
An Algebra of Data
ow Networks

Eugene W. STARK

�

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

y

Abstract. This paper describes an algebraic framework for the study

of data
ow networks, which form a paradigm for concurrent computa-

tion in which a collection of concurrently and asynchronously executing

processes communicate by sending messages between ports connected

via FIFO message channels. A syntactic data
ow calculus is de�ned,

having two kinds of terms which represent networks and computations,

respectively. By imposing suitable equivalences on networks and com-

putations, we obtain the free data
ow algebra, in which the data
ow

networks with m input ports and n output ports are regarded as the

objects of a category S

n

m

, and the computations of such networks are

represented by the arrows. Functors de�ned on S

n

m

label each computa-

tion by the input bu�er consumed and the output bu�er produced during

that computation, so that each S

n

m

is a span in Cat. It is shown that

the free data
ow algebra construction underlies a monad in the category

of collections S = fS

n

m

: m;n � 0g of spans in Cat. The algebras of this

monad, called data
ow algebras, have a monoid structure representing

parallel composition, and are also equipped with an action of a certain

collection of continuous functions, thereby representing the formation of

feedback loops. The two structures are related by a distributive law of

feedback over parallel composition. We also observe the following con-

nection with the theory of �brations: if S is a data
ow algebra, then

each S

n

m

is a split bi�bration in Cat.

1 Introduction

Data
ow networks [4, 5] are a paradigm for concurrent computation in which a collec-

tion of concurrently and asynchronously executing processes communicate by sending

messages between ports connected via FIFO message channels. Determinate data
ow

networks compute continuous functions from input message histories to output mes-

sage histories, and have a pleasant, well-understood theory [4]. Less developed is the

theory of indeterminate or non-functional networks, which present a puzzle because

naive attempts to model such networks by generalizing the continuous functions that

work for the determinate case, fail to yield theories that are compatible with an intuitive

operational semantics [1, 6]. From a more general concurrency theory perspective, inde-

terminate data
ow networks are interesting because they exhibit both concurrency and

indeterminacy, and it seems likely that insight gained from their study will contribute

to a better overall understanding of these two concepts.

�

Research supported in part by NSF Grant CCR-8902215.

y

E-mail address: stark@cs.sunysb.edu (Internet)

For several years I have been studying data
ow networks with the goal of �nding

the \correct" algebraic setting for the study of indeterminate networks. I have taken

the view that, in such a setting, data
ow networks should be the elements of an algebra

whose operations represent ways to build networks from components. Although the

particular selection of network operations is mostly a presentational matter, included

among the operations should be a parallel composition operation for aggregating a

collection of components into a network without any interconnections, and a feedback

operation for introducing feedback loops from outputs to inputs. Further, a notion

of computation should be integral to the theory, so that connections can be drawn

between the abstract algebraic properties of the network-building operations and a

more concrete operational semantics. Finally, the theory should provide some sort

of principle, for reasoning about the behavior of networks with feedback loops, that

somehow generalizes the least �xed-point principle originally described by Kahn [4] for

determinate networks.

In previous work toward these goals [9], I observed that some algebraic proper-

ties of the network operations are clari�ed if data
ow networks are represented as

spans in a �nitely complete category Auto of concurrent automata. Intuitively, a span

X

f

 �A

g

�!Y from X to Y represents a data
ow network with \object of inputs" X,

\object of outputs" Y , and \underlying automaton" A. The morphisms f and g serve

to label the computations of A by the inputs consumed and outputs produced during

those computations. When networks are represented as spans in Auto, parallel compo-

sition has a simple description as cartesian product of spans, and feedback of outputs

to inputs can be described in terms of the equalizer of the two maps that label compu-

tations by their feedback output and the feedback input. The latter characterization

depends heavily on the particular structure of automata in Auto and on having just

the right notion of morphism for these automata. Speci�cally, the automata support

the notion that certain transitions represent simultaneous occurrences of independent

computational steps, and morphisms are required to preserve these transitions. This

property of the morphisms ensures that the subautomaton formed by equalizing output

and input is capable only of \causal" computations, in which the production of feedback

output in a step of computation does not depend on the consumption of that output

as feedback input in the same step.

In a a subsequent paper [10] I explored the networks-as-spans idea further by ob-

serving that \data
ow-like" spans in Auto have certain special properties pertaining

to inputs and outputs, and then attempting to identify categorical properties that char-

acterize the data
ow-like spans. I found that the data
ow-like spans in Auto could

be described in terms of Street's notion of 0-�bration [12, 13], which adapts to more

general 2-categories the notion of \op�bration" in Cat [2]. Street's theory character-

izes �brations in a 2-category as being the algebras of a certain kind of 2-monad called

a \KZ-doctrine." For data
ow networks, the endo-2-functor underlying this 2-monad

corresponds to the construction \compose with an input bu�er." Thus, in this setting,

we can say that the data
ow-like spans are those spans that are algebras of the input

bu�ering doctrine.

In spite of the pleasant intuitive connections, there are some technical problems

with the treatment of data
ow networks as �brations in Auto, which seem to indicate

that this is not exactly the right way to proceed. These problems stem from the

delicate issue of the choice of morphisms for Auto. In a nutshell, the morphisms that

yield the characterization of feedback in terms of limits do not lead to a 2-category

Auto with su�cient completeness properties (in particular, the existence of comma

objects). To get around this problem, Auto was regarded as embedded in a 2-category

AutoWk, which had a larger class of morphisms that behaved somewhat better, and

the data
ow-like spans were described as those 0-�brations in AutoWk having an

Auto-morphism as the structure map. Unfortunately, it is di�cult to see how to

apply this somewhat messy characteration to 2-categories very much di�erent than

Auto, or to give categorical proofs of theorems such as: \the unwinding 2-functor,

taking automata to the pre�x-ordered sets of their computations, preserves data
ow-

like spans."

In [11], I took a more syntactic approach, and de�ned a \data
ow calculus" to be a

formal system in which there are two sets of expressions: one set denoting networks and

another set denoting computations. Network expressions are constructed, via formal

network-building operations, from certain basic standard networks used for \wiring"

and basic nonstandard networks which we think of as variables. Computation expres-

sions are proof terms which are constructed via inference rules from axioms associated

with the basic networks. The inference rules are associated with the network-building

operations, and in fact can be thought of as a structured operational semantics (SOS)

[8] description of their computational behavior. The main result of that paper was

a sound and complete axiomatization for a certain equivalence relation on networks,

de�ned in terms of bisimulation [7].

The goal of the present paper is to forge a link between the syntactic approach of

[11] and the more abstract networks-as-spans approaches of [9] and [10]. We retain the

idea that data
ow networks are represented using spans, but discard the idea that they

must be spans in Auto. Instead, it turns out that with some care in the treatment of

feedback,Cat can be used as the category of automata. We begin by de�ning a syntactic

\data
ow calculus," which is concerned with networks and their computations. Then,

we describe a \free data
ow algebra" construction on certain diagrams of spans in

Cat. This construction is concerned both with objects, which we regard as network

states, and arrows, which we regard as computations. In this way we manage to treat

simultaneously the network-building operations and their operational semantics. We

show how the free data
ow algebra supports an interpretation of both the network

expressions and computation expressions of data
ow calculus, so that the latter can

be viewed as a concrete syntax for the former. Our main result is a theorem stating

that the free data
ow algebra construction is the underlying functor of a monad, whose

algebras we call \data
ow algebras." Using Street's characterization of �brations as

algebras, an easy consequence of the result is that every data
ow algebra consists of

split bi�brations in Cat.

2 Data
ow Calculus

Our calculus for data
ow networks is a language with two kinds of terms: \network

expressions" and \computation expressions." Network expressions are constructed by

applying syntactic network-forming operations to a set of \basic standard networks,"

which consists of constants that are common to every data
ow calculus, and a set of

\basic nonstandard networks," which is given as a parameter and whose elements we

think of as variables. Computation expressions are proofs, constructed via inference

rules associated with the network-forming operations, from \nonstandard computation

axioms" associated with the basic nonstandard networks, and \standard computation

axioms" associated with the basic standard networks. The conclusions of such proofs are

labeled arrows of the form P

=)

�

Q, which represent computational steps in which input

data � is consumed, output data
 is produced, and network state P is transformed into

network state Q. The inference system for computation expressions may be viewed as

a structured operational semantics (SOS) de�nition [8] of the computational behavior

of network expressions.

Network expressions in data
ow calculus are segregated into classes by numbers of

input and output ports; so that, if Ord denotes the set of �nite ordinals, then for each

pair (m;n) 2 Ord�Ord we have a set of \network expressions of type (m;n)." We use

ordinals because we regard the input and output ports of a network as having a de�nite

left-to-right orientation.

To give a formal de�nition of data
ow calculus, we begin by postulating a set V of

data values, representing the quantities that can be sent in messages between compo-

nents of a network. For each �nite ordinal n, a bu�er of width n is a function

� : f0; 1; : : : ; n� 1g ! V

�

;

where V

�

is the free monoid generated by V . We use �

n

to denote the bu�er of width

n such that �

n

(i) is the empty string for 0 � i < n. We will drop the subscript n when

the width is clear from the context.

Let B

n

denote the set of bu�ers of width n. The set B

n

is a monoid under the

operation of concatenation lifted pointwise from V

�

. Besides this vertical composition,

which takes � and �

0

in B

n

and produces �;�

0

2 B

n

, the collection B of all sets B

n

is

also equipped with a horizontal composition, which takes � 2 B

m

and
 2 B

n

and places

them \side-by-side" to yield �
 2 B

m+n

. The vertical and horizontal composition are

connected by the familiar \middle-four interchange law:"

(�
); (�

0

0

) = (�;�

0

)(
;

0

):

The basic nonstandard networks and nonstandard computation axioms in data
ow

calculus are given by a data
ow scheme, which we de�ne to be a collection

S = fS

n

m

: (m;n) 2 Ordg;

of spans in Cat, where S

n

m

is a span from B

m

to B

n

, and we regard the monoids B

m

and B

n

as one-object categories. The objects and arrows of S

n

m

represent the basic

nonstandard networks and the nonstandard computation axioms, respectively. For

each (m;n), we think of the functors d

0

: S ! B

m

and d

1

: S ! B

n

forming the

legs of the span as labeling each computation by the input bu�er consumed and the

output bu�er produced, respectively, during that computation. We write t : x

=)

�

y, or

sometimes just x

=)

�

y, to refer to a computation t in S

n

m

with d

0

(t) = � and d

1

(t) =
.

We generally omit writing �,
, or both, when they are empty bu�ers. The notation

1 : x =) x denotes an identity computation.

Given a data
ow scheme S, let the sets (NS)

n

m

of network expressions of type (m;n)

over S be de�ned inductively as follows:

� For all n; n

0

2 Ord, �; � 2 B

n

, and �

0

2 B

n

0

, we have the following basic standard

networks:

{ the bu�ered identity network 1

�

n

2 (NS)

n

n

.

6

6

6

6

T

T

T

T

T

T

T

6

�

�

�

�

�

�

�

6

.

6

6

P P

0

P Q

P
 P

0

P 1 Q

m

n

m

0

n

0

m

n

p q

q p

Figure 1: Parallel Composition and Feedback

{ the bu�ered exchange network s

�

0

�

n;n

0

2 (NS)

n

0

+n

n+n

0

,

{ the bu�ered duplicator network d

��

n

2 (NS)

n+n

n

,

{ the terminator network t

n

2 (NS)

0

n

.

We often omit writing bu�ers in basic standard networks, under the convention

that any omitted bu�ers are assumed to be empty.

� The basic nonstandard network x is in (NS)

n

m

whenever x 2 S

n

m

.

� The input bu�ered network P �� is in (NS)

n

m

. whenever P 2 (NS)

n

m

and � 2 B

m

.

� The output bu�ered network
 �P is in (NS)

n

m

whenever P 2 (NS)

n

m

and
 2 B

n

.

� The parallel composition P
P

0

of P and P

0

is in (NS)

n+n

0

m+m

0

, whenever P 2 (NS)

n

m

and P

0

2 (NS)

n

0

m

0

.

� The feedback P 1 Q of P and Q is in (NS)

n

m

, whenever P 2 (NS)

n+p

m+q

is a standard

network (one not containing any occurrences of basic nonstandard networks) and

Q 2 (NS)

q

p

is an arbitrary network.

Figure 1 gives a schematic depiction of the parallel composition and feedback operations.

The computation expressions over S are all proofs that can be constructed from the

axioms and inference rules listed below.

� The nonstandard computation axiom

x

=)

�

y;

for each arrow x

=)

�

y of S

n

m

.

� The standard computation axioms

1

;�

n

=)

�

1

�;�

n

t

n

=)

�

t

n

d

(
;�)(

0

;�

0

)

n

0

=)

�

d

(�;�)(�

0

;�)

n

s

(

0

;�

0

)(
;�)

n;n

0

0

=)

��

0

s

(�

0

;�

0

)(�;�)

n;n

0

:

� The input and output bu�ering rules

P

=)

�

Q

P � (�; �)

=)

�

Q � (�;�)

P

�

=)

�

Q

(
; �) � P

=)

�

(�; �) �Q

� The parallel composition rule

P

=)

�

Q P

0

0

=)

�

0

Q

0

P
 P

0

0

=)

��

0

Q
Q

0

� The feedback rule

P

�

=) R Q

�

=)

�

Q

0

R =)

��

P

0

P 1 Q

=)

�

P

0

1 Q

0

� The cut rule:

P

=)

�

R R

�

=)

�

Q

P

;�

=)

�;�

Q

3 Networks

The de�nition of data
ow calculus given in the previous section includes no notion

of equivalence for network expressions. However, we have in mind that many pairs

of network expressions, such as P
 (Q
R) and (P
Q)
 R, ought to be regarded

as equivalent. One way to obtain a suitable equivalence would be the operational

approach taken in [11]: treat the network expressions as the states of a transition system

whose transitions are the inferrable arrows P

=)

�

Q, de�ne a version of bisimulation

equivalence [7] for this transition system, and declare that two network expressions are

equivalent if and only if they are bisimilar under all possible choices for the nonstandard

transition axioms. However, it is also possible to obtain an equivalence more directly

by de�ning an interpretation of network expressions as \networks," and to declare that

two networks are equivalent i� they denote the same network. This is the approach

we shall follow here. The equivalence we obtain is not as coarse as that de�ned in

[11], since it does not relate distinct networks that di�er by a permutation of their

components, nor does it relate a network to the \reduced" network obtained by deleting

all \unobservable" components not having data paths to an external output. It is

possible, though, to extend the ideas of this paper to treat the coarser equivalence.

We begin by de�ning the interpretation of standard network expressions, which are

those that contain no occurrences of basic nonstandard networks. These expressions

will be interpreted as certain continuous functions on \histories." Formally, a history

of width n is a function

� : f0; 1; : : : ; n� 1g ! V

1

;

where V

1

is the set of all �nite and in�nite sequences of elements of V , partially ordered

by the relation: u � u

0

i� u is �nite and u

0

= uw for some w 2 V

1

. Let H

n

denote

the set of all histories of width n; then H

n

is a Scott domain (an !-algebraic, bounded

complete CPO) under the pointwise ordering. Clearly, we may regard B

n

as a subset of

H

n

. As was the case for bu�ers, we can form the \horizontal composition" of a history

� 2 H

m

and a history � 2 H

n

, to obtain a history �� 2 H

m+n

. Although vertical

composition of arbitrary histories does not make sense, in general, it does always make

sense to form the vertical composition of a history � 2 H

n

and a bu�er � 2 B

n

, to

obtain a history �;� 2 H

n

.

A Kahn function of type (m;n) is a Scott-continuous function f : H

m

! H

n

. We use

the name \Kahn function" because these functions are what Kahn used in his original

study [4] of determinate data
ow networks. Let K

n

m

denote the set of all Kahn functions

of type (m;n). Some simple Kahn functions are: the identity function 1

n

2 K

n

n

, the

\diagonal" or \duplicator" function d

n

2 K

n+n

n

de�ned by d

n

(�) = ��, the \terminator"

function t

n

2 K

0

n

de�ned by t

n

(�) = �, and the \exchange" or \symmetry" function

s

n;n

0

2 K

n

0

+n

n+n

0

de�ned by s

n;n

0

(��

0

) = �

0

�. We also have, for each � 2 B

n

, the \bu�ering

function"

^

� 2 K

n

n

de�ned by

^

�(�) = �; �. If f 2 K

n

m

and f

0

2 K

n

0

m

0

are Kahn functions,

then we use the notation f
 f

0

to denote the Kahn function in K

n+n

0

m+m

0

de�ned by

(f
 f

0

)(��

0

) = (f(�))(f

0

(�

0

)):

We now de�ne the interpretation of each standard network expression P of type

(m;n) as a Kahn function [P]

0

: H

m

! H

n

.

[1

�

n

]

0

=

^

�

[s

�

0

�

n;n

0

]

0

= (

^

�

0

^

�) � s

n;n

0

[d

��

0

n

]

0

= (

^

�

^

�

0

) � d

n

[t

n

]

0

= t

n

[P � �]

0

= [P]

0

�

^

�

[� � P]

0

=

^

� � [P]

0

[P
 P

0

]

0

= [P]

0

 [P

0

]

0

[P 1 Q]

0

= [P]

0

1 [Q]

0

;

where, for the last de�nition, given a Kahn function f 2 K

n+p

m+q

, and a Kahn function

g 2 K

q

p

, de�ne 	 to be the continuous functional

	 : K

n+p

m

! K

n+p

m

: h 7! f � (1

m

 (t

n

 g)) � (1

m

 h) � d

m

;

let �	 denote the least �xed point of 	, and de�ne f 1 g = (1

n

 t

p

) � (�).

We need two additional operations on Kahn functions. For f 2 K

n+r

m+s

and g 2 K

s+p

r+q

,

de�ne f

s

3

r

g 2 K

n+p

m+q

by

f

s

3

r

g = ((1

n

 s

r+s;p

) � (f
 g) � (1

m

 s

q;s+r

) � (1

m+q

 s

r;s

)) 1 1

r+s

:

For f 2 K

n+p

m+q

and g 2 K

n

0

+p

0

m

0

+q

0

, de�ne f

p

q

2

p

0

q

0

g 2 K

n+n

0

+p+p

0

m+m

0

+q+q

0

by

f

p

q

2

p

0

q

0

g = (1

n

 s

p;n

0

 1

p

0

) � (f
 g) � (1

m

 s

m

0

;q

 1

q

0

):

We omit the subscripts and superscripts of 3 and 2 when they are clear from the

context. The signi�cance of these somewhat bizarre-looking de�nitions is made clearer

by the following result:

Lemma 1

1. f 1 (g 1 h) = (f

s

3

r

g) 1 h, whenever f 2 K

n+r

m+s

, g 2 K

s+p

r+q

, and h 2 K

q

p

.

2. (f 1 g)
 (f

0

1 g

0

) = (f

p

q

2

p

0

q

0

f

0

) 1 (g
 g

0

), whenever f 2 K

n+p

m+q

, f

0

2 K

n

0

+p

0

m

0

+q

0

,

g 2 K

q

p

, and g

0

2 K

q

0

p

0

.

The operations 3 and 2 also have some familiar-looking properties, which we shall

need later:

Lemma 2

1. s

m;n

n

m

2

n

0

m

0

s

m

0

;n

0

= s

m+m

0

;n+n

0

:

2. For all f 2 K

n+q

m+p

, g 2 K

n

0

+q

0

m

0

+p

0

, and h 2 K

n

00

+q

00

m

00

+p

00

,

(f

q

p

2

q

0

p

0

g)

q+q

0

p+p

0

2

q

00

p

00

h = f

q

p

2

q

0

+q

00

p

0

+p

00

(g

q

0

p

0

2

q

00

p

00

h):

3. For all f 2 K

n

m

,

f

m

3

n

s

m;n

= f = s

m;n n

3

m

f:

4. For all f 2 K

n+p

m+q

, g 2 K

q+r

p+s

, and h 2 K

s+n

0

r+m

0

,

(f

q

3

p

g)

s

3

r

h = f

q

3

p

(g

s

3

r

h):

5. For all f 2 K

n+p

m+q

, g 2 K

q+s

p+r

, f

0

2 K

n

0

+p

0

m

0

+q

0

, and g

0

2 K

q

0

+s

0

p

0

+r

0

,

(f

q

3

p

g)

s

r

2

s

0

r

0

(f

0

q

0

3

p

0

g

0

) = (f

p

q

2

p

0

q

0

f

0

)

q+q

0

3

p+p

0

(g

s

r

2

s

0

r

0

g

0

):

Figure 2 suggests why (5) is true. Similar �gures may be drawn for the other equations.

Call a Kahn function simple if it is [P]

0

for some standard network expression [P].

If S is a data
ow scheme, and m;n 2 Ord, then de�ne a network of type (m;n) over S

to be a formal expression of the form

hf j x

1

; x

2

; : : : ; x

k

i;

where f 2 K

n+p

m+q

is a simple Kahn function, k � 0, and x

i

2 S

q

i

p

i

for 1 � i � k are

such that

P

k

i=1

p

i

= p and

P

k

i=1

q

i

= q. Intuitively, we have in mind a collection of k

component networks, x

1

, x

2

, : : :, x

k

, connected in a mutual feedback loop through f

(see Figure 3). We write hf j �i when k = 0.

We now de�ne a mapping that interprets each network expression P of type (m;n)

as a network [P] of type (m;n).

�

�

�

�

�

�
�

L

L

L

L

L

L

�

�

�

�

�

�

�
�

L

L

L

L

L

L

�

��

� �

� �

B

B

B

B

�

�

�

�

��

B

B

B

B

�

�

�

�

��

@

@

@

@

@

@

@

@

�

�

�

��

�

�

�

�

@

@

@

@

@

@

@
@

�

B

B

B

B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

B

B

B

B

�

� �

�

�

�

�

�

�

�
�

�

Q

Q

Q

Q

Q

Q

Q
Q

�

�

�

�

�

�

�

�
�

�

H

H

H

H

H

H

H
H

�

f

g

f

0

g

0

f

f

0

g

g

0

(f3g)2(f

0

3g

0

) (f2f

0

)3(g2g

0

)

mn

r s

n

0

m

0

s

0

r

0

mn

qp

n

0

m

0

p

0

q

0

r

0

s

0

q

0

r s

p

0

q p

p q

q p

p

0

q

0

q

0

p

0

Figure 2: Assertion (5) of Lemma 2

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

�

X

X

X

X

X

X

X

X

X

X

X

�

X

X

X

X

X

X

X

X

X

X

X

�

f

x

1

x

2

x

k

n m

q

1

q

2

q

k

p

k

p

2

p

1

Figure 3: The Network hf j x

1

; x

2

; : : : ; x

k

i

� If P is a standard network expression, then [P] = h[P]

0

j �i:

� If x 2 S

n

m

, then [x] = hs

m;n

j xi:

� If [P] = hf j x

1

; x

2

; : : : ; x

k

i with f 2 K

n+p

m+q

, then

[P � �] = hf � (

^

�
 �̂

q

) j x

1

; x

2

; : : : ; x

k

i:

� If [P] = hf j x

1

; x

2

; : : : ; x

k

i with f 2 K

n+p

m+q

, then

[
 � P] = h(
̂
 �̂

p

) � f j x

1

; x

2

; : : : ; x

k

i:

� If [P] = hf j x

1

; x

2

; : : : ; x

k

i and [Q] = hg j y

1

; y

2

; : : : ; y

l

i, then

[P
Q] = hf2g j x

1

; x

2

; : : : ; x

k

; y

1

; y

2

; : : : ; y

l

i:

� If [P] = hf j �i and [Q] = hg j x

1

; x

2

; : : : ; x

k

i, then

[P 1 Q] = hf3g j x

1

; x

2

; : : : ; x

k

i:

Network expressions P and Q in (NS)

n

m

are de�ned to be equivalent if the networks [P]

and [Q] are identical.

With a suitable de�nition of \network computation," we can extend the inter-

pretation of network expressions to computation expressions as well. Suppose M =

hf j x

1

; : : : ; x

k

i and N = hg j y

1

; : : : ; y

k

i are networks. A transition from M to N is an

expression of the form

x

1

�

1

=)

�

1

y

1

x

2

�

2

=)

�

2

y

2

: : :

x

k

�

k

=)

�

k

y

k

M

=)

�

N

such that for some simple Kahn function h we have

f = (
̂

^

�) � h and g = h � (

^

�
 �̂);

where � = �

1

�

2

: : :�

k

and � = �

1

�

2

: : :�

k

. A computation sequence from M to N is a

sequence of transitions of the form:

x

01

�

11

=)

�

11

x

11

x

02

�

12

=)

�

12

x

12

: : :

x

0k

�

1k

=)

�

1k

x

1k

M

0

1

=)

�

1

M

1

x

11

�

21

=)

�

21

x

21

x

12

�

22

=)

�

22

x

22

: : :

x

1k

�

2k

=)

�

2k

x

2k

M

1

2

=)

�

2

M

2

: : :

x

l�1;1

�

l1

=)

�

l1

x

l1

x

l�1;2

�

l2

=)

�

l2

x

l2

: : :

x

l�1;k

�

lk

=)

�

lk

x

lk

M

l�1

l

=)

�

l

M

l

withM =M

0

andM

l

= N . With each computation sequence fromM to N we associate

bu�ers � = �

1

;�

2

; : : :;�

l

2 B

m

and
 =

1

;

2

; : : :;

l

2 B

n

, by composing \below the

line," and a k-tuple of computations

*

x

1

�

1

=)

�

1

y

1

;

x

2

�

2

=)

�

2

y

2

;

: : : ;

x

k

�

k

=)

�

k

y

k

+

by forming the compositions (in the categories S

n

i

m

i

) of the sequences of computations

appearing \above the line." De�ne two such computation sequences to be equivalent

if the corresponding associated bu�ers and k-tuples of computations are equal. De�ne

the network computations from M to N to be the equivalence classes of computation

sequences from M to N .

Theorem 1 For each (m;n), the set (NS)

n

m

of networks of type (m;n) is the set of

objects of a category having the network computations as arrows. The mappings, taking

each network computation to the associated bu�ers, determine functors d

0

: (NS)

n

m

!

B

m

and d

1

: (NS)

n

m

! B

n

, so that NS is a data
ow scheme.

We now give the interpretation of computation expressions as network computations.

The standard computation axioms are interpreted as follows:

[1

;�

n

=)

�

1

�;�

n

] = h

d

; � j �i

=)

�

h

d

�;� j �i

[s

(

0

;�

0

)(
;�)

n;n

0

0

=)

��

0

s

(�

0

;�

0

)(�;�)

n;n

0

]

= h(

d

0

; �

0

d

; �) � s

n;n

0

j �i

0

=)

��

0

h(

d

�

0

;�

0

d

�;�) � s

n;n

0

j �i

[d

(
;�)(

0

;�

0

)

n

0

=)

�

d

(�;�)(�

0

;�)

n

]

= h(

d

; �

d

0

; �

0

) � d

n

j �i

0

=)

�

h(

d

�;�

d

�

0

;�) � d

n

j �i

[t

n

=)

�

t

n

] = ht

n

j �i =)

�

ht

n

j �i

A nonstandard computation axiom x

=)

�

y is interpreted as the equivalence class of

the computation sequence

x =) x

hs

m;n

j xi =)

�

h(

b

�

b

�) � s

m;n

j xi

x

=)

�

y

h(

b

�

b

�) � s

m;n

j xii =) h(

b

b

�) � s

m;n

j yi

y =) y

h(

b

b

�) � s

m;n

j yii

=) hs

m;n

j yi

In other words, since computation sequences for networks are equivalent if and only if

the the corresponding associated bu�ers \below the line" and tuples of computations

\above the line" are identical, a nonstandard computation axiom x

=)

�

y is interpreted

as the equivalence class represented by the bu�ers � and
 and the 1-tuple hx

=)

�

yi.

The interpretations for the remaining types of computation expressions are analo-

gous. For example, if the computation expression

� � �

P

=)

�

Q

is interpreted as an equivalence class of computation sequences from

hf j x

1

; x

2

; : : : ; x

k

i to hg j y

1

; y

2

; : : : ; y

k

i

represented by the bu�ers � and
 and composite k-tuple

*

x

01

�

11

=)

�

11

x

11

x

02

�

12

=)

�

12

x

12

: : :

x

0k

�

1k

=)

�

1k

x

1k

x

11

�

21

=)

�

21

x

21

x

12

�

22

=)

�

22

x

22

: : :

x

1k

�

2k

=)

�

2k

x

2k

: : :

x

l�1;1

�

l1

=)

�

l1

x

l1

x

l�1;2

�

l2

=)

�

l2

x

l2

: : :

x

l�1;k

�

lk

=)

�

lk

x

lk

+

then a computation expression for an input bu�ered network:

� � �

P

=)

�

Q

P � (�; �)

=)

�

Q � (�;�)

is interpreted as the equivalence class of computation sequences from

hf � (

d

�; �
 �̂) j x

1

; x

2

; : : : ; x

k

i to hg � (

d

�;�
 �̂) j y

1

; y

2

; : : : ; y

k

i

represented by the bu�ers � and
, and the same k-tuple of computations. To ver-

ify that this makes sense, it is of course necessary in each case to show that the

given bu�ers and k-tuple really do represent a nonempty class of computation se-

quences, but this is simply a matter of showing how to �ll in the intermediate states

as we did in the case for nonstandard computation axioms. For example, the network

hf � (

d

�; �
 �̂) j x

1

; x

2

; : : : ; x

k

i can absorb the entire input � on the �rst transition to

become the network hf � (

d

�; �;�
 �̂) j x

1

; x

2

; : : : ; x

k

i. The computation then proceeds

mutatis mutandis as in a computation hf j x

1

; x

2

; : : : ; x

k

i

=)

�

hg j y

1

; y

2

; : : : ; y

k

i. We

omit the remaining details.

4 Data
ow Algebra

Recall that if S and S

0

are spans from A to B in a category, then an arrow of spans

from S to S

0

is a morphism F : S ! S

0

such that d

0

0

F = d

0

and d

0

1

F = d

1

. If S and S

0

are data
ow schemes, then de�ne a morphism from S to S

0

to be a collection

F = fF

n

m

: m;n 2 Ordg

of arrows of spans, where F

n

m

: S

n

m

! (S

0

)

n

m

. LetD
Sch denote the category of data
ow

schemes and their morphisms.

It is easy to see that the construction S 7! NS de�ned in the previous section is

the object map of an endofunctor

N : D
Sch! D
Sch:

Moreover, we have natural transformations � : 1

�

�! N and � : NN

�

�! N , de�ned

on states (objects) by:

(�S)

n

m

: x 7! hs

m;n

j xi

(�S)

m

n

: hf j hg

1

j X

1

i; : : : ; hg

k

j X

k

ii 7! hf3(g

1

2 : : :2g

k

) j X

1

; : : : ;X

k

i:

and de�ned on computations (arrows) by the requirement that (�S)

n

m

and (�S)

n

m

take

computations represented by bu�ers �,
 and k-tuples hx

i

�

i

=)

�

i

y

i

: 1 � i � ki to

computations represented by the same bu�ers and k-tuples (but with appropriately

di�erent domains and codomains).

Our goal is to show that (N ; �; �) is a monad in D
Sch. Although this can be

veri�ed directly, things are simpler if we view N as a composite LP of a monad P that

treats the parallel composition construction alone, and a monad L that represents the

feedback construction alone. These two constructions are related via a distributive law

of feedback over parallel composition.

Thus, let P : D
Sch! D
Sch be the mapping that takes a data
ow scheme S to

the data
ow scheme PS, where the states of (PS)

n

m

are all k-tuples

hx

1

; x

2

; : : : ; x

k

i

with k � 0 and where the x

i

2 S

n

i

m

i

are such that

P

k

i=1

m

i

= m and

P

k

i=1

n

i

= n. The

computations from hx

1

; x

2

; : : : ; x

k

i to hy

1

; y

2

; : : : ; y

k

i in (PS)

n

m

are all k-tuples

hx

1

1

=)

�

1

y

1

; x

2

2

=)

�

2

y

2

; : : : ; x

k

k

=)

�

k

y

k

i:

The functor d

0

: (PS)

n

m

! B

m

maps such a computation to the bu�er �

1

�

2

: : :�

k

and

the functor d

1

: (PS)

n

m

! B

n

maps it to

1

2

: : :

k

.

For a morphism �S ! S

0

of data
ow schemes, de�ne P� : PS ! PS

0

on states by:

(P�)

n

m

(hx

1

; x

2

; : : : ; x

k

i) = h�

n

1

m

1

(x

1

); �

n

2

m

2

(x

2

); : : : ; �

n

k

m

k

(x

k

)i

and on computations by:

(P�)

n

m

(hx

i

i

=)

�

i

y

i

: 1 � i � ki) = h�

n

i

m

i

(x

i

i

=)

�

i

y

i

) : 1 � i � ki:

It is easy to see that we have de�ned a functor P : D
Sch ! D
Sch. For each

data
ow scheme S, de�ne the morphism �

P

S : S ! PS on states by:

(�

P

)

n

m

(x) = hxi

and on computations by

(�

P

)

n

m

(x

=)

�

y) = hx

=)

�

yi:

De�ne the morphism �

P

S : PPS ! PS on states by:

(�

P

)

n

m

(hhx

11

; : : : ; x

1;k

1

i; : : : ; hx

l1

; : : : ; x

l;k

l

ii) = hx

11

; : : : ; x

1;k

1

; : : : ; x

l1

; : : : ; x

l;k

l

i:

and similarly on computations. The following result is routine:

Lemma 3 (P; �

P

; �

P

) is a monad in D
Sch.

Another way of viewing P is suggested by the observation that D
Sch has a

monoidal structure given by

(S
 T)

n

m

=

a

p+r=m

q+s=n

(S

q

p

� T

s

r

):

The data
ow scheme I, with I

0

0

a one-object, one-arrow category and I

n

m

empty for all

other m and n, serves as the unit for
. Then P is the functor that takes a data
ow

scheme S to the \free monoid object on S generators" in D
Sch.

We now consider the feedback construction. Let L : D
Sch ! D
Sch be the

mapping that takes a data
ow scheme S to the data
ow scheme LS, where the states

of (LS)

n

m

are all formal expressions

hf j xi

with f 2 K

n+p

m+q

a simple Kahn function, and x 2 S

q

p

. The computations of (LS)

n

m

are obtained as equivalence classes of computation sequences as follows: De�ne the

transitions of (LS)

n

m

from hf j xi to hg j yi to be all expressions of the form

x

�

=)

�

y

hf j xi

=)

�

hg j yi

such that for some simple Kahn function h we have f = (
̂

^

�) �h and g = h � (

^

�
 �̂).

A computation sequence from hf j xi to hg j yi is a sequence of transitions of the form

z

0

�

1

=)

�

1

z

1

hh

0

j z

0

i

1

=)

�

1

hh

1

j z

1

i

z

1

�

2

=)

�

2

z

2

hh

1

j z

1

i

2

=)

�

2

hh

2

j z

2

i

: : :

z

l�1

�

l

=)

�

l

z

l

hh

l�1

j z

l�1

i

l

=)

�

l

hh

l

j z

l

i

such that f = h

0

, x = z

0

, h

l

= g, and z

l

= y. As before, we de�ne two such computation

sequences to be equivalent if the corresponding composite bu�ers \below the line" and

the corresponding compositions in S

q

p

of the computations \above the line" are identical.

The computations from hf j xi to hg j yi in (LS)

n

m

are the equivalence classes of

computation sequences from hf j xi to hg j yi.

The functor d

0

: (LS)

n

m

! B

m

takes a computation determined by the computation

sequence

z

0

�

1

=)

�

1

z

1

hh

0

j z

0

i

1

=)

�

1

hh

1

j z

1

i

z

1

�

2

=)

�

2

z

2

hh

1

j z

1

i

2

=)

�

2

hh

2

j z

2

i

: : :

z

l�1

�

l

=)

�

l

z

l

hh

l�1

j z

l�1

i

l

=)

�

l

hh

l

j z

l

i

to the composite bu�er �

1

;�

2

; : : :;�

l

. Similarly, the functor d

1

: (LS)

n

m

! B

n

takes

such a computation to

1

;

2

; : : :;

l

. Thus, (LS)

n

m

becomes a span from B

m

to B

n

in

Cat.

For a morphism � : S ! S

0

of data
ow schemes, de�ne (L�)

n

m

on states by

(L�)

n

m

(hf j xi) = hf j �

q

p

(x)i:

on transitions by the condition

(L�)

n

m

0

B

B

@

x

�

=)

�

y

hf j xi

=)

�

hg j yi

1

C

C

A

=

�

q

p

(x)

�

=)

�

�

q

p

(y)

hf j �

q

p

(x)i

=)

�

hg j �

q

p

(y)i

and extended to all computations by the requirement of functoriality. We have thus

de�ned a functor L : D
Sch! D
Sch.

For each data
ow scheme S, de�ne �

L

: S ! LS on states by

(�

L

S)

n

m

(x) = hs

m;n

j xi

and on computations by

(�

L

S)

n

m

(x

=)

�

y) =

x =) x

hs

m;n

j xi =)

�

h(�̂

^

�) � s

m;n

j xi

x

=)

�

y

h(�̂

^

�) � s

m;n

j xi =) h(
̂
 �̂) � s

m;n

j yi

y =) y

h(
̂
 �̂) � s

m;n

j yi

=) hs

m;n

j yi

De�ne �

L

: LLS ! LS on states by

(�

L

S)

n

m

(hf j hf

0

j xii) = hf3f

0

j xi;

and on computations by the condition

(�

L

S)

n

m

0

B

B

B

B

B

B

B

B

@

x

�

=)

�

y

hf

0

j xi

�

=)

�

hg

0

j yi

hf j hf

0

j xii

=)

�

hg j hg

0

j yii

1

C

C

C

C

C

C

C

C

A

=

x

�

=)

�

y

hf3f

0

j xi

=)

�

hg3g

0

j yi

;

and the requirement of functoriality. One may verify that the morphisms �

L

S and

�

L

S are the components of natural transformations �

L

: 1

�

�! L and �

L

: LL

�

�! L.

Moreover, we have:

Lemma 4 (L; �

L

; �

L

) is a monad in D
Sch.

Proof { The proof uses Lemma 2. The proof of the associative law depends on the

fact that 3 is an associative operation on Kahn functions. The proof of the unit laws

depends on the fact that the exchange maps s

m;n

are left and right units for 3.

We have de�ned the endofunctors P and L in such a way that N

�

=

LP. We wish to

show that the functor N underlies a monad (N ; �; �) which is in some sense a kind of

composite of (P; �

P

; �

P

) and (L; �

L

; �

L

). To do this, we use the following result about

monads:

Lemma 5 Suppose (L; �

L

; �

L

) and (P; �

P

; �

P

) are monads in a category C, and � :

PL

�

�! LP is a natural transformation, such that the following conditions hold:

1. (�

L

P) � �

P

= (L�

P

) � �

L

.

2. � � (P�

L

) = �

L

P.

3. � � (�

P

L) = L�

P

.

4. (�

L

�

P

) � (L�P) � (LP�

L

�

P

) � (LPL�P) = (�

L

�

P

) � (L�P) � (�

L

�

P

LP) � (L�PLP).

Let � : 1

�

�! LP be (�

L

P) � �

P

(equivalently, (L�

P

) � �

L

), and � : LPLP ! LP be

(�

L

�

P

) � (L�P). Then (LP; �; �) is also a monad in C. Moreover, the relationship

" = "

L

� (L"

P

) determines a bijection between LP-algebra structures " : LPS ! S

and pairs ("

L

; "

P

) consisting of an L algebra structure "

L

: LS ! S and a P-algebra

structure "

P

: PS ! S satisfying the distributive law: "

P

� (P"

L

) = "

L

� (L"

P

) � (�S).

Proof { The proof that (LP; �; �) is a monad is a straightforward diagram chase, using

(4) to prove the associative law. The proof of the second assertion is also straightfor-

ward, once it is observed that the hypotheses imply � � (L�

P

L�

P

) = (L�

P

) � �

L

, and

� � (�

L

P�

L

P) = (�

L

P) � �

P

.

For each data
ow scheme S, de�ne the morphisms �S : PLS ! LPS on states by

(�S)

n

m

(hhf

1

j x

1

i; : : : ; hf

k

j x

k

ii) = hf

1

2 : : :2f

k

j hx

1

; : : : ; x

k

ii:

on transitions by the requirement that (�S)

n

m

map a transition

x

1

�

1

=)

�

1

y

1

hf

1

j x

1

i

1

=)

�

1

hg

1

j y

1

i

: : :

x

k

�

k

=)

�

k

y

k

hf

k

j x

k

i

k

=)

�

k

hg

k

j y

k

i

hhf

1

j x

1

i; : : : ; hf

k

j x

k

ii

=)

�

hhg

1

j y

1

i; : : : ; hg

k

j y

k

ii

to the transition

x

1

�

1

=)

�

1

y

1

: : : x

k

�

k

=)

�

k

y

k

hx

1

; : : : ; x

k

i

�

=)

�

hy

1

; : : : ; y

k

i

hf

1

2 : : :2f

k

j hx

1

; : : : ; x

k

ii

=)

�

hg

1

2 : : :2g

k

j hy

1

; : : : ; y

k

ii

and extended to computations by the condition of functoriality. Then the �S are the

components of a natural transformation � : PL

�

�! LP.

Theorem 2 (N ; �; �) is a monad in D
Sch.

Proof { The proof uses Lemma 2 to establish that the monad (L; �

L

; �

L

), the monad

(P; �

P

; �

P

), and the natural transformation � : PL

�

�! LP satisfy the conditions of

Lemma 5. In particular, Lemma 2 allows us to infer the law:

f 3 ((g

1

3 (h

11

2 : : :2h

1k

1

)) 2 : : :2 (g

l

3 (h

l1

2 : : :2h

lk

l

)))

= (f 3 (g

1

2 : : :2g

l

)) 3 (h

11

2 : : :2h

lk

l

)

(for appropriate choices of subscripts and superscripts on the 2 and 3 operators), which

is required in the proof of condition (4).

5 Fibrations

The concept of a �bration [3] concerns a functor F : E ! B, having the property that

the morphisms of B \act" functorially on the �bers F

�1

(x), which are the preimages

of objects x of B. That is to say, if for each object x of B we let J

x

: F

�1

(x) ! E

be the inclusion of the �ber F

�1

(x), then a �bration has the property that to each

morphism b : x! x

0

there corresponds a functor b

�

: F

�1

(x

0

)! F

�1

(x) and a natural

transformation �

b

: J

x

b

�

�

�! J

x

0

such that a certain universal mapping property is

satis�ed. Dually, an \op�bration" [2] has the property that to each b : x ! x

0

there

corresponds a functor b

�

: F

�1

(x)! F

�1

(x

0

) and a natural transformation

b

: J

x

�

�!

J

x

0

b

�

. The components of the natural transformations �

b

are called cartesian morphisms

and the components of

b

are called opcartesian morphisms.

Street [12, 13] has developed an abstract theory of �brations, so that the notion

can be applied, not just in Cat, but more generally to any bicategory with suitable

completeness properties. Here we summarize the basics of Street's theory as it applies

to the 2-category Cat. Let Spn(A;B) denotes the 2-category whose objects are spans

from A to B in Cat, whose 1-cells are arrows of spans, and whose 2-cells are natural

transformations between arrows of spans. Then composition on the right with the

\comma object" �A (the comma category A=A, viewed as a span by equipping it with

the evident projections d

0

; d

1

: A=A! A), and composition on the left with the comma

object �B, yield endo-2-functors:

- � �A : Spn(A;B)! Spn(A;B) �B � - : Spn(A;B)! Spn(A;B):

Street shows that these 2-functors are the underlying functors of a certain kind of 2-

monad, called a \KZ doctrine." A span from A to B is called a \split 0-�bration" if it

has a structure of (- � �A)-algebra, and a \split 1-�bration" if it has a structure of

(�B � -)-algebra. There is also an endo-2-functor

�B � - � �A : Spn(A;B)! Spn(A;B);

which is the composite of - � �A and �B � - . The 2-functor M also underlies a 2-

monad (though not a KZ-doctrine). A span from A to B is called a \split bi�bration" if

it has a structure of (�B � - ��A)-algebra, or equivalently, if it has a (- ��A)-algebra

structure r and a (�B � -)-algebra structure l, such that r(l � �A) = l(�B � r).

The various data mentioned in the above result have an appealing intuitive inter-

pretation in our setting: The functors - � �B

m

and �B

n

� - can be thought of as

operations that place bu�ers on the input and output, respectively, of the networks of

type (m;n). These functors underlie monads, whose units can be thought of as maps

that take a network state to the corresponding state of a bu�ered network, with an

empty bu�er. The multiplications of the monads can be thought of as composing two

tandem bu�ers into a single bu�er. A span S from B

m

to B

n

is \input bu�ered,"

\output bu�ered," or \bu�ered," if it has a structure of algebra for the input bu�ering,

output bu�ering, or composite monad, respectively. If S is output bu�ered, then the

cartesian morphisms of S can be thought of as \pure output" computations, in which

data is transmitted from an output bu�er onto output ports. Similarly, the opcartesian

morphisms of an input bu�ered S are \pure input" computations. The \internal com-

putations" of S are those computations whose images under both legs d

0

and d

1

of the

span are empty. The universal mapping property satis�ed by a �bration implies that

\every computation has a canonical pure-input/internal/pure-output factorization."

We summarize the connections, outlined above, between data
ow algebra and �bra-

tions in the form of the following result:

Theorem 3 Let S be a data
ow scheme. Then, for all m;n 2 Ord, the full subspan

(BS)

n

m

of (NS)

n

m

consisting of all states of the form [(
 � x)��] (equivalently, [
 �(x � �)])

is isomorphic to the span �B

n

� S

n

m

� �B

m

. Moreover, suppose " : NS ! S is an N -

algebra structure on S. Then, for all m;n 2 Ord, the restriction of "

n

m

to (BS)

n

m

is

isomorphic to a (�B

n

� - � �B

m

)-algebra structure on S

n

m

. Thus, if S is a data
ow

algebra, then each span S

n

m

is a split bi�bration in Cat.

6 Conclusion

We have de�ned a \free data
ow algebra" construction on certain indexed collections

of spans in Cat, and we have shown that this construction underlies a monad. The

algebras of this monad are equipped with a monoidal structure, corresponding to a

parallel composition operation on data
ow networks, and are acted on in a certain

sense by the data
ow algebra of simple Kahn functions, corresponding to the formation

of feedback loops. We have observed that each of the spans in a data
ow algebra is a

split bi�bration. We have also provided a syntax for data
ow algebra, in the form of

\data
ow calculus."

There appears to be much more that can be said about data
ow algebra. One

direction for future work is to �nd a nice system of equational axioms for data
ow cal-

culus. For network expressions, the problem is essentially solved, since the monad and

distributive laws give a reduction to normal form. Equivalence of network expressions

can also be axiomatized in terms of a somewhat di�erent set of operators (see [11]).

For computation expressions, the problem amounts to a coherence theorem for the nat-

ural transformations �

L

, �

P

, �

L

, �

P

, and �. One might also attempt to incorporate

permutation of network components and deletion of unobservable components into this

coherence result, to axiomatize the coarser equivalence of [11]. Other interesting di-

rections for future work are: exploring further the relationship between the operations

of data
ow algebra and constructions on �brations, and examining various examples

of data
ow algebra with the goal of understanding whether a vestige of the natural

ordering on K

n

m

is somehow re
ected in more general data
ow algebras.

References

[1] J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate compu-

tation. In Formalization of Programming Concepts, volume 107 of Lecture Notes

in Computer Science, pages 252{259. Springer-Verlag, 1981.

[2] J. W. Gray. Fibred and co�bred categories. In Proc. Conference on Categorical

Algebra at La Jolla, pages 21{83. Springer-Verlag, 1966.

[3] A. Grothendieck. Cat�egories �br�ees et descente. In S�eminaire de G�eom�etrie

Alg�ebrique de l'Institute des Hautes

�

Etudes Scienti�ques, Paris 1960/61 (SGA

1), volume 224 of Lecture Notes in Mathematics, pages 145{194. Springer-Verlag,

1971.

[4] G. Kahn. The semantics of a simple language for parallel programming. In J. L.

Rosenfeld, editor, Information Processing 74, pages 471{475. North-Holland, 1974.

[5] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes.

In B. Gilchrist, editor, Information Processing 77, pages 993{998. North-Holland,

1977.

[6] R. M. Keller. Denotational models for parallel programs with indeterminate op-

erators. In E. J. Neuhold, editor, Formal Description of Programming Concepts,

pages 337{366. North-Holland, 1978.

[7] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer Verlag, 1980.

[8] G. D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Aarhus University, 1981.

[9] E. W. Stark. Compositional relational semantics for indeterminate data
ow net-

works. In Category Theory and Computer Science, volume 389 of Lecture Notes in

Computer Science, pages 52{74. Springer-Verlag, Manchester, U. K., 1989.

[10] E. W. Stark. Data
ow networks are �brations. In Category Theory and Com-

puter Science, volume 530 of Lecture Notes in Computer Science, pages 261{281.

Springer-Verlag, Paris, France, 1991.

[11] E. W. Stark. A calculus of data
ow networks. In Logic in Computer Science, pages

125{136. IEEE Computer Society Press, 1992.

[12] R. H. Street. Fibrations and Yoneda's lemma in a 2-category. In Lecture Notes in

Mathematics 420, pages 104{133. Springer-Verlag, 1974.

[13] R. H. Street. Fibrations in bicategories. Cahier de Topologie et G�eometrie

Di��erentielle, XXI-2:111{159, 1980.

