finoutg)^�

0

^ �

1

^ 2�(inout;queue

0

;queue

1

;queue

abs

)^

2�(inout;queue

0

;queue

1

;queue

abs

)) � (�

M

0

^ �

abs

);

or equivalently,

(�

M

^ �

M

0

^2�(inout;queue

0

;queue

1

;queue

abs

) ^2�(inout;queue

0

;queue

1

;queue

abs

))

� (�

buf

(in; inout;queue

0

) ^ �

buf

(inout; out;queue

1

) � �

buf

(in; out;queue

abs

)):

The intuitive content of this implication is that every \joint computation" of M and M

0

, whose

\M -part" satis�es the speci�cation for the tandem connection of two FIFO bu�ers, and whose M -

part and M

0

-part are related by the simulation relation �, also has the property that its M

0

-part

satis�es the speci�cation of a FIFO bu�er.

This proof can be performed, for example, by the proof lattice techniques of Owicki and Lamport

[OL82]. We omit the details.

7 A Completeness Result

The su�cient conditions given by the Entailment Theorem for proving an entailment are not nec-

essary, in general. However, if we assume the speci�cations involved satisfy certain well-formedness

conditions, we can show that the proof technique given by the Entailment Theorem is complete in

the sense that a proof can always be found when an entailment holds.

De�nition 8 (Regularity) Suppose M is a (V; C)-machine, and � is a sentence of T (V [C). We

say that � is regular with respect to M if for all computations x t y; x t y

0

of M , x t y j= � i�

x t y

0

j= �.

Intuitively, if � is regular with respect to M , then whether a computation x t y of M satis�es

� depends only upon x, and not upon the particular choice of history for the conceptual state

variables.

19

De�nition 9 (Quasi-determinacy) Suppose M is a (V; C)-machine. We say that M is quasi-

determinate when for all computations x t y; x

0

t y

0

of M , if x(t) = x

0

(t) for all t 2 [0; n), then

there exists a computation x t y

00

of M , with y

00

(t) = y

0

(t) for all t 2 [0; n).

Intuitively, for a quasi-determinate machine, the particular choice of conceptual state history

made on an initial segment of a computation does not a�ect whether or not that computation can

be completed to generate a particular history x for the interface variables.

De�nition 10 (Density) Suppose M is a (V; C)-machine, and � is a sentence of T (V [C). We

say that � is dense in M if the following property holds: For all computations x t y of M and all

n 2 R

+

, there exists a V -history x

0

and a C-history y

0

such that (x

0

t y

0

) j= �

M

^ � and such that

(x t y)(t) = (x

0

t y

0

)(t) for all t 2 [0; n].

Intuitively, � is dense in M if every computation of M is arbitrarily close (w.r.t. a metric that

measures the length of agreement of pre�xes) to a computation of M that satis�es �.

Theorem 2 (Completeness Theorem) Suppose

S = (V; C; �

M

^ �) and S

0

= (V; C

0

; �

M

0

^ �

0

)

are conceptual state speci�cations, with C;C

0

disjoint. Suppose that � is dense in M , and that �

0

is

regular with respect to the quasi-determinate machine M

0

. If S j= S

0

, then there exists a simulation

� from M to M

0

, and the implication

�

M

0

^ �

M

^ � � �

0

is valid.

Proof { Suppose M = (
; �) and M

0

= (

0

; �

0

). We �rst show that �

M

0

^ �

M

^ � � �

0

is valid. To

show this, suppose that x is a V -history, y is a C-history, and y

0

is a C

0

-history, such that

(x t y t y

0

) j= �

M

0

^ �

M

^ �:

Then (x t y) j= �

M

^ � and (x t y

0

) j= �

M

0

by the Projection Lemma. By Lemma 5 and the

assumption that S j= S

0

, there exists a C

0

-history y

00

such that (xt y

00

) j= �

M

0

^ �

0

. The regularity

20

of �

0

with respect toM

0

implies that (xty

0

) j= �

0

i� (xty

00

) j= �

0

, so we conclude that (xty

0

) j= �

0

.

It follows by the Projection Lemma that (x t y t y

0

) j= �

0

.

It remains to prove the existence of the required simulation � from M to M

0

. De�ne a pair

(ptq; ptr), where p is a V -state, q is a C-state and r is a C

0

-state, to be jointly reachable according

to the following inductive de�nition:

1. If

M

(p t q) and

M

0

(p t r) both hold, (p t q; p t r) is jointly reachable.

2. If (p t q; p t r) is jointly reachable, and �

M

(p t q; U; p

0

t q

0

) and �

M

0
(p t r; U; p

0

t r

0

) hold for

some U � V , then (p

0

t q

0

; p

0

t r

0

) is jointly reachable.

If p is a V -state, q is a C-state, and q

0

is a C

0

-state, then de�ne �(p; q; r) to hold i� the pair

(p t q; p t r) is jointly reachable.

We claim that � is a simulation from M to M

0

. To show this, we must show two things:

1. For all V -states p and C-states q, if

M

(pt q) holds, then there exists a C

0

-state q

0

such that

M

0

(p t q

0

) and �(p; q; q

0

) hold.

2. For all V -states p; p

0

, all C-states q; q

0

, all U � V , and all C

0

-states r, if �(p; q; r) and �

M

(pt

q; U; p

0

t q

0

) hold, then there exists a C

0

-state r

0

such that �(p

0

; q

0

; r

0

) and �

M

0
(p t r; U; p

0

t r

0

)

hold.

To show 1, suppose p is a V -state and q is a C-state such that

M

(pt q) holds. Then since M

0

is a machine, there exists a C

0

-state r such that

M

0

(p t r) holds. Since the pair (p t q; p t r) is

jointly reachable, it follows that �(p; q; r) holds.

To show 2, suppose �(p; q; r) and �

M

(p t q; U; p

0

t q

0

) hold. Then by de�nition of � the pair

(p t q; p t r) is jointly reachable. We can therefore obtain a sequence U

0

; U

1

; . . . ; U

n�1

of subsets

of V , a sequence p

0

; p

1

; . . . ; p

n

of V -states, a sequence q

0

; q

1

; . . . ; q

n

of C-states, and a sequence

r

0

; r

1

; . . . ; r

n

of C

0

-states such that p

n

= p, q

n

= q, r

n

= r,

M

(p

0

t q

0

) and

M

0

(p

0

t r

0

) hold,

�

M

(p

k

t q

k

; U

k

; p

k+1

t q

k+1

) and �

M

0

(p

k

t r

k

; U

k

; p

k+1

t r

k+1

) hold for all k with 0 � k � n� 1, and

�(p

k

; q

k

; r

k

) holds for all k with 0 � k � n.

Extend the sequences p

i

and q

i

to in�nity by de�ning p

i

= p

0

and q

i

= q

0

for all i > n. Extend

the sequence U

i

to in�nity by de�ning U

n

= U and U

i

= ; for all i > n. Extend the sequence r

i

to in�nity by de�ning r

i

= r

n

for all i > n. De�ne the sequences p

0

i

and U

0

i

so that p

0

i

= p

i

and

21

U

0

i

= U

i

for 0 � i < n, and p

0

i

= p

n

and U

0

i

= ; for i � n. Then �

M

(p

k

t q

k

; U

k

; p

k+1

t q

k+1

) and

�

M

0

(p

0

k

t r

k

; U

0

k

; p

0

k+1

t r

k+1

) hold for all k.

Let T = f0; 1; 2; . . .g. Then by Lemma 2, T and the sequences U

k

, p

k

, and q

k

uniquely determine

a V -history x

0

and a C-history y

0

such that x

0

(k)t y

0

(k) = (p

k

t q

k

; U

k

; p

k+1

t q

k+1

) for all k 2 T ,

and x

0

(t) t y

0

(t) = (p

k+1

t q

k+1

; ;; p

k+1

t q

k+1

) for all k 2 T and all t 2 (t

k

; t

k+1

). Similarly, the

sequences U

0

k

, p

0

k

, and r

k

uniquely determine a V -history x

0

0

and a C

0

-history y

0

0

, which have the

additional property that (x

0

0

ty

0

0

)(t) = (x

0

ty

0

)(t) for all t 2 [0; n). By construction, (x

0

ty

0

) j= �

M

and (x

0

0

t y

0

0

) j= �

M

0

.

Intuitively, the computation x

0

ty

0

ofM is a computation that begins in an initial state, reaches

the state pt q before time n, performs the event (pt q; U; p

0

t q

0

) at time n, and then subsequently

performs null events. The computation x

0

0

t y

0

0

of M

0

is a computation that begins in an initial

state, reaches the state p t r before time n, in a way that is related by � to the way in which pt q

is reached by M , and performs null steps subsequently. What we wish to show is that M

0

can

perform a transition to the state p

0

tr

0

at time n, corresponding to the transition to the state p

0

tq

0

that M performs at time n in x

0

t y

0

.

By the assumption that � is dense in M , there exists a (V [C)-history (x

1

t y

1

) such that

x

1

(t) t y

1

(t) = x

0

(t) t y

0

(t) for all t 2 [0; n], and such that (x

1

t y

1

) j= �

M

^ �. This implies that

the singleton process fx

1

g satis�es S . By the assumption that S j= S

0

, fx

1

g j= S

0

, and hence there

exists a C

0

-history y

0

1

such that (x

1

t y

0

1

) j= �

M

0
^ �

0

.

We now know that (x

1

t y

0

1

) j= �

M

0

, (x

0

0

t y

0

0

) j= �

M

0

, and x

1

(t) = x

0

0

(t) for all t 2 [0; n). By the

quasi-determinacy of M

0

, there exists a C

0

-history y

0

2

, such that (x

1

t y

0

2

) j= �

M

0

and y

0

2

(t) = y

0

0

(t)

for t 2 [0; n).

Since (x

1

t y

0

2

) j= �

M

0

, it follows that �

M

0

(x

1

(n) t y

0

2

(n)) holds. Since x

1

(n) = p, x

1

(n) = p

0

,

c

x

1

(n) = U , and y

0

2

(n) = r, it follows that y

0

2

(n) has the property that �

M

(pt r; U; p

0

t y

0

2

(n)) holds,

and hence is the desired state r

0

.

The previous result is not the strongest possible completeness result that one might wish for,

since it does not assert the existence of the machines M and M

0

. Rather, it assumes that the

speci�cations have been presented in such a way that M and M

0

are made explicit. A better

completeness result would show that it is possible to choose M to be a \smallest" machine such

that � � �

M

is valid, andM

0

to be a certain \maximal" machine for �

0

. Such a result is apparently

22

not true for the general setup considered in this paper. For example, it can be shown that to each

temporal sentence � that satis�es a \strong satis�ability" condition, there corresponds a \smallest"

machine M such that j= � � �

M

. However, it is not always the case that � is dense in M . To

obtain a \maximal" machine M

0

corresponding to �

0

, such that M

0

is quasi-determinate and �

0

is

regular with respect to M

0

seems at least as problematic. Perhaps, though, by imposing suitable

restrictions on the temporal speci�cation language, a result along these lines could be obtained.

Alpern and Schneider [AS85] have obtained similar completeness results in a setup where temporal

properties are speci�ed as \property recognizers," which are similar to B�uchi automata.

8 Summary

We have introduced the notion of a conceptual state speci�cation, which is a kind of temporal logic

speci�cation in which conceptual state variables are introduced to increase the expressive power

of the temporal language. We have de�ned the notion of entailment between conceptual state

speci�cations, and have obtained a proof technique for establishing the entailment relationship.

The proof technique can be viewed as a generalization of standard techniques for proving the

correctness of implementations of abstract data types. We showed that, if the speci�cations involved

are assumed to satisfy certain well-formedness conditions, then true entailment relations can always

be established by our technique. The use of the technique was illustrated by a simple example.

The combination of the Entailment Theorem and the Completeness Theorem above suggests

a disciplined approach to the use of conceptual state speci�cations. In particular, a conceptual

state speci�cation ought to be presented in \factored" form, where one factor (conjunct) is the

temporal sentence corresponding to a machine, and the other factor expresses liveness properties

(which cannot be expressed in machine form). Furthermore, the machine and liveness properties

should be quite tightly related in that the liveness properties are regular with respect to, and dense

in, the machine. Finally, the machine part should be quasi-determinate, which means that it does

not permit very much freedom in the choice of the conceptual state history corresponding to any

given history for the interface variables.

We are therefore led to the following:

De�nition 11 (Well-Formed) A well-formed conceptual state speci�cation is of the form S =

23

(V; C;�

M

^�); where � is regular with respect to, and dense in, the quasi-determinate machine M .

Note that well-formedness is a property that can be veri�ed about a speci�cation in isolation,

and it is possible to show the bu�er speci�cations of the previous section to be well-formed. In

general, the behaviors of many processes are naturally speci�ed by well-formed conceptual state

speci�cations. Exceptions are processes like a lossy bu�er process, which behaves like a FIFO bu�er

except that it is permitted to lose values. Such a process is naturally speci�ed by a conceptual

state speci�cation much like the lossless bu�er speci�cation presented here, except the occurrence

of an input event can result either in no change to the internal queue (the value is lost), or to be

added to the end of the queue (the value is destined for transmission). The machine derived from

this speci�cation is not quasi-determinate.

Acknowledgement

The author wishes to thank Professor Nancy Lynch for her support and guidance during his

thesis research, and Prateek Mishra for commenting on a draft of this paper. The author is also

grateful to Professor Albert Meyer for suggesting stylistic improvements to [Sta84] that contributed

substantially to the presentation in this paper.

24

References

[AS85] B. Alpern and F. B. Schneider. Verifying Temporal Properties Without Using Temporal

Logic. Technical Report TR 85-723, Cornell University Computer Science Department,

December 1985.

[BK83] H. Barringer and R. Kuiper. A temporal logic speci�cation method supporting hierar-

chical development. November 1983. Manuscript, University of Manchester Department

of Computer Science.

[BK84] H. Barringer and R. Kuiper. Now you may compose temporal speci�cations. In Pro-

ceedings of the Sixteenth ACM Symposium on Theory of Computing, pages 51{63, April

1984.

[GHM78] J. V. Guttag, E. Horowitz, and D. R. Musser. Abstract data types and software valida-

tion. Communications of the ACM, 1048{1064, December 1978.

[Gor81] J. A. Goree. Internal Consistency of a Distributed Transaction System with Orphan De-

tection. Technical Report MIT/LCS/TR-286, M.I.T. Laboratory for Computer Science,

1981.

[HO80] B. T. Hailpern and S. S. Owicki. Verifying Network Protocols Using Temporal Logic.

Technical Report 192, Stanford University Computer Systems Laboratory, June 1980.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271{

281, 1972.

[Jon81] C. B. Jones. Development Methods for Computer Programs Including a Notion of Inter-

ference. PhD thesis, Wolfson College, June 1981.

[Lam80] L. Lamport. \sometime" is sometimes \not never". In Seventh ACM Conference on

Principles of Programming Languages, 1980.

[Lam83] L. Lamport. Specifying concurrent program modules. ACM Transactions on Program-

ming Languages and Systems, 5(2):190{222, April 1983.

25

[Lyn83] N. A. Lynch. Concurrency control for resilient nested transactions. In ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, March 1983.

[MP83] Z. Manna and A. Pnueli. Veri�cation of Concurrent Programs: A Temporal Proof Sys-

tem. Technical Report STAN-CS-83-967, Stanford University, jun 1983.

[OL82] S. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM

Transactions on Programming Languages and Systems, 4(3):455{495, July 1982.

[Pnu77] A. Pnueli. The temporal logic of programs. In IEEE Symposium on Foundations of

Computer Science, 1977.

[SM81] R. L. Schwartz and P. M. Melliar-Smith. Temporal logic speci�cation of distributed

systems. In Second International Conference on Distributed Systems, INRIA, France,

April 1981.

[Sta84] E. W. Stark. Foundations of a Theory of Speci�cation for Distributed Systems. Technical

Report MIT/LCS/TR-342, M. I. T. Laboratory for Computer Science, August 1984.

[Wol81] P. Wolper. Temporal logic can be more expressive. In 22nd Annual Symposium on

Foundations of Computer Science, pages 340{347, 1981.

[Yon77] A. Yonezawa. Speci�cation and Veri�cation Techniques for Parallel Programs Based on

Message Passing Semantics. Technical Report MIT/LCS/TR-191, M.I.T. Laboratory

for Computer Science, December 1977.

26

