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Abstract

Probabilistic I/O automata (PIOA) constitute a

model for distributed or concurrent systems that in-

corporates a notion of probabilistic choice. The PIOA

model provides a notion of composition, for construct-

ing a PIOA for a composite system from a collection

of PIOAs representing the components. We present a

method for computing completion probability and ex-

pected completion time for PIOAs. Our method is

compositional, in the sense that it can be applied to

a system of PIOAs, one component at a time, with-

out ever calculating the global state space of the sys-

tem (i.e. the composite PIOA). The method is based on

symbolic calculations with vectors and matrices of ra-

tional functions, and it draws upon a theory of observ-

ables, which are mappings from delayed traces to real

numbers that generalize the classical \formal power se-

ries" from algebra and combinatorics. Central to the

theory is a notion of representation for an observable,

which generalizes the clasical notion \linear represen-

tation" for formal power series. As in the classical

case, the representable observables coincide with an

abstractly de�ned class of \rational" observables; this

fact forms the foundation of our method.

1 Introduction

In our previous paper [WSS97], we de�ned the

class of probabilistic I/O automata (PIOA), which are

a model for distributed or concurrent systems that in-

corporates a notion of probabilistic choice. The ba-
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sic intuition underlying the model is the following:

the time a PIOA spends in a state before perform-

ing its next action is described by an exponentially

distributed random variable whose parameter (the so-

called delay parameter) depends on the state. Un-

der an independence assumption, a simple composition

rule can be given for producing, given a collection of

interacting PIOAs, a single \composite" PIOA repre-

senting the entire system.

We also showed how to associate with a PIOA a

probabilistic behavior map, which in a sense represents

the externally observable aspects of the behavior of

the PIOA. We showed that behavior map semantics

is compositional, in the sense that the behavior map

associated with a composite PIOA is uniquely deter-

mined by the behavior maps associated with the com-

ponents. We further showed that, for PIOAs satisfying

a certain \delay restriction" concerning their internal

actions, behavior map semantics is also fully abstract

with respect to a behavioral equivalence based on a

notion of probabilistic testing.

As a byproduct of the way of way probability is

represented in the PIOA model, it is meaningful to

consider certain aspects of timing for PIOA executions.

In [Wu96], it is noted that the expected time for a

PIOA to complete a speci�ed �nite sequence of actions

(called a trace) can be extracted from the probabilistic

behavior map associated with that automaton, and

this idea was applied there to analyze some examples.

Certain limitations inherent in our previous work

restricted its applicability as a method for analyzing

expected completion times in a practical setting. A

major problem was that our theory only supported

\one trace at a time" analysis: given a PIOA A and

a �nite trace, the expected time for A to complete an

execution having that trace could be determined, but

the theory did not provide any useful method by which

to specify an in�nite set of traces and to determine the

expected time forA to complete some execution having



one of the traces in that set. The latter problem, rather

than the former, is the type of timing analysis that is

more often encountered in practice. Another problem

was that timing analysis could not be performed on a

system of PIOAs \one component at a time"; essen-

tially, a full description of the global state space system

had to be constructed and the timing information ex-

tracted from that. Any \non-compositional" analysis

method that requires the construction of the global

state space of a system will in general only be able

to handle very small systems, due to the exponential

growth of the state space as the number of components

increases.

In this paper, we present a new theory and as-

sociated analysis methods that overcome the limita-

tions inherent in our previous work. One important

part of our new theory is a revised de�nition of prob-

abilistic behavior map which does not have the \trace

at a time" limitation of our previous version. Our

new de�nition makes use of a new notion of delayed

trace, which generalizes to PIOAs the standard notion

of the trace of an execution of an automaton, so that

certain probabilistic scheduling information is repre-

sented along with the sequence of actions. An observ-

able is de�ned to be a function from delayed traces to

real numbers. The behavior of a PIOA is de�ned to

be a transformation of observables; that is, a mapping

from observables to observables. Our revised de�nition

of PIOA behavior admits a much simpler composition-

ality result (Theorem 1) than the previous version. In

particular, we show that the behavior of the compo-

sition of \compatible" probabilistic I/O automata is

given by the ordinary function composition of the cor-

responding behaviors.

We show (Lemma 2) that information about com-

pletion probability and expected completion time for a

PIOA A that is \closed" (i.e. has no input actions)

can be obtained by applying its \empty alphabet be-

havior" B

A

;

to appropriate observables. In particular,

given a set T of �nite action sequences, pairwise in-

comparable with respect to the pre�x relation, one

can de�ne an observable �

T

, such that the value of

B

A

;

�

T

on a delayed trace (0) having no actions, is the

probability of the set of executions of A whose delayed

traces lie in the upward closure of T with respect to

the pre�x relation on delayed traces. We also de�ne

the \expected completion time" for A with respect to

T to be the expected time for A to complete some ex-

ecution having a delayed trace that \just reaches" the

set T , and we show that, for a particular observable




T

, this time is given by the value of B

A

;




T

on the

delayed trace (0).

The above results lead to a method for computing

the result of applying the behavior map for a system

to a speci�c observable such as �

T

or 


T

by working

compositionally, \a component at a time," in such a

way that the global state space is never constructed.

This method is based on the realization that the ob-

servables �

T

and 


T

can be represented in a certain

way by a by a kind of automata, having states in a

�nite-dimensional vector space over the reals, that ex-

ecute on delayed traces. We call such observables rep-

resentable. We also show (Theorems 3 and 4) that

the class of representable observables is closed under

the application of PIOA behaviors, and that the re-

sult of applying a PIOA behavior to a representable

observable can be e�ectively computed in terms of a

construction on representations. Although this con-

struction is a kind of \product construction," which

produces an output representation whose size depends

on the product of the size of the input representation

and the number of states in the PIOA, we can miti-

gate the blow-up in size by applying a minimization

algorithm to the result. We present a minimization al-

gorithm (Theorem 5) that, given the representation of

an observable as input, outputs a representation that

in a sense has minimum size over all representations

of the same observable.

Our theory of observables and their representa-

tions can be seen as a generalization of work by Carlyle

and Paz [CP71], Sch�utzenberger [Sch61a, Sch61b], and

others (see [BR84] for references), on formal power se-

ries and linear representations. In particular, our \ob-

servables" generalize \formal power series," our \rep-

resentations" generalize the \linear representations"

for formal power series, and our \representable ob-

servables" generalize \recognizable series." We de-

�ne a class of rational observables, which are those

for which an associated space of derivatives is a �nite-

dimensional vector space, and we show (Theorem 2)

that an observable is rational if and only if it is rep-

resentable. This in a sense generalizes to observables

a result of Carlyle and Paz [CP71], which equates the

recognizable series with those whose \syntactic right

ideal" has �nite codimension. Our minimization algo-

rithm for representations of observables corresponds to

a result of Sch�utzenberger [Sch61a, Sch61b] for formal

power series. The novel aspects of our work are: (1)

the introduction of \delayed traces" as a generaliza-

tion of \words over a �nite alphabet", and \observ-

ables" as a generalization of \formal power series"; (2)

the recognition that \transformations of observables"

yield a compositional semantics for PIOAs that is ex-

pressive enough to permit the treatment of expected

termination time; (3) extension of the theory of \lin-

ear representations of formal power series" to a theory



of \representable observables"; and (4) use of the the-

ory of representable observables as a basis for deriving

compositional algorithms for the analysis of PIOAs.

Though closed PIOA's are examples of continuous-

time semi-Markov processes [How71], and as such have

a variety of well-developed analysis techniques appli-

cable to them, we are not aware of such techniques

that do not have as a prerequisite the construction of

a global system description such as a transition matrix

or owgraph.

In other related work, Campos et al. in [CCM97]

present BDD-based algorithms that determine the ex-

act bounds on the delay between two speci�ed events

and the number of occurrences of another event in

all such intervals. Segala et al. [LSS94, PS95] have

developed a method for the analysis of the expected

time complexity of randomized distributed algorithms.

The method consists of proving auxiliary probabilistic

time bound statements of the form U|ft; pg! U

0

,

which mean that whenever the algorithm begins in

a state in a set U , it will reach a state in set U

0

within time t with probability at least p. Finally,

a number of \stochastically timed" process algebras

and Petri net formalisms have been proposed for the

performance analysis of concurrent systems, including

[MBC84, GHR93, Hil96, Pri96, BDG98]. In the case

of process algebra, these approaches are sometimes re-

ferred to as \compositional" in the sense that a com-

posite stochastic system can be speci�ed algebraically

in terms of its components.

The remainder of this paper is organized as fol-

lows: Section 2 is devoted to the basic de�nitions

and theory of PIOAs and probabilistic behavior maps.

Section 3 treats representable observables. Section 4

presents our main results. Finally, Section 5 considers

briey a simple example of the use of the techniques.

Due to space limitations, we have omitted all proofs,

replacing them with sketches in the most important

cases. Full versions of all de�nitions and proofs can be

found in [SS97].

2 Probabilistic I/O Automata and

Their Behaviors

2.1 Probabilistic I/O Automata

In this section, we recall the basic de�nitions from

[WSS97]. We give here simpli�ed versions of the de�ni-

tions, which are equivalent to those of [WSS97] in the

case of �nite PIOAs, which are all that we consider in

the present paper. The reader should refer to [WSS97]

and [SS97] for full details and further discussion.

A �nite probabilistic I/O automaton is a tuple A =

(Q; q

I

; E;�; �; �), where

� Q is a �nite set of states;

� q

I

2 Q is a distinguished start state;

� E is a �nite set of actions, partitioned into disjoint

sets of input, output, and internal actions, which

are denoted by E

in

, E

out

, and E

int

, respectively,

with the actions in E

loc

= E

out

[E

int

called locally

controlled;

� � � Q � E � Q is the transition relation, which

satis�es the following input-enabledness condition:

for any state q 2 Q and input action e 2 E

in

, there

exists a state r 2 Q such that (q; e; r) 2 �.

� � : (Q�E�Q)! [0; 1] is the transition probability

function, which is required to satisfy the following

stochasticity conditions:

1. �(q; e; r) > 0 i� (q; e; r) 2 �.

2.

P

r2Q

�(q; e; r) = 1, for all q 2 Q and all

e 2 E

in

.

3. For all q 2 Q, if there exist e 2 E

loc

and r 2 Q such that (q; e; r) 2 �, then

P

r2Q

P

e2E

loc

�(q; e; r) = 1,

� � : Q ! [0;1) is the state delay function, which

is required to satisfy the following condition: for

all q 2 Q, we have �(q) > 0 if and only if there

exist e 2 E

loc

and r 2 Q such that (q; e; r) 2 �.

As discussed in [WSS97], the de�nitions of � and

� above reect the intuition we wish to capture con-

cerning the execution of a system of PIOAs. Upon ar-

rival in a state q, a PIOA chooses randomly the length

of time it will spend in that state before executing

its next \locally controlled" transition. The random

choice is made, independently of the other PIOAs in

the system, according to an exponential holding time

distribution whose mean is the reciprocal 1=�(q) of the

delay parameter �(q) associated with that state.

Our de�nition of PIOA is a \exponential semi-

Markov" de�nition, in which the \holding time" in

state q before the next locally controlled action oc-

curs is described by a random variable having an ex-

ponential distribution with mean 1=�(q). Once the

holding time in state q has expired, the action e and

successor state r is chosen randomly with probability

�(q; e; r). As an alternative to the exponential semi-

Markov description, we could have chosen an \expo-

nential Markov description", in which associated with

each locally controlled transition (q; e; r) is a \tran-

sition rate" �(q; e; r) that describes the \probability

ux" from state q to state r via the action e. For e

an input action, we would still need the probabilities

�(q; e; r). It is not di�cult to see that the two forms

of description are entirely equivalent,



A �nite execution fragment for a probabilistic I/O

automaton A is an alternating sequence of states and

actions of the form

q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

;

such that for each k with 0 � k < n, either e

k

2 E and

(q

k

; e

k

; q

k+1

) 2 �, or else e

k

62 E and q

k+1

= q

k

. An

execution fragment with q

0

= q

I

(the distinguished

start state) is called an execution. If � denotes an

execution fragment, then we will use �(k) to denote

the state q

k

, for 0 � k � n, and we will use �(k; k+1)

to denote the action e

k

, for 0 � k < n. The number n

is called the length of �, and we denote it by j�j. We

use the term trace to refer to a sequence of actions.

The trace of �, denoted tr(�), is the sequence of actions

e

0

e

1

: : : e

n�1

appearing in �.

In [WSS97], we showed how a closed PIOA A (one

with no input actions) induces a probability space over

the set of all its executions. The probability measure

pr

A

is derived in a natural way from the mapping that

assigns to each execution � = q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

the quantity p

A

(�) =

Q

n�1

k=0

�(q

k

; e

k

; q

k+1

); where by

convention, we take �(q; e; q) = 1 if e 62 E. In this

paper, we shall also be interested in the related func-

tion w

A

(�) on �nite executions, de�ned by w

A

(�) =

p

A

(�)

Q

fk:e

k

2E

loc

A

g

�

A

(q

k

): Although the de�nition of

w

A

may at �rst seem somewhat ad hoc, it turns out

that w

A

behaves in a more convenient fashion than

p

A

(�) when considering the composition of PIOAs.

In particular, w

A

has the useful property stated in

Lemma 1 below, which makes possible the statement

of a compositionality law that does not have the ugly

normalization factor h(d

A

;d

B

) present in our previous

paper [WSS97].

A �nite collection fA

i

: i 2 Ig of probabilistic I/O

automata, where A

i

= (Q

i

; q

I

i

; E

i

;�

i

; �

i

; �

i

), is called

compatible if for all i; j 2 I , i 6= j, we have E

out

i

\

E

out

j

= ; and E

int

i

\ E

j

= ;. The composition k

i2I

A

i

of a �nite compatible collection is a probabilistic I/O

automaton (Q; q

I

; E;�; �; �), de�ned as follows:

� Q =

Q

i2I

Q

i

.

� q

I

= hq

I

i

: i 2 Ii.

� E =

S

i2I

E

i

, where E

out

=

S

i2I

E

out

i

; E

int

=

S

i2I

E

int

i

; and E

in

= (

S

i2I

E

in

i

) nE

out

:

� � is the set of all (hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) such

that for all i 2 I , if e 2 E

i

, then (q

i

; e; r

i

) 2 �

i

,

otherwise r

i

= q

i

.

� �(hq

i

: i 2 Ii) =

P

i2I

�

i

(q

i

).

� If e 2 E

in

, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

Y

i2I

�

i

(q

i

; e; r

i

):

If e 2 E

loc

k

for some k, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii)

=

�

k

(q

k

)

P

i2I

�

i

(q

i

)

Q

i2I

�

i

(q

i

; e; r

i

):

We use the notation AkB to denote the composition

kfA;Bg of a compatible 2-element set of PIOAs.

The de�nitions of � and � for the composition of

PIOAs expresses the intuitive idea that the various

component PIOAs are in a race to see which of them

will execute the next locally controlled action. This

competition will be won by the component that has

chosen the smallest holding time in its respective state,

and the probability that any given component will win

the competition is given by the ratio of the local de-

lay parameter for that component over the sum of the

local delay parameters for all components. The time

the system remains in a particular global state before

executing the next locally controlled action is the min-

imum of the times that each component spends in its

respective local state. This time is governed by an

exponential distribution, whose parameter is the sum

of the parameters of the distributions for each of the

components. Note that the de�nition of composition

of PIOAs involves synchronization (via shared input

and output actions) between component automata. It

is precisely this type of synchronization or interaction

between subsystems that tends to destroy so-called

\product form" properties that have been found very

useful in �nding analytical solutions to classical queue-

ing network problems [Dij93].

2.2 Delayed Traces, Observables, and Be-

haviors

Let E be a set of actions. A (�nite) delayed trace �

over E consists of an alternating sequence of the form:

d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

;

where the d

k

are nonnegative real numbers and the

the e

k

are actions in E. The sequence e

0

; e

1

; : : : e

n�1

is called the trace of �, and we denote it by tr(�). The

sequence d

0

; d

1

; : : : ; d

n

is called the sequence of delay

parameters of �. We use the notation �(k) to denote

d

k

, and the notation �(k; k + 1) to denote e

k

. The

number n is called the length of �, and we denote it

by j�j.

We use DTraces(E) to denote the set of all delayed

traces over E. We also use the notation (d)

E

, or just



(d), when E is clear from the context, to denote the

empty delayed trace in DTraces(E), consisting of the

single delay parameter d and no actions.

Suppose � 2 DTraces(E). If E � E

0

, then a de-

layed trace �

0

2 DTraces(E

0

) is a re�nement of �, and

we write �

0

��, if �

0

can be obtained from � by insert-

ing into � a �nite number of actions from E

0

nE, where

the delay parameters at the newly created positions in

�

0

are obtained by \stuttering" (repeating the previ-

ous value from �). Figure 1 (a) depicts graphically the

re�nement relationship between �

0

and �.

Suppose A is a PIOA. If � is a delayed trace over

E, then an execution � of A is conformant with �, and

we write � / �, if the sequence of actions occurring

in � contains the sequence of actions of � as a subse-

quence, in such a way that any actions in � that do

not correspond to actions of � are elements of the set

E

A

n E. Note, in particular, that conformance does

not require any relationship between the delay param-

eters of the states in � and the delay parameters in

�. Figure 1 (b) depicts graphically the conformance

relationship between � and �.

Suppose � 2 DTraces(E) and � / �. Then

the combination of � and � is the delayed trace �

00

characterized uniquely by the following conditions:

j�

00

j = j�j, � / �

00

, and for each k with 0 � k � j�

00

j,

the delay parameter �

00

(k) is the sum of �(�(k)) and

�(j

k

), where j

k

is the position in � corresponding un-

der the re�nement relationship to the position k in �

00

.

We write � � � to denote the �

00

2 DTraces(E [E

A

)

that is the combination of � and �. Figure 1 (c) de-

picts graphically the result of combining � and �.

An observable over a set of actions E is a map-

ping � : DTraces(E) ! R; where R denotes the set

of real numbers. If A is a PIOA and E is a set of ac-

tions, then the E-behavior of A is the transformation

of observables:

B

A

E

: (DTraces(E [ E

A

)! R)! (DTraces(E)! R)

de�ned by:

B

A

E

�� =

X

�/�

�(� � �)w

A

(�):

In general, B

A

E

�� will not be de�ned for all � and �,

because the de�ning summation above need not con-

verge. However, for observables � that \approach 0

quickly enough," B

A

E

�� will be de�ned.

The concepts de�ned above have the following in-

tuitive signi�cances. A delayed trace denotes an equiv-

alence class of executions of a PIOA, such that all ex-

ecutions in the class contain the same actions in the

same order, and such that the sequences of delay pa-

rameters associated with the states traversed are the

same (though the state sequences themselves may dif-

fer). An observable should be thought of as an abstract

summary of the behavior of a part of a system, insofar

as it pertains to a particular quantity of interest we are

trying to measure. We will show in Section 3.1 how to

de�ne observables corresponding to two quantities of

interest: (1) the probability of performing an execu-

tion having a delayed trace that lies in a speci�ed set,

and (2) the expected time to complete an execution

having a given delayed trace. The E-behavior B

A

E

of

a PIOA A constitutes an abstract description of A as

a kind of transducer, which takes as its argument an

observable � summarizing, with respect to a partic-

ular quantity of interest, the behavior of a part of a

system that is to be composed with A, and produces

as its result an observable B

A

E

� that summarizes, with

respect to the same quantity of interest, the behavior

of the given part of the system together with A.

The de�nition of the E-behavior of a PIOA has

an operational reading: \Given an observable � (sum-

marizing a part of a system) and a delayed trace �

(representing constraints on the set of executions to

be examined), enumerate all executions � of PIOA A

that extend (i.e. are conformant with) �, in the sense

of containing all the actions of �, possibly interleaved

with some additional actions of A. For each such exe-

cution �, construct a delayed trace ��� representing

the combination of the constraints � plus the new con-

straints imposed by �, apply � to � � �, weight the

resulting quantity by w

A

(�), and sum." It is perhaps

useful to think of the function B

A

E

as \almost an expec-

tation operator," which produces a kind of expected

value for the observable � supplied as its argument.

The operator B

A

E

fails to be a true expectation oper-

ator, however, because the quantities w

A

(�) do not

constitute a probability distribution.

2.3 Compositionality

Although the de�nition of the behavior B

A

E

is quite

technical, the justi�cation for it is that it satis�es a

very simple compositionality result, which shows how

the behavior B

AkB

E

for a composite PIOA AkB can be

derived from the component behaviors B

A

E

and B

B

E[E

A

.

Theorem 1 Suppose A and B are compatible PIOAs,

and E is a set of actions. Then B

AkB

E

= B

A

E

� B

B

E[E

A

:

The proof of Theorem 1 depends on Lemma 1 be-

low, which is similar in nature to Proposition 2.1 in

[WSS97]. With it, the proof of Theorem 1 is simply a

matter of expanding the expression B

A

E

�B

B

E[E

A

using

the de�nition of behavior, then using the Lemma to

combine the double summation into a single summa-

tion.
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Figure 1: Re�nement, Conformance, and Combination

Lemma 1 Suppose A and B are compatible PIOAs.

Then, given a delayed trace �, the set of all executions

� of AkB such that � / �, is in bijective correspon-

dence with the set of all pairs of executions (�

A

; �

B

),

where �

A

is an execution of A such that �

A

/ �, and

�

B

is an execution of B such that �

B

/ (�

A

� �).

Moreover, whenever � corresponds under the bijection

to the pair (�

A

; �

B

) we have:

� � � = �

B

� (�

A

� �)

and

w

AkB

(�) = w

A

(�

A

) w

B

(�

B

):

2.4 Expected Completion Time

We are interested in calculating the expected time

taken for a PIOA A to complete a �nite execution

having an action sequence in a speci�ed set, which in

general will be in�nite. To avoid ambiguity surround-

ing executions that \complete" multiple times in the

sense of having more than one pre�x with an action

sequence lying in the speci�ed set, we restrict our at-

tention to sets of action sequences that are pairwise

incomparable with respect to the pre�x relation. We

call such a set a target set. If T is a target set, then

we write T " to denote the upward-closure of T with

respect to the pre�x relation.

If A is a closed PIOA, and T is a target set, then

the completion probability pr

c

(A; T ) for A with respect

to T is the quantity:

pr

c

(A; T ) = pr

A

f� : tr(�) 2 T "g:

If pr

c

(A; T ) = 1, then the expected completion time

exp

c

(A; T ) for A with respect to T is the quantity:

exp

c

(A; T ) =

X

tr(�) 2 T

0

@

j�j�1

X

k=0

1

�

A

(�(k))

1

A

p

A

(�):

To understand the above de�nition, recall that the

mean of an exponential distribution with parameter �

is 1=�, so that the quantity 1=�

A

(�(k)) is the expected

holding time for A in state �(k).

Suppose T � E

�

is a target set. The characteristic

observable of T is the map �

T

: DTraces(E) ! R de-

�ned by: �

T

(�) = 1 if tr(�) 2 T , and �

T

(�) = 0

otherwise. Two other observables will be of inter-

est to us. The completion probability observable � :

DTraces(E) ! R and the completion time observable


 : DTraces(E)! R are de�ned by

�(�) =

j�j�1

Y

k=0

1

�(k)

:


(�) =

0

@

j�j�1

X

k=0

1

�(k)

1

A

0

@

j�j�1

Y

k=0

1

�(k)

1

A

:

If T is a target set, then we de�ne:

�

T

(�) = �(�)�

T

(�) 


T

(�) = 
(�)�

T

(�):

The multiplicative factor of

Q

j�j�1

k=0

1

�(k)

in the def-

inition of � and 
 above serves to make these ob-

servables \go to 0 quickly enough" to cancel out the



blowup e�ect introduced by the weights w

A

(�) in the

de�nition of B

A

E

. If A is a closed PIOA (i.e. has no

input actions), then the cancellation is complete, so

that applying the behavior B

A

E

of a PIOA A to � or


 amounts to taking the expectation of the functions

1 and

P

j�j�1

k=0

1

�(k)

, respectively. The following result

states this formally.

Lemma 2 Suppose A is a closed PIOA, and T is a

target set. Then

pr

c

(A; T ) = B

A

;

�

T

(0);

exp

c

(A; T ) = B

A

;




T

(0);

where (0) denotes the delayed trace with no actions and

zero as its sole delay parameter.

If A is not closed, then there is a subtle e�ect

here that is di�cult to understand unless one carefully

works through all the proofs. The cancellation of fac-

tors is not entirely complete, and the residue that is left

is exactly what is needed to get the appropriate nor-

malization factor that correctly accounts for the prob-

ability of a particular scheduling of locally controlled

actions between A and its environment. To achieve

the automatic introduction of this normalization fac-

tor is the reason why we de�ned the strange-looking

quantities w

A

(�) and used them in the de�nition of

B

A

E

.

3 Representable Observables

In this section, we develop the theory of \repre-

sentable observables," to prepare the way for showing

that this theory, together with that of the previous sec-

tion, can be used to obtain a compositional method for

computing expected completion time.

Let Obs(E) denote the set of all observables � :

DTraces(E)! R. Then Obs(E) is a vector space un-

der the usual pointwise addition and multiplication.

Let Rat(x) denote the set of all real-valued rational

functions of a single real parameter x. For n a non-

negative integer, an n-dimensional representation of

an observable � 2 Obs(E) consists of

� An n-dimensional row vector C with entries in R,

� An n-dimensional column vector D(x) with en-

tries in Rat(x),

� For each a 2 E, an n � n matrix M

a

(x), with

entries in Rat(x),

such that for all delayed traces � 2 DTraces(E), the

quantity �(�) is given by the formula:

�(�) = C

0

@

j�j�1

Y

k=0

M

�(k;k+1)

(�(k))

1

A

D(�(j�j));

An observable � 2 Obs(E) is called representable if

there exists an n-dimensional representation of �, for

some n.

A representation is essentially a kind of automa-

ton that computes a function on delayed traces (i.e. an

observable). The states of the automaton are n-

dimensional row vectors of real numbers, with the vec-

tor C serving as the initial state. If the automaton is

in state X , and the next portion of the input is d

a

�!,

then the automaton multiplies the current state vector

by the matrix M

a

(d), and advances the input pointer.

Upon reaching the end of the input, if the current state

is X

0

and the single remaining delay parameter is d,

then the row vector X

0

is multiplied by the column

vector D(d), to obtain a scalar, which becomes the

output produced by the automaton.

Suppose � : DTraces(E)! R is an observable. If

d 2 R and a 2 E, then the derivative of � by d and a

is the observable �

d

a

�!

de�ned by:

�

d

a

�!

(�) = �(d

a

�!�);

where if � is the delayed trace:

d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

;

then d

a

�!� denotes the delayed trace:

d

a

�!d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

:

It is not di�cult to verify that for all d 2 R and a 2

E, the mapping taking � 2 Obs(E) to its derivative

�

d

a

�!

2 Obs(E) is a linear transformation on Obs(E).

If S is an arbitrary subset of Obs(E), then de�ne

DS = f�

d

a

�!

: � 2 S; d 2 R; a 2 Eg;

and let D

�

S denote the least subspace of Obs(E) con-

taining S and satisfying D(D

�

S) � D

�

S.

De�ne an observable � 2 Obs(E) to be rational if

the following three conditions hold:

1. The space D

�

� is a �nite-dimensional subspace of

Obs(E).

2. For all 	 2 D

�

�, the quantity 	(d) (the value of

	 on the delayed trace of length zero with single

delay parameter d) is a rational function of d.

3. For all 	 2 D

�

�, all a 2 E, and all linear maps

L : D

�

� ! R, the quantity 	

d

a

�!

L is a rational

function of d (note that we denote the application

of a linear transformation by writing it to the right

of its argument).

De�ne the dimension of a rational observable � to be

the dimension of the space D

�

�.



Theorem 2 An observable � 2 Obs(E) is rational if

and only if it is representable. Moreover, if an observ-

able � is representable, then it has a representation

whose dimension is equal to the dimension of �, and

this dimension is the minimum possible among repre-

sentations of �.

The coincidence of representable and rational ob-

servables, as expressed by Theorem 2, is a key fact in

the proofs of our results.

3.1 Examples of Representable Observ-

ables

In this section we show that certain observables of

interest are representable.

Lemma 3 The completion probability observable �

has the 1-dimensional representation

C = (1) D(x) = (1)

M

a

(x) = (1=x):

The completion time observable 
 has the 2-

dimensional representation

C =

�

0 1

�

D(x) =

�

1

0

�

M

a

(x) =

�

1=x 0

1=x

2

1=x

�

:

Lemma 4 Suppose T is a target set which is also a

regular subset of E

�

. Then the observables �

T

and




T

are representable, with representations that can be

e�ectively computed from the description of a deter-

ministic �nite automaton that recognizes T .

4 Representable Observables and

PIOA Behaviors

This section presents our main results. Theorem

3 says that the result of applying a PIOA behavior to

a representable observable can be computed explicitly

in terms of representations. Theorem 4 tells us how

to use representations to \restrict the action set" of a

behavior. Finally, Theorem 5 gives an algorithm that,

given a representation for an observable, computes a

representation of minimal dimension for that same ob-

servable.

Theorem 3 Suppose A is a PIOA. If � is a repre-

sentable observable in Obs(E), where E

A

� E, then

B

A

E

� is also a representable observable in Obs(E).

Moreover, a representation of B

A

E

� can be e�ectively

computed from a representation of �.

Proof Sketch { Suppose � 2 Obs(E) is a repre-

sentable observable, where E

A

� E, and let

(C;D(x); fM

a

(x) : a 2 Eg)

be an n-dimensional representation of �. Suppose the

PIOA A has m states. Let q

1

; q

2

; : : : ; q

m

be an enu-

meration of the states of A, with q

1

the distinguished

start state. We construct an mn-dimensional repre-

sentation (C

0

; D

0

(x); fM

0

a

(x) : a 2 Eg) of B

A

E

�, where

C

0

, D

0

(x), andM

0

a

(x) are given in n-dimensional block

form as follows:

C

0

= (
C 0 : : : 0

)

D

0

(x) =

0

B

B

@

D(x + �

A

(q

1

))

D(x + �

A

(q

2

))

: : :

D(x + �

A

(q

m

))

1

C

C

A

(M

0

a

)

ij

(x)

=

�

�

A

(q

i

; a; q

j

)M

a

(x+ �

A

(q

i

))�

A

(q

i

); if a 2 E

loc

A

;

�

A

(q

i

; a; q

j

)M

a

(x+ �

A

(q

i

)); otherwise:

The following is the basic correctness property for

the above representation.

Claim: For all delayed traces � in DTraces(E) of the

form:

d

0

a

0

�!d

1

a

1

�! : : :

a

l�1

�!d

l

;

the jth n-dimensional block of the row vector:

C

0

 

l�1

Y

k=0

M

0

�(k;k+1)

(�(k))

!

is equal to the following sum:

X

�2�

A

(�;q

j

)

w

A

(�) C

l�1

Y

k=0

M

�(k;k+1)

(�(k) + �

A

(�(k)))

where �

A

(�; q

j

) denotes the set of all executions of A

of the form:

r

0

a

0

�!r

1

a

1

�! : : :

a

l�1

�!r

l

;

with r

0

= q

1

and r

l

= q

j

.

We now show how to extend the previous result

to the case of B

A

E

, where we do not necessarily have

E

A

� E.

If E � E

0

, then de�ne the map [ - ]

E

: Obs(E

0

)!

Obs(E) by: [	]

E

� =

P

�

0

��

	(�

0

): Note that the sum

on the right need not converge, in general, so that [	]

E

will be de�ned only for certain 	 2 Obs(E

0

).

The following result states that the E-behavior of

A is already determined by the (E [ E

A

)-behavior of

A.



Lemma 5 Suppose A is a PIOA. Then for all sets of

actions E, and for all observables � 2 Obs(E [ E

A

),

we have: B

A

E

� = [B

A

E[E

A

�]

E

:

In view of Lemma 5, the map [ - ]

E

allows us

to reduce the problem of computing a representation

of B

A

E

� to that of computing, given a representa-

tion of B

A

E[E

A

�, a representation of the observable

[B

A

E[E

A

�]

E

. Theorem 4 below gives a method for com-

puting [ - ]

E

on representations.

Theorem 4 Suppose (C

0

; D

0

; fM

0

a

0

: a

0

2 E

0

g) is a

representation of an observable �

0

2 Obs(E

0

), and

suppose E � E

0

. Suppose further that [ - ]

E

is well

de�ned on D

�

�

0

and that that the power series:

I +

^

M(x) +

^

M

2

(x) + : : :

converges (componentwise) for all nonnegative x 2 R,

where we de�ne

^

M(x) =

X

a

0

2E

0

nE

M

0

a

0

(x):

Then the matrix I �

^

M(x) is nonsingular for all non-

negative x 2 R, and an n-dimensional representation

of [�

0

]

E

is given by

(C

0

;

^

M(x)

�

D

0

(x); f

^

M(x)

�

M

0

a

(x) : a 2 Eg);

where

^

M(x)

�

abbreviates (I �

^

M(x))

�1

.

The proof of Theorem 4 makes use of the following

lemma, which gives recursive rules for computing the

derivatives of an observable of the form [	]

E

and for

evaluating an observable of the form [	]

E

on a delayed

trace (d) of length 0.

Lemma 6 Suppose E � E

0

. Suppose further that S

is a linear subspace of Obs(E

0

) such that:

1. DS � S.

2. [	]

E

is de�ned for all 	 2 S.

Then the following relations are satis�ed for all 	 2 S,

all d 2 R, and all a 2 E:

([	]

E

)

d

a

�!

= [	

d

a

�!

]

E

+

X

a

0

2E

0

nE

([	

d

a

0

�!

]

E

)

d

a

�!

[	]

E

(d) = 	(d) +

X

a

0

2E

0

nE

[	

d

a

0

�!

]

E

(d):

The following gives su�cient conditions for the

technical hypotheses of the previous theorem to hold.

Lemma 7 Suppose (C

0

; D

0

(x); fM

0

a

0

: a

0

2 E

0

g) is a

representation of �

0

2 Obs(E

0

), and suppose E � E

0

.

Let

^

M(x) =

P

a

0

2E

0

nE

M

0

a

0

(x). Suppose

1. M

a

0

(x) � 0 and D

0

(x) � 0 componentwise for all

a

0

2 E

0

and all nonnegative x 2 R.

2. For all x 2 R, the matrix I �

^

M(x) is nonsin-

gular, and its inverse satis�es (I �

^

M(x))

�1

� 0

componentwise.

Then the power series:

I +

^

M(x) +

^

M

2

(x) + : : :

converges componentwise for all nonnegative x 2 R,

and [	]

E

is de�ned for all 	 2 D

�

�

0

.

4.1 Minimization of Representations

In this section, we present an algorithm that, given

a representation (C;D; fM

a

: a 2 Eg) for an observ-

able �, computes a representation (C

0

; D

0

; fM

0

a

: a 2

Eg) for � which is of minimal dimension. The al-

gorithm is based on the following characterization of

minimality for representations.

Lemma 8 Suppose (C;D(x); fM

a

(x) : a 2 Eg) is

an n-dimensional representation of an observable � 2

Obs(E). Then this representation is minimal if and

only if neither of the following two (in�nite) systems

of equations has any nontrivial solutions:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

l

) = 0 C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0

where l ranges over all nonnegative integers, the a

k

range over all elements of E, the d

k

range over all

nonnegative reals, X is an unknown row vector, and

Y is an unknown column vector. Moreover, there exist

algorithms for computing a basis for the solution spaces

of systems of equations of these forms.

Lemma 9 Suppose (C;D(x); fM

a

(x) : a 2 Eg) is

an n-dimensional representation of an observable � 2

Obs(E). Suppose the system of all equations of the

form:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

k

) = 0:

has a nontrivial solution X. Let m be the dimension of

the solution space. Then � has an (n�m)-dimensional

representation (C

0

; D

0

(x); fM

0

a

(x) : a 2 Eg), which

is e�ectively computable from the given n-dimensional

representation.



An analogous result holds for the system of all

equations of the form:

C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0

Proof Sketch { Using Lemma 8, we can compute a

basis B = fB

1

; B

2

; : : : ; B

m

g (of row vectors) for the so-

lution space S of the above system of equations and a

basis C = fC

1

; C

2

; : : : ; C

n�m

g for the orthogonal com-

plement S

?

of S. Assume that the basis C is orthonor-

mal, which can be ensured using the Gram-Schmidt

procedure. Let P

S

? be the (n� (n�m))-dimensional

matrix of the projection of R

n

(row vectors) to S

?

,

with respect to the basis C for S

?

and the natural

basis for R

n

. Explicitly, for 1 � i � n � m, the ith

column of the matrix P

S

? contains the components

of the basis vector C

i

. Let Q

S

?
= P

t

S

?

, which is the

((n�m)�n)-dimensional matrix of the embedding of

S

?

in R

n

, with respect to the basis C for S

?

and the

natural basis for R

n

.

We now de�ne C

0

= CP

S

? , M

0

a

(x) =

Q

S

?
M

a

(x)P

S

?
, and D

0

(x) = Q

S

?
D(x). We claim

that that (C

0

; D

0

(x); fM

0

a

(x) : a 2 Eg) is also a rep-

resentation of �. The proof uses the fact that the

following relationship holds for all a 2 E:

P

S

?Q

S

?M

a

(x)P

S

? =M

a

(x)P

S

? :

An analogous, \time-reversed" version of the

above argument yields the construction and proof for

the second system of equations.

Theorem 5 There exists an algorithm that, given an

n-dimensional representation of an observable � 2

Obs(E), outputs an m-dimensional representation of

�, which is minimal.

Proof Sketch { The algorithm is as follows:

1. Determine the space of solutions X to the system

of all equations of the form:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

k

) = 0:

If this space is nontrivial, use Lemma 9 to produce

an n

0

-dimensional representation of �, where n

0

<

n.

2. Determine the space of solutions Y to the system

of all equations of the form:

C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0

If this space is nontrivial, use Lemma 9 to produce

an n

00

-dimensional representation of �, where

n

00

< n

0

.

It can be shown that step (2) does not introduce any

additional possibility of nontrivial solutions X to the

system of the form considered in step (1). Since the

n

00

-dimensional representation resulting from step (2)

thus satis�es the conditions of Lemma 8, it is minimal.

5 Example

In this section, we present a very abbreviated ex-

ample to emphasize the symbolic avor of the calcula-

tions performed using our algorithms.

Let A be the PIOA with E

A

= ft; ag, where

t is an internal action and a is an output action,

with Q

A

= fq

0

; q

1

g, where q

0

is the start state,

with �

A

(q

0

; a; q

1

) = p, �

A

(q

0

; t; q

0

) = 1 � p, and

�

A

(q

i

; a

0

; q

j

) = 0 for all other cases, and with �

A

(q

0

) =

d and �

A

(q

1

) = 0 (see Figure 2). Let T be the target

set consisting of the single string a.

We wish to calculate the expected completion time

for A with respect to T . Note that for this simple ex-

ample, it is possible to determine these quantities by

hand, by solving linear equations. In particular, the

expected completion time x satis�es the linear equa-

tion: x = 1=d + (1 � p)x + p � 0; which expresses the

expected completion time from state q

0

as the sum of

the expected holding time in state q

0

, plus the sum of

the expected delays from the successor states q

0

and q

1

of q

0

, weighted respectively by the probability of tran-

sitions to these successor states. Solving this equation

for x yields the result: x = 1=dp: In a similar fashion,

the completion probability can be shown to be 1.

We now apply the theory of the preceding sec-

tions to provide an alternative calculation of the same

quantity. We wish to emphasize that, although the

calculations using our methods are more involved in

the case of this simple example, the real advantage

of our method over the \equation-solving" method

will be realized on very large systems having many

components. For these cases, the non-compositional

equation-solving method will yield an unmanageably

large system of equations to be solved (one for each

global state), whereas our method can be applied

one component at a time, using minimization at each

stage, thereby potentially avoiding an explosion in the

space required.

Following the theory of the preceding sections,

the expected completion time for the above exam-

ple is given by: B

A

;




T

(0): Using Lemma 4, we can

obtain a 4-dimensional representation for the observ-

able 


T

. From this, using Theorem 3, we can com-



(0)--

@

@R�

�

q0 q1

a

t

[p]

[1-p]

(d)

 #

Figure 2: Example PIOA for Calculation of Completion Probability and Expected Completion Time

pute an 8-dimensional representation for B

A

E

A




T

. Ap-

plying the minimization algorithm of Section 4.1 to

this 8-dimensional representation yields the following

3-dimensional representation, which is minimal (the

factor of

p

2 appearing below arises from the orthonor-

malization step which is part of the minimization al-

gorithm):

C

0

= (
0 0 1

) D

0

=

0

@

p

2

0

0

1

A

M

0

a

(x) =

0

B

@

0 0 0

p

2

2

dp

x+d

0 0

p

2

2

dp

(x+d)

2

0 0

1

C

A

M

0

t

(x) =

0

B

@

0 0 0

0

d(1�p)

x+d

0

0

d(1�p)

(x+d)

2

d(1�p)

x+d

1

C

A

:

From this representation of B

A

E

A




T

we now obtain a

representation for B

A

;




T

using Theorem 4. Letting

^

M(x) =M

0

a

(x) +M

0

t

(x), we can compute:

(I �

^

M(x))

�1

=

0

B

@

1 0 0

p

2

2

dp

x+dp

x+d

x+dp

0

p

2

2

dp

(x+dp)

2

d(1�p)

(x+dp)

2

x+d

x+dp

1

C

A

:

The representation for B

A

;




T

is thus:

C

00

= C

0

= (
0 0 1

)

D

00

= (I �

^

M(x))

�1

D

0

(x) =

0

B

@

p

2

dp

x+dp

dp

(x+dp)

2

1

C

A

From this, we can calculate the expected completion

time.

C

00

D

00

(0) =

dp

(0 + dp)

2

=

1

dp

:

6 Summary

To summarize, our compositional method for com-

puting expected completion time for a composite sys-

tem kfA

1

; A

2

; : : : ; A

n

g with respect to a regular target

set T is as follows: Use Lemma 4 to obtain a repre-

sentation for the associated observable 


T

, use The-

orems 3 and 4 to compute a representation for the

application of the behavior of A

1

to 


T

, minimize the

result using Theorem 5, then repeat for components

A

2

, A

3

, : : :, A

n

. Apply the resulting representation

to the delayed trace (0) to obtain the result. Note

that the same method applies to the computation of

completion probability with respect to a target set,

or in fact any other quantity of interest that can be

expressed in terms of the application of the system

behavior map to an observable. It is also interesting

to note that our method yields a compositional tech-

nique for determining reachability of a target set for

non-probabilistic I/O automata: simply \probabilize"

the automaton in question by assigning each transition

some nonzero probability, then determine whether the

completion probability for the resulting PIOA with re-

spect to the given target set is nonzero.

Note that, under a worst-case analysis, there will

exist problem instances for which no minimization

is possible, and for these instances our methods will

be no better than a non-compositional method. The

real test of whether combinatorial explosion is avoided

must therefore lie in the implementation of our method

(currently in progress) and its application to practical

examples. However, there is a strong heuristic reason

why we believe minimization is likely to give good re-

sults. In our method, we specify at the beginning of

the computation (in the form of the particular observ-

able to be used) the particular system property to be

analyzed. Each stage of application of the behavior of

a component PIOA A therefore amounts to a kind of

\partial evaluation," in which the resulting observable

expresses only information relevant to the property of

interest and the portion of the system analyzed so far.

Minimizing the representation obtained at each stage

will have the e�ect of avoiding the accumulation of



irrelevant details about the system.
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