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Abstract

The lack of expressive power of temporal logic as a speci�cation language can be compensated to a certain

extent by the introduction of powerful, high-level temporal operators, which are di�cult to understand and

reason about. A more natural way to increase the expressive power of a temporal speci�cation language is

by introducing conceptual state variables, which are auxiliary (unimplemented) variables whose values serve

as an abstract representation of the internal state of the process being speci�ed. The kind of speci�cations

resulting from the latter approach are called conceptual state speci�cations.

This paper considers a central problem in reasoning about conceptual state speci�cations: the problem

of proving entailment between speci�cations. A technique, based on the notion of simulation between

machines, is shown to be sound for proving entailment. A kind of completeness result can also be shown,

if speci�cations are assumed to satisfy certain well-formedness conditions. The role played by entailment

in proofs of correctness is illustrated by the problem of proving that the concatenation of two FIFO bu�ers

implements a FIFO bu�er.
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1 Introduction

A process can be characterized in terms of the histories of its accesses to variables possible during each

of its executions.

1

A speci�cation describes a process by stating properties that are required to hold of

all histories that can be produced by that process. As has been shown by a number of authors ([BK83],

[BK84], [Lam83], [HO80], [SM81]), such process speci�cations can be expressed as sentences in linear-time

temporal logic. One of the di�culties with temporal logic as a speci�cation language is that, at least in the

most basic formulations, it is lacking in expressive power. This lack of expressive power can be compensated

to a certain extent by the introduction of a number of powerful temporal operators such as until, chop or

combine, and iterated combine ([BK84], [Wol81]). However, these operators do not permit ones intuitive

understanding of the desired process behavior to be formalized in the most direct and natural way, and also

make reasoning about the resulting speci�cations more di�cult.

An alternative to the use of powerful temporal operators is the technique of conceptual state speci�cation.

In a conceptual state speci�cation, the behavior of a process with respect to a collection of program variables

is speci�ed with the help of a collection of conceptual state or auxiliary variables, whose values serve as an

abstract representation of the internal state of the process. Conceptual state variables appearing in a

speci�cation are not intended to be implemented; their introduction serves merely to increase the expressive

power of the temporal logic. A process satis�es a conceptual state speci�cation if every computation of that

process can be augmented or \explained" through the addition of a history of values for the conceptual state

variables, in such a way that the temporal sentence comprising the speci�cation is satis�ed.

In contrast to speci�cations involving the use of powerful temporal operators, conceptual state speci�-

cations appear to be a rather direct and natural way to formalize an intuitive understanding of the desired

process behavior. For example, a conceptual state speci�cation of a FIFO bu�er process B directly formal-

izes an informal description of that begins: \Imagine that process B contains an internal variable queue,

whose value at any instant records the sequence of messages input to the bu�er but not yet output . . .," and

continues with a description of the initial state of a bu�er process, the kinds of state transitions that may

be taken by a bu�er process, and a collection of liveness properties that must be satis�ed. Conceptual state

speci�cations generally do not require the use of temporal operators other than \henceforth," \eventually,"

and \next," because conceptual state variables, rather than temporal formulas, are used to summarize the

past history of module behavior.

The basic idea of conceptual state speci�cations is not new, having been proposed previously in various

forms by a number of authors. Yonezawa ([Yon77]) describes a speci�cation method that uses \conceptual

representations," to specify behaviors in the actor model of computation. The history variables of Hailpern

and Owicki ([HO80]) can be viewed as a kind of conceptual state variable, whose values represent the

sequences of values passed between processes up until a particular instant. Lamport ([Lam83]) describes

a speci�cation technique in which a speci�cation is permitted to refer to a collection of indeterminate

state functions, whose values summarize the state of a process. The style of speci�cation that results is

essentially similar to the conceptual state style illustrated in this paper. However, to show that a particular

process satis�es a speci�cation, it is necessary to provide de�nitions of the state functions in terms of the

implemented process state. It would therefore appear that Lamport views state functions as playing more

than just an auxiliary role.

Although conceptual state speci�cations seem to be a natural way to describe process behavior, it is not

quite as clear how to perform reasoning with them as it is in the case of ordinary temporal speci�cations.

The somewhat nonstandard appearance of the quanti�er \there exists a history for the conceptual state

variables such that" in the de�nition of what it means for a process to satisfy a speci�cation causes a certain

amount of di�culty. A central problem in reasoning with conceptual state speci�cations is the problem of

proving an entailment or logical implication between two speci�cations, which in general involve di�erent

sets of conceptual state variables.

This paper introduces the notion of conceptual state speci�cations, de�nes what it means for the en-

tailment relation to hold between two conceptual state speci�cations, and develops a technique for proving

that this relation holds. We are able to show a kind of completeness result for our technique, which states

that a true entailment relation can always be proved, assuming the speci�cations involved satisfy certain

1

In this paper, we use the term \process" to refer both to a sequential process and a system of concurrently executing sequential

processes.
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well-formedness conditions that can be independently checked. The technique is illustrated by considering

the problem of proving that the tandem connection of two FIFO bu�ers again implements a FIFO bu�er.

Our entailment proof technique makes use of the concept of a simulation between machines, and can

be viewed as a generalization of the standard representation function, abstraction function, or interpreta-

tion techniques for proving an implementation relationship between an abstract data type and its concrete

representation ([GHM78], [Hoa72], [Jon81]) If an abstract data type is viewed as a process, whose commu-

nications correspond to invocations of operations of the data type, then standard techniques are capable of

proving only safety or invariance properties. In contrast, our technique permits both safety properties and

liveness or eventuality properties to be proved. The technique used by Goree and Lynch ([Gor81], [Lyn83])

in a hierarchical proof of invariance properties of a concurrency control algorithm can also be viewed as a

special case of the technique presented here.

The results of this paper are a reformulation of results reported in the author's Ph.D. thesis ([Sta84]).

In that document, a number of processes are speci�ed using the conceptual state technique, and several

correctness proofs are performed using the technique described here. Experience with these examples forms

the basis of the author's opinion that conceptual state speci�cations are a natural speci�cation method that

can support the systematic construction of correctness proofs by the techniques described here.

2 Processes

In this section we de�ne a mathematical model of processes, in which the notion of process is identi�ed

with that of certain sets of histories, where each history records the accesses to variables made during a

particular system execution. In the next section, conceptual state speci�cations will be de�ned, and it will

be shown how a conceptual state speci�cation is satis�ed by a process.

Our model is based on the intuitive conception of a system of concurrently executing sequential processes

that interact through changes to the values of shared variables. Only one process is permitted to access each

particular variable at any given instant of time. Although we �nd the shared variable assumption convenient

for this paper, it is not essential for the results, and in fact easily can be replaced by a message-passing

model, or a model in which processes interact by synchronized communication.

We will represent the computation of such a system of processes in terms of the history of values

taken on by the variables. In addition, we shall always be describing a computation from the vantage

of a distinguished process in the system, and our representation of computations will include information

about which variables were accessed, at each instant of time, by the distinguished process, and which were

accessed by the environment of that process. The presence of this information in the model allows us to

obtain composable temporal speci�cations ([BK84]).

There is a nonstandard feature of our model that requires some prior explanation. Below we shall de�ne

a history to be a certain kind of function from the nonnegative real line to a set of events. We shall then

de�ne the semantics of our temporal logic language in terms of these \continuous" histories, rather than

in terms of discrete sequences as is usually done. A consequence of our approach is that the \next state"

operator  becomes meaningless, and we replace it with the somewhat weaker notions of \before" and

\after" states. The reason for making these nonstandard de�nitions is to obtain a temporal logic whose

sentences are incapable of distinguishing between histories that are identical except for occurrences of \null

events," in which no changes are made to the values of variables. The formal statement of the property we

require is the Projection Lemma (Lemma 3). Ordinary formulations of temporal logic in terms of discrete

sequences do not satisfy the Projection Lemma.

To begin our formal treatment, we assume the existence of a universe V of program variables, and a

universe U of values. If V � V then a V -state is a function q : V ! U. If q is a V -state, q

0

is a V

0

-state and

U � V \ V

0

, then de�ne q =

U

q

0

if q(u) = q

0

(u) for all u 2 U . If q =

V \V

0

q

0

, then de�ne the join q t q

0

to

be the unique (V [ V

0

)-state r such that r =

V

q and r =

V

0
q

0

. If q is a V -state and U � V , then de�ne the

projection �

U

(q) to be the unique U -state q

0

such that q

0

=

U

q.

De�nition 1 (Event) A V -event is a pair e = (e; hei; e), where e and e are V -states, called the before state

and the after state, respectively, and hei is a subset of V , called the access set of e. The event e is a null

event if hei = ; and e = e.
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We extend the =

U

notation to events by de�ning e =

U

e

0

i� e =

U

e

0

, e =

U

e

0

, and hei \ U = he

0

i \ U . The

notations t and �

U

() can then be extended to events in an obvious way.

Intuitively, a V -event records the results of a single step of execution, viewed from the vantage of a

particular process, say P , in a system. The before state e of a V -event e records the values of the variables

V \just before" the step in question, and the after state e records the values of the variables \just after" the

step in question. The access set hei records the set of variables accessed by the process in the step. Changes

to the values of variables in hei are attributed to the action of process P . Changes to the values of variables

not in hei are attributed to the action of the environment of process P . Access sets are a re�nement of, and

serve the same purpose as, the environment and process actions of [BK84].

De�nition 2 (History) Let R be the set of nonnegative real numbers. A V -history is a function x from R

to V -events, with the following property: For all t 2 R, there exists � > 0 such that

1. x(t

0

) = x(t

0

) = x(t) and hxi(t

0

) = ; for all t

0

2 R with t � � < t

0

< t,

2. x(t) = x(t

0

) = x(t

0

) and hxi(t

0

) = ; for all t

0

2 R with t < t

0

< t+ �.

We extend the notations =

U

, t, and �

V

() to histories in the obvious way.

Intuitively, a V -history is a record of the results of all steps that occurred during a single execution of a

process, along with their time of occurrence. The two requirements state that each instant of time at which

a nonnull event occurs is surrounded by an interval of time during which only null events occur. These

requirements intuitively correspond to the idea that processes execute at a �nite rate, and formally ensure

that histories have a certain local �niteness property, as we now show.

De�ne a subset T � R to be locally �nite if T \ I is �nite whenever I is a bounded interval of R. Note

that a locally �nite set T always has a unique enumeration as an increasing sequence, viz. t

0

< t

1

< . . .,

and if the set T is in�nite, then this sequence is unbounded.

Lemma 1 Suppose x is a V -history. Then the set of all t 2 R for which x(t) is nonnull is locally �nite.

Proof { Suppose not, then there is some bounded interval I � R, such that x(t) is nonnull for in�nitely

many t 2 I . We can assume without loss of generality that I is closed. Since the closed, bounded subsets of

R are compact, it follows that ft 2 I : x(t) nonnullg has an accumulation point, say t

0

, in I . Then t

0

is also

an accumulation point of one of the sets ft

0

< t

0

: x(t

0

) nonnullg or ft

0

> t

0

: x(t

0

) nonnullg. Suppose the

former, the argument for the latter case is symmetric. Then for all � > 0 there exists t

0

2 (t

0

� �; t

0

) with

x(t

0

) nonnull. This is in contradiction with the de�nition of a history.

Lemma 2 Given an in�nite locally �nite set T = ft

0

< t

1

< . . .g with t

0

= 0, a sequence q

0

; q

1

; . . .

of V -states, and a sequence U

0

; U

1

; . . . of subsets of V , there corresponds a unique V -history x such that

x(t

k

) = (q

k

; U

k

; q

k+1

) for all k, and x(t) = (q

k+1

; ;; q

k+1

) for all k and all t 2 (t

k

; t

k+1

). Conversely, if x is

a V -history, then there exists a set T , a sequence q

0

; q

1

; . . . of V -states, and a sequence U

0

; U

1

; . . . of subsets

of U with the stated properties.

Proof { Omitted from this abstract. Details in [Sta85].

De�nition 3 (Process) A V -process is a set of V -histories.

3 Conceptual State Speci�cations

As a concrete medium in which to express conceptual state speci�cations, we de�ne, for each set of variables

V , a corresponding �rst-order temporal logic T (V ), whose sentences are interpreted as properties of V -

histories. The language T (V ) is syntactically similar to other linear-time temporal logics ([Lam80], [MP83],

[Pnu77]), containing the temporal operators 2 (henceforth) and 3 (eventually). However, we do not permit

the use of the next state operator , since the notion of the \next" state is (by design) meaningless for

histories. We draw a distinction between program variables, which are those in V and which cannot be

bound by quanti�ers, and logical variables, which are drawn from a set X, disjoint from V , and which are

permitted to be bound by quanti�ers.
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In a temporal formula, we refer to the state portion of a history through the use of program variables

in terms. A program variable v 2 V can appear in a term only in the form v, which denotes the value of a

program variable just before the current instant, or in the form v, which denotes the value of v just after the

current instant. Through the use of the v and v constructs, we obtain some, but not all, of the expressive

power normally provided by the  operator. We refer to the access set portion of a history through the

use of special predicates acc

v

, of which there is one for each program variable v 2 V . The predicate acc

v

is true i� the variable v is accessed by the process under consideration at the current instant.

To avoid issues concerning the possibility of expressing various functions and relations on the underlying

universe U, we assume that for each such function or relation there is a corresponding function or relation

symbol in the language T (V ).

The formal de�nition of the syntax of T (V ) is straightforward, and is omitted from this abstract. The

complete de�nitions appear in [Sta85].

To de�ne the semantics of T (V ), we �rst de�ne the meaning of a term t to be a function that takes a

V -event e and an X-state q to a value t(e; q). We next de�ne the satisfaction relation j= between a V -history

x, an X-state q, and a formula � of T (V ). The details are straightforward, and appear in [Sta85].

As usual, if � is a sentence (a formula with no free logical variables), then whether x; q j= � holds is

independent of q, and we may write x j= � without ambiguity. We say that a sentence � is valid, and we

write j= � if x j= � holds for all V -histories x.

By interpreting sentences of T (V ) over \continuous" histories, rather than discrete sequences as is usually

done, we obtain easily the following result. It is crucial in what follows.

Lemma 3 (Projection Lemma) Suppose V and U are sets of variables, with U � V . If � is a sentence of

T (U) and x is a V -history, then

�

U

(x) j= � i� x j= �;

where the satisfaction on the left is taken in T (U) and that on the right is taken in T (V ).

Proof { By induction on formulas { Straightforward.

De�nition 4 (Conceptual State Speci�cation) A conceptual state speci�cation is a three-tuple S = (V; C;�),

where V is a set of interface variables, C is a set of conceptual state variables disjoint from V , and � is a

sentence of the temporal language T (V [ C).

A V -process P satis�es a conceptual state speci�cation S = (V; C;�) (in which case we write P j= S) if

to each V -history x 2 P there corresponds a C-history y such that (xt y) j= �.

Thus, a process satis�es a conceptual state speci�cation i� every history in the process can be augmented

or \explained" by the addition of a history for the conceptual state variables, in such a way that the temporal

sentence in the speci�cation is satis�ed.

Lemma 4 Suppose S = (V; C;�) is a conceptual state speci�cation. Suppose P; P

0

are V -processes such

that P � P

0

. If P

0

j= S , then P j= S .

Proof { Obvious.

4 Example: A Bu�er Speci�cation

As a concrete example of a conceptual state speci�cation, we treat the problem of specifying the behavior of

a process that behaves as an unbounded FIFO bu�er. Later we shall consider the problem of proving that

the tandem connection of two FIFO bu�ers is again a FIFO bu�er. This example, although trivial from a

practical point of view, nevertheless exhibits most of the interesting theoretical issues.
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4.1 Informal Bu�er Speci�cation

A bu�er process has two interface variables: in and out, which we assume take their values in the set A[f?g.

The set A is the set of values that the bu�er process is capable of bu�ering, and ? is a special value, denoting

unde�ned, which plays an important role in the protocol by which the bu�er process communicates with its

environment. The variable in is used for receiving values to be bu�ered from a producer process, and the

variable out is used for outputting values to a consumer process.

The behavior of a bu�er process can be described with the help of a single conceptual state variable

queue, whose values are �nite sequences of elements of A, representing the sequence of values stored in the

bu�er. The speci�cation is divided into three parts: a part describing the initial conditions that hold at the

start of execution, a part describing state-transition information, which is concerned with the step-by-step

evolution of the values of the variables, and a part describing liveness properties.

For the bu�er process, the initial conditions state merely that the value of queue is the empty sequence.

It is convenient to organize the state-transition part of the bu�er speci�cation by classifying each state

transition that can occur as an instance of a certain kind of event. There are three kinds of events that can

occur during the execution of a bu�er process. The �rst kind of event is an input event in which a value,

say a, is read from the external variable in, the value of in is reset to ?, and the value of the conceptual

state variable queue is changed by appending a at the end. When an input event occurs, the variable out

is not accessed by the bu�er process.

The second kind of event is an output event in which a value, say a, is removed from the conceptual

queue, and written into the output variable out. It is required that the variable out have value ? before an

output event can occur. When an output event occurs, the variable in is not accessed by the bu�er process.

The third kind of event is an environment event, which can occur at any time, in which any change at

all to the variables in and out is permitted, but in which the conceptual state variable queue does not

change. The bu�er process does not access the variables in and out during an environment event | rather,

such an event represents a possible access of these variables by the environment of the bu�er process.

There are two liveness conditions that must be satis�ed by a bu�er process: one associated with the

assimilation of input values, and one associated with the production of output values. The �rst liveness

condition states that if the variable in assumes a non-? value, and retains this value for a su�ciently long

time, then eventually an input event will occur. The second liveness condition states that if the internal

queue of the bu�er process is ever nonempty, and the variable out assumes the value ? and retains this

value for a su�ciently long time, then eventually an output event will occur. Together these conditions

ensure that the bu�er process eventually transmits values from producer to consumer, if possible.

4.2 Formal Bu�er Speci�cation

The informal description of the behavior of a bu�er process given above can be formalized as a conceptual

state speci�cation:

S = (fin; outg; fqueueg; �

buf

(in; out;queue));

where �

buf

(in; out;queue) is the conjunction of the following sentences:

queue = hi (1)

2(Inpevent _Outevent _ Envevent) (2)

2(2(in 6= ?) � 3Inpevent) (3)

2(queue 6= hi ^ 2(out = ?) � 3Outevent): (4)

In the above,

Inpevent � acc

in

^ :acc

out

^ in 6= ? ^ queue = queue � in

Outevent � acc

out

^ :acc

in

^ queue 6= hi ^ out = ? ^

queue = tail(queue) ^ out = head(queue)

Envevent � :acc

in

^ :acc

out

^ queue = queue:

The functions head and tail are the obvious functions on sequences.
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5 Proving Entailment

In this section, we de�ne the notion of entailment between conceptual state speci�cations, and consider

the problem of how to prove that a conceptual state speci�cation S = (V; C;�) entails a conceptual state

speci�cation S

0

= (V; C

0

; �

0

).

De�nition 5 (Entailment) A conceptual state speci�cation S = (V; C;�) entails a conceptual state speci�-

cation S

0

= (V; C

0

; �

0

) (and we write S j= S

0

) if every process that satis�es S also satis�es S

0

.

Intuitively, one would expect it to be possible to perform a proof that S j= S

0

by proving a certain

implication in temporal logic. The evident implication is � � �

0

. Although the validity of this implication

(taken in the language T (V [ C [ C

0

)) is su�cient to imply that S j= S

0

, it is not necessary, and in fact is

much too strong a condition to be useful in practice. The reason is that knowing � holds of a (V [C [C

0

)-

history tells us nothing about the relationship between the values of the C-variables and the values of the

C

0

-variables. This relationship will clearly be important, in general, for proving that �

0

holds. We would

like to �nd weaker su�cient conditions for S j= S

0

, which if not necessary, are at least of practical utility.

In this section we show that it is in fact su�cient to �nd temporal sentences �

M

and �

M

0

corresponding

to \machines" M and M

0

, such that the temporal implications � � �

M

and �

M

0

^ � ^ � � �

0

are valid,

where � is a temporal sentence derived from a \simulation relation" from M to M

0

, which expresses the

correspondence between the states of M and those of M

0

. The simulation relation � is a generalization

of, and serves a purpose similar to, the abstraction functions or representation functions used in proofs of

implementation relationships between abstract data types ([GHM78], [Hoa72], [Jon81]).

Lemma 5 Suppose S = (V; C;�) and S

0

= (V; C

0

; �

0

) are conceptual state speci�cations. Then S j= S

0

i� to each V -history x and C-history y such that (x t y) j= �, there corresponds a C

0

-history y

0

such that

(x t y

0

) j= �

0

.

Proof { Omitted from this abstract. Details appear in [Sta85].

Next, we de�ne the kind of nondeterministic machine that will be used in our entailment proof technique.

Such a machine consists of an \initial state relation," which speci�es the states in which computation is

permitted to start, and a \state transition relation," which speci�es the events that are permitted to occur.

Condition (1) of the de�nition below says that a machine must have an initial state corresponding to any

given assignment of values to interface variables. Condition (2) says that it is always possible for a machine

to execute a null event (i.e. do nothing). Condition (3) is a technical condition which ensures that access

information for conceptual state variables is essentially irrelevant in a computation. We impose this condition

because conceptual state variables are unimplemented auxiliary variables, for which access information is

meaningless.

De�nition 6 (Machine) Suppose V and C are disjoint �nite sets of variables. A (V; C)-machine is a pair

M = (

M

; �

M

), where 

M

is a unary relation on (V [ C)-states, called the initial state relation and �

M

is a unary relation on (V [ C)-events, called the transition relation, such that the following conditions are

satis�ed:

1. For all V -states q, there exists a C-state r such that 

M

(q t r) holds.

2. For all V -states q and all C-states r, �

M

(q t r; ;; q t r) holds.

3. For all V -states q

0

; q

1

, all C-states r

0

; r

1

, and all subsets U; U

0

of V [ C, if U \ V = U

0

\ V , then

�

M

(q

0

t r

0

; U; q

1

t r

1

) holds i� �

M

(q

0

t r

0

; U

0

; q

1

t r

1

) holds.

The temporal sentence corresponding to a (V; C)-machineM = (

M

; �

M

) is the sentence �

M

of T (V [C)

de�ned by

�

M

� 

M

(V [ C) ^ 2�

M

(V [ C; acc

V[C

; V [ C):

Here 

M

(V [C) denotes the formula, involving the terms v for each v 2 V [C, corresponding to the initial

state relation 

M

, and �

M

(V [ C; acc

V[C

; V [ C) denotes the formula, involving the terms v; v for each

v 2 V [ C, and the predicates acc

v

for each v 2 V [ C, corresponding to the transition relation �

M

.

A computation of a (V; C)-machine M is a (V [ C)-history x t y such that (x t y) j= �

M

.

7



We next de�ne the notion of a \simulation" from a machine M , with interface variables V and conceptual

state variables C, to a machineM

0

with the same set of interface variables, but a disjoint set C

0

of conceptual

state variables. Intuitively, a simulation relates states of M to corresponding states ofM

0

, so that the initial

state and state transition relations are preserved in a certain fashion.

De�nition 7 (Simulation) Suppose M is a (V; C)-machine, and M

0

is a (V; C

0

)-machine, where C\C

0

= ;.

A simulation from M to M

0

is a relation � � V -states �C-states �C

0

-states, such that the following hold:

1. For all V -states p and C-states q, if 

M

(ptq) holds, then there exists a C

0

-state q

0

such that 

M

0

(ptq

0

)

and �(p; q; q

0

) hold.

2. For all V -states p; p

0

, C-states q; q

0

, all U � V , and all C

0

-states r, if �(p; q; r) and �

M

(pt q; U; p

0

t q

0

)

hold, then there exists a C

0

-state r

0

such that �(p

0

; q

0

; r

0

) and �

M

0

(p t r; U; p

0

t r

0

) hold.

The following is the main technical lemma used in the proof of the Entailment Theorem below. Intu-

itively, it says that the existence of a simulation from M to M

0

ensures that for each computation of M we

can obtain a computation of M

0

, in such a way that the two computations can be combined into a single

\joint computation" for which the simulation relation invariantly holds.

Lemma 6 Suppose M is a (V; C)-machine and M

0

is a (V; C

0

)-machine. Suppose � is a simulation from

M to M

0

. Then to each computation x t y of M , there corresponds a computation x t y

0

of M

0

, such that

(x t y t y

0

) j= 2�(V ; C; C

0

) ^2�(V ; C; C

0

):

Proof { Suppose x t y is a given computation of M . By Lemma 2, there exists an in�nite locally �nite

set T = ft

0

< t

1

< . . .g with t

0

= 0, a sequence p

0

; p

1

; . . . of V -states, a sequence q

0

; q

1

; . . . of C-states,

and a sequence U

0

; U

1

; . . . of subsets of (V [ C), such that x(t

k

) = (p

k

t q

k

; U

k

; p

k+1

t q

k+1

) for all k, and

x(t) = (p

k+1

t q

k+1

; ;; p

k+1

t q

k+1

) for all k and all t 2 (t

k

; t

k+1

). Since x t y is a computation of M , we

know that 

M

(q

0

) holds and �

M

(q

k

; U

k

; q

k+1

) holds for all k.

It is now a simple matter to construct by induction, using the de�ning properties of a simulation, a

sequence q

0

0

; q

0

1

; . . . of C

0

-states, such that 

M

0

(p

0

t q

0

0

) holds, and �(p

k

; q

k

; q

0

k

) and �

M

0

(p

k

t q

0

k

; U

k

\V; p

k+1

t

q

0

k+1

) hold for all k. De�ne U

0

k

= ; for all k. Then an application of Lemma 2 to the set T and sequences

U

0

0

; U

0

1

; . . ., q

0

0

; q

0

1

; . . . yields a C

0

-history y

0

such that x t y

0

is the desired computation of M

0

.

The following result gives our technique for proving entailment between conceptual state speci�cations.

Theorem 1 (Entailment Theorem) Suppose S = (V; C;�) and S

0

= (V; C

0

; �

0

) are conceptual state speci�-

cations, with C\C

0

= ;. Suppose we can �nd a (V; C)-machineM , a (V; C

0

)-machine M

0

, and a simulation

� from M to M

0

, such that the implications

� � �

M

�

M

0

^ � ^2�(V ; C; C

0

) ^2�(V ; C; C

0

) � �

0

are valid. Then S j= S

0

.

Proof { Suppose M , M

0

, and � have the stated properties. By Lemma 5 above, we need only show that

to each V -history x and C

0

-history y such that (x t y) j= �, there corresponds a C

0

-history y

0

such that

x t y

0

j= �

0

. Given x and y such that x t y j= �, we know from the �rst hypothesized implication that

(x t y) j= �

M

. Since � is a simulation, the previous lemma gives us a y

0

such that x t y

0

j= �

M

0

and

(x t y t y

0

) j= 2�(V ; C; C

0

) ^2�(V ; C; C

0

):

By the Projection Lemma,

(x t y t y

0

) j= �

M

0

^ � ^ 2�(V ; C; C

0

) ^2�(V ; C; C

0

):

By modus ponens and the second implication assumed valid by hypothesis, it follows that (xt y t y

0

) j= �

0

.

Applying the Projection Lemma again gives us (xt y

0

) j= �

0

.
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6 Example: Tandem Connection of Two Bu�ers

This section illustrates the role played by the Entailment Theorem in a proof that the tandem connection

of two FIFO bu�ers correctly implements a FIFO bu�er.

Let

�

0

� �

buf

(in; inout;queue

0

);

�

1

� �

buf

(inout; out;queue

1

);

and

�

abs

� �

buf

(in; out;queue):

Let S be the conceptual state speci�cation

(fin; out; inoutg; fqueue

0

;queue

1

g;Consis(finoutg) ^ �

0

^ �

1

);

which is the speci�cation satis�ed by the tandem connection of two bu�er processes. Here the formula

Consis(U), for a �nite set of variables U , is given by

Consis(U) � 2

^

v2U

(:acc

v

� v = v):

Intuitively, the formula Consis(finoutg) states that if the variable inout is not accessed in an event by one

of the two bu�er processes, then its value does not change in that event. This corresponds to the idea that

the variable inout is an internal variable used for communication between the two bu�er processes, and is

hidden from access by the external environment.

Let S

0

be the speci�cation

(fin; out; inoutg; fqueue; eventg; �

abs

);

which, if satis�ed by a fin; out; inoutg-process P , implies that the projection of P to the variable set

fin; outg satis�es the bu�er speci�cation.

To prove the correctness of the implementation, we must prove that the entailment S j= S

0

holds. To

apply the Entailment Theorem, we must determine the machines M and M

0

, �nd a simulation � from M

to M

0

, and prove the validity of two implications in temporal logic.

The factorization of the bu�er speci�cation into initial conditions, state-transition conditions, and live-

ness conditions obviously suggests an M and M

0

. De�ne



M

� queue

0

= hi ^ queue

1

= hi

�

M

� (Inpevent

0

_ Outevent

0

_ Envevent

0

) ^

(Inpevent

1

_ Outevent

1

_ Envevent

1

) ^

(:acc

inout

� inout = inout)



M

0

� queue

abs

= hi

�

M

0
� Inpevent

abs

_ Outevent

abs

_ Envevent

abs

;

where

Inpevent

0

� acc

in

^ :acc

inout

^ in 6= ? ^ queue

0

= queue

0

� in

Outevent

0

� acc

inout

^ :acc

in

^ queue

0

6= hi ^ inout = ? ^

queue

0

= tail(queue

0

) ^ inout = head(queue

0

)

Envevent

0

� :acc

in

^ :acc

inout

^ queue

0

= queue

0

Inpevent

1

� acc

inout

^ :acc

out

^ inout 6= ? ^ queue

1

= queue

1

� inout

Outevent

1

� acc

out

^ :acc

inout

^ queue

1

6= hi ^ out = ? ^

queue

1

= tail(queue

1

) ^ out = head(queue

1

)

9



Envevent

1

� :acc

inout

^ :acc

out

^ queue

1

= queue

1

Inpevent

abs

� acc

in

^ :acc

out

^ in 6= ? ^ queue

abs

= queue

abs

� in

Outevent

abs

� acc

out

^ :acc

in

^ queue

abs

6= hi ^ out = ? ^

queue

abs

= tail(queue

abs

) ^ out = head(queue

abs

)

Envevent

abs

� :acc

in

^ :acc

out

^ queue

abs

= queue

abs

:

It is straightforward to check that M and M

0

are, in fact, machines, and that the implications

Consis(finoutg) ^ �

0

^ �

1

� �

M

and

�

abs

� �

M

0

are valid.

Next, we must de�ne a relation �, and show that it is a simulation from M to M

0

. The appropriate � is

the one that says that the abstract queue is the concatenation of the two component queues, with the value

of inout in between, if that value is not ?.

� � (inout = ? � queue

abs

= queue

0

� queue

1

) ^

(inout 6= ? � queue

abs

= queue

0

� inout � queue

1

):

The proof that � is a simulation involves a case analysis based on the di�erent possible combinations of

Inpevent

i

, Outevent

i

, and Envevent

i

that are permitted by the transition relations �

M

and �

M

0

. The details

are straightforward but tedious, and are omitted. In general, the construction of the simulation � is the part

of the proof that requires insight; once this relation has been constructed, the enumeration of the various

cases in the conditions required for � to be a simulation, and the construction of the proof for each case, are

systematic tasks that are within the ability of automatic or semi-automatic theorem proving programs.

To complete the proof of correctness of the bu�er implementation, we must prove the implication

(�

M

0

^ Consis(finoutg)^�

0

^ �

1

^ 2�(inout;queue

0

;queue

1

;queue

abs

)^

2�(inout;queue

0

;queue

1

;queue

abs

)) � (�

M

0
^ �

abs

);

or equivalently,

(�

M

^ �

M

0

^2�(inout;queue

0

;queue

1

;queue

abs

)^

2�(inout;queue

0

;queue

1

;queue

abs

)) � (�

0

0

^ �

0

1

� �

0

abs

);

where

�

0

0

� 2(2(in 6= ?) � 3Inpevent

0

)

2((queue

0

6= hi ^2(inout = ?)) � 3Outevent

0

)

�

0

1

� 2(2(inout 6= ?) � 3Inpevent

1

)

2((queue

1

6= hi ^2(out = ?)) � 3Outevent

1

)

�

0

abs

� 2(2(in 6= ?) � 3Inpevent

abs

)

2((queue

abs

6= hi ^ 2(out = ?)) � 3Outevent

abs

):

The intuitive content of this implication is that every \joint computation" of M and M

0

, whose \M -part"

satis�es the speci�cation for the tandem connection of two FIFO bu�ers, and whose M -part and M

0

-part

are related by the simulation relation �, also has the property that its M

0

-part satis�es the speci�cation of

a FIFO bu�er.

This proof can be performed by the proof lattice techniques of Owicki and Lamport [OL82]. We omit

the details.
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7 A Completeness Result

The su�cient conditions given by the Entailment Theorem for proving an entailment are not necessary in

general. However, if we assume the speci�cations involved satisfy certain well-formedness conditions, we can

show that the proof technique given by the Entailment Theorem is complete in the sense that a proof can

always be found when an entailment holds.

De�nition 8 (Regularity) Suppose M is a (V; C)-machine, and � is a sentence of T (V [ C). We say that

� is regular with respect to M if for all computations x t y; xt y

0

of M , x t y j= � i� x t y

0

j= �.

Intuitively, if � is regular with respect to M , then whether a computation xt y of M satis�es � depends

only upon x, and not upon the particular choice of history for the conceptual state variables.

De�nition 9 (Quasi-determinacy) Suppose M is a (V; C)-machine. We say that M is quasi-determinate

when for all computations xty; x

0

ty

0

of M , if x(t) = x

0

(t) for all t 2 [0; n), then there exists a computation

x t y

00

of M , with y

00

(t) = y

0

(t) for all t 2 [0; n).

Intuitively, for a quasi-determinate machine, the particular choice of conceptual state history made on

an initial segment of a computation does not a�ect whether or not that computation can be completed to

generate a particular history x for the interface variables.

De�nition 10 (Density) Suppose M is a (V; C)-machine, and � is a sentence of T (V [ C). We say that

� is dense in M if the following property holds: For all computations xt y of M and all n 2 R, there exists

a V -history x

0

and a C-history y

0

such that (x

0

t y

0

) j= �

M

^ � and such that (xt y)(t) = (x

0

t y

0

)(t) for all

t 2 [0; n].

Intuitively, � is dense in M if every computation of M is arbitrarily close (w.r.t. a metric that measures

the length of agreement of pre�xes) to a computation of M that satis�es �.

Theorem 2 (Completeness Theorem) Suppose

S = (V; C;�

M

^ �) and S

0

= (V; C

0

; �

M

0
^ �

0

)

are conceptual state speci�cations, with C;C

0

disjoint. Suppose that � is dense in M , and that �

0

is regular

with respect to the quasi-determinate machine M

0

. If S j= S

0

, then there exists a simulation � from M to

M

0

, and the implication

�

M

0

^ �

M

^ � � �

0

is valid.

Proof { Suppose M = (; �) and M

0

= (

0

; �

0

). We �rst show that �

M

0

^ �

M

^ � � �

0

is valid. To show

this, suppose that x is a V -history, y is a C-history, and y

0

is a C

0

-history, such that

(x t y t y

0

) j= �

M

0

^ �

M

^ �:

Then (xty) j= �

M

^� and (xty

0

) j= �

M

0
by the Projection Lemma. By Lemma 5 and the assumption that

S j= S

0

, there exists a C

0

-history y

00

such that (x t y

00

) j= �

M

0

^ �

0

. The regularity of �

0

with respect to M

0

implies that (x t y

0

) j= �

0

i� (x t y

00

) j= �

0

, so we conclude that (x t y

0

) j= �

0

. It follows by the Projection

Lemma that (xt y t y

0

) j= �

0

.

It remains to prove the existence of the required simulation � from M to M

0

. De�ne a pair (pt q; pt r),

where p is a V -state, q is a C-state and r is a C

0

-state, to be jointly reachable according to the following

inductive de�nition:

1. If 

M

(p t q) and 

M

0

(p t r) both hold, (p t q; p t r) is jointly reachable.

2. If (p t q; p t r) is jointly reachable, and �

M

(p t q; U; p

0

t q

0

) and �

M

0

(p t r; U; p

0

t r

0

) hold for some

U � V , then (p

0

t q

0

; p

0

t r

0

) is jointly reachable.

11



If p is a V -state, q is a C-state, and q

0

is a C

0

-state, then de�ne �(p; q; r) to hold i� the pair (p t q; p t r) is

jointly reachable.

We claim that � is a simulation from M to M

0

. To show this, we must show two things:

1. For all V -states p and C-states q, if 

M

(ptq) holds, then there exists a C

0

-state q

0

such that 

M

0
(ptq

0

)

and �(p; q; q

0

) hold.

2. For all V -states p; p

0

, all C-states q; q

0

, all U � V , and all C

0

-states r, if �(p; q; r) and �

M

(ptq; U; p

0

tq

0

)

hold, then there exists a C

0

-state r

0

such that �(p

0

; q

0

; r

0

) and �

M

0

(p t r; U; p

0

t r

0

) hold.

To show 1, suppose p is a V -state and q is a C-state such that 

M

(p t q) holds. Then since M

0

is a

machine, there exists a C

0

-state r such that 

M

0
(pt r) holds. Since the pair (pt q; pt r) is jointly reachable,

it follows that �(p; q; r) holds.

To show 2, suppose �(p; q; r) and �

M

(pt q; U; p

0

t q

0

) hold. Then by de�nition of � the pair (p t q; pt r)

is jointly reachable. We can therefore obtain a sequence U

0

; U

1

; . . . ; U

n�1

of subsets of V , a sequence

p

0

; p

1

; . . . ; p

n

of V -states, a sequence q

0

; q

1

; . . . ; q

n

of C-states, and a sequence r

0

; r

1

; . . . ; r

n

of C

0

-states

such that p

n

= p, q

n

= q, r

n

= r, 

M

(p

0

t q

0

) and 

M

0

(p

0

t r

0

) hold, �

M

(p

k

t q

k

; U

k

; p

k+1

t q

k+1

) and

�

M

0

(p

k

tr

k

; U

k

; p

k+1

tr

k+1

) hold for all k with 0 � k � n�1, and �(p

k

; q

k

; r

k

) holds for all k with 0 � k � n.

Extend the sequences p

i

and q

i

to in�nity by de�ning p

i

= p

0

and q

i

= q

0

for all i > n. Extend the

sequence U

i

to in�nity by de�ning U

n

= U and U

i

= ; for all i > n. Extend the sequence r

i

to in�nity by

de�ning r

i

= r

n

for all i > n. De�ne the sequences p

0

i

and U

0

i

so that p

0

i

= p

i

and U

0

i

= U

i

for 0 � i < n, and

p

0

i

= p

n

and U

0

i

= ; for i � n. Then �

M

(p

k

t q

k

; U

k

; p

k+1

t q

k+1

) and �

M

0

(p

0

k

t r

k

; U

0

k

; p

0

k+1

t r

k+1

) hold for

all k.

Let T = f0; 1; 2; . . .g. Then by Lemma 2, T and the sequences U

k

, p

k

, and q

k

uniquely determine a

V -history x

0

and a C-history y

0

such that x

0

(k) t y

0

(k) = (p

k

t q

k

; U

k

; p

k+1

t q

k+1

) for all k 2 T , and

x

0

(t) t y

0

(t) = (p

k+1

t q

k+1

; ;; p

k+1

t q

k+1

) for all k 2 T and all t 2 (t

k

; t

k+1

). Similarly, the sequences U

0

k

,

p

0

k

, and r

k

uniquely determine a V -history x

0

0

and a C

0

-history y

0

0

, which have the additional property that

(x

0

0

t y

0

0

)(t) = (x

0

t y

0

)(t) for all t 2 [0; n). By construction, (x

0

t y

0

) j= �

M

and (x

0

0

t y

0

0

) j= �

M

0

.

Intuitively, the computation x

0

t y

0

of M is a computation that begins in an initial state, reaches the

state ptq before time n, performs the event (ptq; U; p

0

tq

0

) at time n, and then subsequently performs null

events. The computation x

0

0

t y

0

0

of M

0

is a computation that begins in an initial state, reaches the state

p t r before time n, in a way that is related by � to the way in which p t q is reached by M , and performs

null steps subsequently. What we wish to show is that M

0

can perform a transition to the state p

0

t r

0

at

time n, corresponding to the transition to the state p

0

t q

0

that M performs at time n in x

0

t y

0

.

By the assumption that � is dense in M , there exists a (V [C)-history (x

1

ty

1

) such that x

1

(t)ty

1

(t) =

x

0

(t)t y

0

(t) for all t 2 [0; n], and such that (x

1

t y

1

) j= �

M

^�. This implies that the singleton process fx

1

g

satis�es S . By the assumption that S j= S

0

, fx

1

g j= S

0

, and hence there exists a C

0

-history y

0

1

such that

(x

1

t y

0

1

) j= �

M

0

^ �

0

.

We now know that (x

1

t y

0

1

) j= �

M

0

, (x

0

0

t y

0

0

) j= �

M

0

, and x

1

(t) = x

0

0

(t) for all t 2 [0; n). By the

quasi-determinacy of M

0

, there exists a C

0

-history y

0

2

, such that (x

1

t y

0

2

) j= �

M

0

and y

0

2

(t) = y

0

0

(t) for

t 2 [0; n).

Since (x

1

ty

0

2

) j= �

M

0

, it follows that �

M

0

(x

1

(n)ty

0

2

(n)) holds. Since x

1

(n) = p, x

1

(n) = p

0

, hx

1

i(n) = U ,

and y

0

2

(n) = r, it follows that y

0

2

(n) has the property that �

M

(p t r; U; p

0

t y

0

2

(n)) holds, and hence is the

desired state r

0

.

8 Summary

We have introduced the notion of a conceptual state speci�cation, which is a kind of temporal logic speci�-

cation in which conceptual state variables are introduced to increase the expressive power of the temporal

language. We have de�ned the notion of entailment between conceptual state speci�cations, and have ob-

tained a proof technique for establishing the entailment relationship. The proof technique can be viewed as a

generalization of standard techniques for proving the correctness of implementations of abstract data types.

We showed that, if the speci�cations involved are assumed to satisfy certain well-formedness conditions,

then true entailment relations can always be established by our technique. The use of the technique was

illustrated by a simple example.
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