
Debugging Type Errors (Full version)

Karen L. Bernstein and Eugene W. Stark

�

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

November 8, 1995

Abstract

Compilers for programming languages such as Standard ML are able to �nd many program-

ming errors at compile time, however the diagnostic messages from the type inference algorithm

do not always clearly identify the source of type errors. We argue that an extended type def-

inition, which assigns types to open expressions as well as closed expressions, can serve as the

basis for a programming environment that helps programmers debug type errors. We present

such a type de�nition, which is closely related to the Damas/Milner de�nition, but which in

addition provides principal typings for open expressions. We present an algorithm that performs

type inference with respect to our type system and give a simple direct proof of its correctness.

Finally we describe a prototype implementation.

Keywords: Programming environments, Type Inference

1 Introduction

The Standard ML type system permits ML [MTH90] compilers to identify certain kinds of

programming errors at compile time by inferring a \most general" or \principal" type for each

closed expression. One problem for ML programmers, especially novice programmers, is that

the source of these type errors can be hard to �nd. In this paper, we present a conservative

extension to the current type system which provides support for tracking down the source of

type errors.

Generating useful diagnostic messages for type errors is a di�cult problem, which has been

the subject of several papers [Wan86, JW86, DB94]. One issue is that the source of the error can

be quite distant from where the symptom of the error (and the error message) occurs. Another

problem is that some of the inferred types, especially for subexpressions internal to the program,

are complicated and can be hard to understand. Finally, a large number of type constraints can

contribute to the inferred type for a single variable and in general reasoning about large sets of

constraints is hard.

We propose to extend the current ML programming environment in order to provide addi-

tional support for �nding the source of type errors. The Standard ML type inference algorithm

infers principal types only for closed expressions; that is, for expressions with no free variables.

In this paper, we suggest that inferred types for open expressions would be a valuable tool for

�

Research supported in part by NSF grant CCR-9320846

1

2

\debugging" type errors and in Section 2 we give an example of how this extension can provide

a kind of \breakpoint" facility for extracting type information from inside of programs.

Extending ML type inference to open expressions is problematic because the ML type system

does not directly support a notion of principal type for such expressions. The usual type

inference algorithm for ML takes a expression and a type environment as parameters and returns

a principal type, where a type environment is a mapping that assigns types to all variables that

occur free in the expression, and the principal type is \most general" in the sense that all other

possible types for the expression are instances of it. An obvious thing to try is to modify the

algorithm so that it takes an open expression as a parameter and returns a principal typing,

consisting of a type for the expression together with an assignment of types to free variables, in

such a way that all other typings of the expression are instances of the principal typing. This

does not work, however, since such principal typings do not exist.

As an example, consider the ML expression:

fn a) ((f a; f 1); (g a; g true))

The �-bound variable a imposes a constraint that f and g be functions that take the same type

of parameter. In addition, f is a function that takes an integer parameter and g is a function

that takes a boolean parameter. We can see that there is no way to unify these three constraints.

One solution is to generalize g, so that g's parameter is polymorphic:

[f : int! �; g: 8�:�!] ` fn a) ((f a; f 1); (g a; g true)) : (� � �) � (�)

Another solution is to generalize f , so that f 's parameter is polymorphic:

[f : 8�:�! �; g: bool!] ` fn a) ((f a; f 1); (g a; g true)) : (� � �) � (�)

Since there is no valid typing having both of these as a common instance, neither typing is

principal.

In this paper, we present a type system which does support principal typings and is still

very closely related to the ML type system. In this type system, a typing for an expression is a

pair consisting of a type for the expression and a set of monomorphic (quanti�er-free) types for

each variable that occurs free in the expression. We call a mapping from program variables to

sets of monomorphic types an assumption environment. With this type system the expression

in the previous example has the following principal typing:

[f : f�! �; int! �

0

g; g: f�! ; bool!

0

g]

. fn a) ((f a; f 1); (g a; g true)) : (� � �

0

) � (�

0

)

This same solution was also used by Shao and Appel [SA93] in order to de�ne the \minimum"

interface so that compilation units never need to be recompiled unless their implementation

changes. A major di�erence between their work and ours is that they are interested in a compiler

interface and we are interested in a user interface. In their work it is most important that the

interface be able to identify every case where the compilation unit needs to be recompiled; in

our case it is more important that the interface be of practical use to a programmer who may

know little about the implementation of the compiler.

In Section 2, we present an example debugging session with our proposed programming

environment. In Section 3, we give a type de�nition with assumption environments and prove

that the type de�nition is very closely related to the Standard ML type de�nition. We also

present a version of the type inference algorithm presented by Shao and Appel [SA93] and

sketch a simple direct proof of the correctness of the algorithm which shows that the algorithm

computes principal typings for our type de�nition. A complete proof can be found in the

appendix. We feel that our proof has the advantage of being simpler and more straightforward

3

that the one given by Shao and Appel for their algorithm. In Section 4, we discuss our prototype

implementation (in the ML Kit [BRTT93]) and in the conclusion we discuss some possible future

work.

The type inference algorithm for the ML type discipline (Algorithm W) was presented by

Damas and Milner in the paper, Principal Type Schemes for Functional Programs [DM82], and

was proven correct in Damas' PhD dissertation [Dam85]. Most of the research in this area has

concentrated on improving the diagnostic messages generated by the type inference algorithm.

Wand [Wan86] presented a type inference algorithm that keeps a record of the pieces of code

that contribute to each type deduction. This information is then used to explain why the type

error happened. Duggan and Bent present a re�nement of Wand's approach that addresses

issues such as repeated explanations and aliasing of type variables as well as some practical

implementation issues such as path compression [DB94]. Johnson and Walz apply a maximal

ow technique to the set of type constraints in order to identify the most likely source of the

type error [JW86].

Jim [Jim95] demonstrates the value of principal typings for a variety of problems (although

not the problem we discuss in this paper) and suggests the use of a variant of rank 2 intersection

types (called P

2

) as a type system that is closely related to the ML type system and supports

principal typings. The type system we describe is a restriction of the rank 2 intersection types

and therefore seems to be a more conservative choice of a type system for our purposes.

2 An Example Debugging Session

By extending the type inference algorithm to infer types for open terms, we can provide an

enhanced programming environment that assists programmers in �nding the source of type

errors. We propose to include type information with the error messages for unbound identi�ers.

We will show how such an enhancement would be useful by considering the following simple

program, which computes the average of a list of numbers and has several type errors:

fun avg numList = let

val sum = fold op + (0,numList)

val count = fold inc (0,numList)

in (sum/count) end

We will assume that this program is part of a larger program, that inc is de�ned somewhere

else in the program and has type int -> int, and that fold is a library function that has the

type:

('a * 'b -> 'b) -> 'a list -> 'b -> 'b

Recall also that in Standard ML the keyword \op" is used to inform the parser that the usual

in�x status of the immediately following operator is to be ignored for this occurrence.

First, the enhanced programming environment allows the programmer to reason about the

program in a bottom-up fashion. Let us say that the programmer would like to cut and paste

the de�nition of sum to the ML prompt in order to see if the de�nition seems correct. Usually,

by trying this, the programmer would generate the following error message, since numList is a

parameter to the function avg.

- val sum = fold op + (0,numList);

Error: unbound variable: numList

In our enhanced environment, the error message is annotated with type information and type

information is computed for the function sum:

4

- val sum = fold op + (0,numList);

Error: unbound variable: numList: int list

val sum = fn : int list -> int

From the type elaboration, the programmer can see that the de�nition of sum assumes that

numList is a list of integers and as a result sum is a function from a list of integers to an integer

value. Notice that the programmer was able to break the information hiding imposed by the

let construct, but did not de�ne any new bindings at the top-level; all of the type information

is just a part of the error message.

Suppose now that the programmer decides that numList is actually supposed to be a list of

real values. However, even after the programmer modi�es the program by replacing the integer

literal \0" with the real literal \0.0" appropriately, there still is a type error:

Error: operator and operand don't agree (tycon mismatch)

operator domain: 'Z * 'Y -> 'Z

operand: int -> int

in expression:

fold inc

The programmer can tell that there is a problem in the de�nition of count where fold is being

applied to inc, but the cause is not obvious. The programmer now inserts a \breakpoint" (an

unbound identi�er, in this case 'b') to extract the type information at the location reported by

the compiler:

fun avg numList = let

val sum = fold op + (0.0,numList)

val count = fold (b inc) (0.0,numList)

in (sum/count) end;

Error: unbound variable: b: (int -> int) -> real * real -> real

val avg = fn : real list -> real

Now the programmer can see that the function inc (the input for breakpoint b) is a function of

type int -> int and that fold expects a parameter (the output for breakpoint b) of type real

* real -> real. By extracting type information from inside the program, the programmer

realizes that the de�nition of inc is not appropriate.

This proposed programming environment is a conservative extension to the current environ-

ment; the only changes are type annotations to some error messages. As a result, the changes

are unobtrusive and easy to ignore when they are not needed. However, these type annotations

can be quite useful. They allow the programmer to use the type inference algorithm to write

and debug programs more e�ectively. The new environment allows the programmer to evaluate

type information for pieces of the program as well as to extract type information from inside

the program.

3 Type De�nition

For this paper, we are interested in the programming language mini-ML, which is basic lambda

calculus extended with a polymorphic \let" construct. The expressions in the language are

de�ned by the following grammar, where a ranges over a countable set of variables.

e ::= a j e

1

e

2

j fn a) e j let a = e

1

in e

2

We will denote the set of free variables of the programming language expression e by fv(e).

5

� � �(a)

� ` a: �

V AR

� ` e

1

: �

0

! � � ` e

2

: �

0

� ` e

1

e

2

: �

APP

� + [a: �

0

] ` e: �

� ` fn a) e: �

0

! �

ABS

� ` e

1

: �

1

� + [a:�] ` e

2

: �

2

� = Gen(�; �

1

)

� ` let a = e

1

in e

2

: �

2

LET

Figure 1: ML Type De�nition

Simple types (written �) include type variables �, base types int and bool and function types.

Type schemes (written �) are simple types with some universally quanti�ed type variables. The

type expressions for our language are de�ned by the following grammar.

� ::= � j int j bool j �

1

! �

2

� ::= � j 8�:�

We will denote the set of type variables that occur free in the type scheme � by tyvars(�). We

will treat type schemes that are equivalent up to the renaming of bound variables as equal.

A type environment � is a �nite mapping from variables to type schemes. For any type

environment � we write � + [a:�] for the type environment that maps the variable a to the

type scheme � and otherwise behaves like �. We will denote the domain of � by dom(�).

A substitution � is a �nite mapping from type variables to simple types. We will denote the

substitution that maps the type variable � to the type � by [�=�]. Substitutions are extended

from type variables to type schemes and type environments in the usual way. The type scheme

� = 8�

1

:::�

n

:� is a generic instance of the type scheme �

0

= 8�

1

:::�

m

:�

0

(written � � �

0

) if and

only if � = [�

i

=�

i

]�

0

for some types �

1

; :::; �

m

, and none of the type variables �

j

are free in �

0

.

Let Gen(�; �) be the type scheme 8�

1

; :::�

n

:� where f�

1

; :::; �

n

g = tyvars(�) n tyvars(�).

The type de�nition given in Figure 1 is based on the type de�nition from Tofte's dissertation

[Tof87]. For a more complete discussion of the type de�nition see Reade's textbook [Rea89] or

Mitchell's handbook article [Mit90].

3.1 Type De�nition with Assumption Environments

In this section, we present a type de�nition with assumption environments. This type de�nition

admits principal typings and in addition is very closely related to the ML type system. We will

see (Theorem 2) that for any expression in the programming language there is a distinguished

typing that subsumes all other typings and also (Theorem 1) that a type can be proven for a

programming language expression under the ML type system if and only the same type can

be proven under the type de�nition with assumption environments. Furthermore, there is a

close relationship between the corresponding type environments and assumption environments

for which the type can be proven.

An assumption environment � is a �nite mapping of variables to sets of simple types (not

type schemes). We will write � = �

1

[�

2

to mean that for all variables a, �(a) = �

1

(a)[�

2

(a).

We will write �(a) = ; if a is not in the domain of �. We will write �na to mean the assumption

6

[a: f�g] . a: �

V AR

�

1

. e

1

: �

0

! � �

2

. e

2

: �

0

�

1

[�

2

. e

1

e

2

: �

APP

� . e: � �(a) � f�

0

g

� n a . fn a) e: �

0

! �

ABS

�

1

. e

1

: �

1

�

2

. e

2

: �

2

a 62 fv(e

2

)

�

1

[�

2

. let a = e

1

in e

2

: �

2

LET

0

�

1

. e

1

: �

1

�

2

. e

2

: �

2

�

�

�

1

= �; all � 2 �

2

(a) a 2 fv(e

2

)

(

S

�2�

2

(a)

�

�

�

1

) [(�

2

n a) . let a = e

1

in e

2

: �

2

LET

Figure 2: Type De�nition with Assumption Environments

environment � with a removed from the domain. For any assumption environment � we write

� + [a:�] for the assumption environment that maps the variable a to the set of simple types

� and otherwise behaves like �. We will denote the domain of � by dom(�). Substitutions

are extended from type variables to assumption environments in the usual way. An assumption

environment � is a generic instance of type environment � (written � � �) if and only if for

all variables a in the domain of � and for all types � in �(a), the type � is a generic instance

of �(a). Notice that with this de�nition, if � is a generic instance of � then the domain of � is

contained in the domain of �.

Figure 2 gives our type de�nition with assumption environments. Notice that even though

the type de�nition has a polymorphic let construct, it does not use type schemes, only simple

types. This is possible because of the use of assumption environments. Rule [LET] is actually

a rule scheme, whose correct application requires the existence of a collection of substitutions

f�

�

: � 2 �

2

(a)g such that the indicated relationships are satis�ed.

In Example 3.1, we can see some of the ways that proofs with this type de�nition are di�erent

from proofs in the ML type system. The [VAR] rule in this type de�nition is more restrictive

than the usual type de�nition in that the type in the assumption environment must correspond

exactly to the type of the variable. The [APP] rule requires the same correspondence of the

types of the subexpressions as the ML type system; however, now the [APP] rule accumulates

the assumption environments for the subexpressions.

Example 3.1

[f : f(�! �)! (�! �)g]

. f : (�! �)! (�! �)

V AR

[f : f�! �g] . f : �! �

V AR

[f : f(�! �)! (�! �); �! �g] . f f : �! �

APP

In Example 3.2, we see how the the [ABS] rule forces all assumptions on the variable a to

be identical. The purpose of the [LET] rule is to make sure that the de�nition of the variable a

in expression e

1

is consistent with how the variable a is used in expression e

2

. The use of a is

consistent if there exists some substitution that maps the type of the expression e

1

to the type

of the occurrence of a.

7

Example 3.2 Notice that [�=�

0

](�

0

! �

0

) = �! � and [(�! �)=�

0

](�

0

! �

0

) = (�! �)!

(�! �) and therefore the necessary substitution conditions for the [LET] are true.

[a: f�

0

g] . a:�

0

V AR

[] . fn a) a : �

0

! �

0

ABS

see Example 3:1

[f : f(�! �)! (�! �); �! �g] . f f : �! �

[] . let f = fn a) a in f f : �! �

LET

The [LET'] rule is the trivial case of the let de�nition, where the variable a does not occur

free in the e

2

. In this case, the rule simply accumulates the assumption environments for the

subexpressions.

In Example 3.3, we see that if there are variables that occur free in expression e

1

of the [LET]

de�nition, then not only does the assumption environment required for the whole let-expression

accumulate all the assumptions required about the free variables of the body e

2

(other than the

bound variable a), but in addition it includes all assumptions required about the free variables

of e

1

, where the latter have been suitably strengthened to take into account the consequences of

requiring that all the uses of the bound variable a in the body match its de�nition. We can see

here that the size of the assumption environment can in general be exponential in the nesting

depth of the [LET] construct.

Example 3.3 Notice that [(�! �)=�]� ! � = (�! �)! (�! �) and [�=�]� ! � = �! �

and therefore the necessary substitution conditions for the [LET] are true.

see Example 3:1

[g: f(� ! �)! (� ! �); � ! �g]

. g g : (� ! �)

see Example 3:1

[f : f(�! �)! (�! �); �! �g]

. f f : (�! �)

[g: f((�! �)! (�! �))! ((�! �)! (�! �)); (�! �)! (�! �); �! �g]

. let f = g g in f f : (�! �)

LET

Theorem 1 states that there is a close correspondence between the ML type de�nition and

our type de�nition with assumption environments. We can view assumption environments as

simply more a concrete version of type environments, if we consider generalization a form of

abstraction.

Theorem 1 If � ` e: � then there exists an assumption environment � such that � � � and

� . e: � . Conversely, if � . e: � and � � � then � ` e: � .

In the context of the second part of the theorem, observe that for every assumption environment

�, the type environment � that maps each a 2 dom(�) to the type scheme 8�:�, has the

property � � �.

Proof Outline: Both directions are by induction on the height of a proof tree, and are straight-

forward once several simple lemmas about the properties of generic instance (�) are proven.

In the forward direction, one builds the assumption environments � required for a proof that

� . e : � by collecting the assumptions about the free variables that actually appear in [VAR]

rules in a given proof that � ` e : � . For the converse direction, it is merely necessary to observe,

that if � � �, then � is already strong enough to imply all the assumptions about free variables

appearing in a proof of � . e : � . See the appendix for the complete proof. 2

3.2 Type Inference Algorithm

In this section, we present the type inference algorithm that takes a programming language

expression as a parameter and returns the principal typing as de�ned by the type de�nition with

8

� is new

[a: f�g] � a: �

V AR

�

1

� e

1

: �

1

�

2

� e

2

: �

2

� = Uf�

1

= �

2

! �g � is new

�(�

1

[�

2

) � e

1

e

2

: ��

APP

� � e: � � = Uf� = � j � 2 �(a)g � is new

�(� n a) � fn a) e: �� ! ��

ABS

�

1

� e

1

: �

1

�

2

� e

2

: �

2

a 62 fv(e

2

)

�

1

[�

2

� let a = e

1

in e

2

: �

2

LET

0

�

1

� e

1

: �

1

�

2

� e

2

: �

2

� = Uf[�

1

]

�

= � j � 2 �

2

(a)g a 2 fv(e

2

)

�

�

(

S

�2�

2

(a)

[�

1

]

�

) [(�

2

n a)

�

� let a = e

1

in e

2

: ��

2

LET

Figure 3: Type Inference Algorithm

assumption environments. The algorithm we present is essentially the same as the algorithm

presented by Shao and Appel [SA93]. Our main contribution is a simple direct proof of the

correctness of the algorithm and a presentation that avoids some of the complexity of their

Polyunify subroutine.

We �rst recall some standard facts about uni�cation (see [MM82]). A constraint is an

equation of the form � = �

0

, where � and �

0

are type expressions. A constraint set is a �nite

set of constraints. A uni�er for a constraint set is a substitution �, such that �� = ��

0

for each

constraint � = �

0

in the set. A constraint set is uni�able if it has a uni�er. A uni�er � is a

most general uni�er for a constraint set if and only if for every uni�er �

0

for the constraint set,

�

0

is a substitution instance of �. Most general uni�ers are unique up to renaming of variables.

A uni�cation algorithm accepts a constraint set as input and either outputs a most general

uni�er for the constraint set or else indicates that the constraint set is not uni�able. Uni�cation

algorithms exist. We assume that a uni�cation algorithm has been chosen, and we write U for

the function it computes.

If � is a type, and x is an element of a given �nite index set, then we write [�]

x

to denote the

type obtained from � by \tagging" each of the type variables in � with the subscript x. Since

we assume a countably in�nite collection of type variables, such a tagging function clearly exists

and is computable. We extend the [�]

x

notation to assumption environments in the obvious

way.

Figure 3 presents our type inference algorithm. Though it is presented in the form of inference

rules, it is in fact a bottom-up algorithm for computing a typing given an expression. Notice how

the unifying substitutions are applied to specialize the assumption environments as we apply

each of the rules to infer a typing for an expression from typings for the subexpressions. The

most interesting rule is [LET]. The constraint set that is being uni�ed in this rule expresses the

requirement that each use of the bound variable a match its de�nition. The \taggings" [�

1

]

�

of

the type expression �

1

are used to allow each occurrence of a in the body to have a type that

matches its de�nition, without forcing all of these types to be equal.

As a result of Theorem 2 below, we know that every programming language expression has

9

a principal typing and that the principal typing is computed by the type inference algorithm.

Theorem 2 If � . e: � then there exists an assumption environment �

0

, type �

0

, and sub-

stitution �, such that �

0

� e: �

0

, with ��

0

= � and ��

0

= � . Conversely, if � � e: � then

� . e: � .

Proof Outline: The proof of both directions is again by induction on the height of a proof

tree. For the forward direction, given a proof of � . e: � , we inductively construct a proof of

�

0

� e: �

0

, together with the connecting substitution �. The \most general" property of the

uni�er computed by U is used at each stage to \factor out" the connecting substitution for the

next stage.

Conversely, a straightforward induction shows that if we have a proof of � � e: � then by

systematically applying the unifying substitutions used in it to the proof tree we obtain a proof

of � . e: � . See the appendix for the complete proof. 2

In Example 3.4, we see a similar proof to that in Example 3.1. Notice that the typing in

this example is principal and any provable typing of the programming language expression (i.e.

Example 3.1) is a substitution instance of the typing presented in the example.

Example 3.4

[f : f�

1

g] � f : �

1

V AR

[f : f�

2

g] � f : �

2

V AR

[�

2

! �

3

=�

1

] = Uf�

1

= �

2

! �

3

g

[f : f�

2

! �

3

; �

2

g] � f f : �

3

APP

4 A Prototype Implementation

The main obstacle to a direct, practical implementation of the algorithm of Figure 3 is that the

assumption environment can be large { in general the size can be exponential in the nesting

depth of the [LET] construct. In their paper, Shao and Appel [SA93] suggest an optimization for

removing \isolated" and \redundant" assumptions in order to reduce the size of the assumption

environment. As the size explosion arises from the tagging operation performed on �

1

in the

conclusion of the [LET] rule, which e�ectively copies the information in �

1

a number of times

equal to the number of types in the set �

2

(a), another idea for avoiding the explosion would be

to try to postpone actually \multiplying out" these copies until forced to do so. Thus, it seems

that there are reasonable possibilities for avoiding the size explosion in practical situations, and

that an e�cient, direct implementation of the algorithm of Figure 3 is a worthwhile goal for

future research. However, in our attempt to investigate the suitability of principal typings for

debugging type errors, we took the alternative approach of introducing simple modi�cations to

Algorithm W so that, in case there are unbound variables, the type information produced is an

approximation to the assumption environment of the principal typing.

An approximate implementation has practical value as well, since the user might �nd it very

di�cult to understand the implications of a principal typing containing an exponential number

of assumptions about an unbound variable. For example, consider the following simple program:

let

fun k a b = a

val g = k (h 1) (h true)

in

let val f = k (g 1) (g true)

in (f 1, f true) end

end

The only variable that occurs free in this expression is h, but if we were to compute and print

the entire principal typing, the error message would be:

10

Error: unbound variable: h: int -> int -> int -> 'a

Error: unbound variable: h: int -> int -> bool -> 'b

Error: unbound variable: h: int -> bool -> int -> 'a

Error: unbound variable: h: int -> bool -> bool -> 'b

Error: unbound variable: h: bool -> int -> int -> 'a

Error: unbound variable: h: bool -> int -> bool -> 'b

Error: unbound variable: h: bool -> bool -> int -> 'a

Error: unbound variable: h: bool -> bool -> bool -> 'b

val it = 'a * 'b

Our original design goal was to produce messages that are easy to understand for the novice

programmer, yet unobtrusive when they are not needed. As the example above shows, this

goal is not satis�ed by error messages annotated with the complete type information, when

the assumption environment is very large. Fortunately, in practical situations, the assumption

environment often only contains one type for each occurrence of the unbound variable. Notice

that this was case in the sample debugging session given in Section 2. Our modi�ed Algorithm

W produces the following more manageable output for this example:

Error: unbound variable: h: 'int -> 'a

Error: unbound variable: h: 'bool -> 'b

val it = 'e * 'f

Our modi�ed version of Algorithm W works as follows: each time an unbound program

variable is encountered, a new type variable is generated and assigned as the type for the

unbound variable. When the traversal of the expression is complete, the normal uni�cation

procedure performed by Algorithm W will in general have resulted in a re�nement of the type

of the unbound variable from a type variable to some larger type expression. Then, instead

of simply reporting \Unbound variable", the system also prints out the �nal type assigned to

that variable. Each type in the principal typing will be a substitution instance of the type

produced by the modi�ed Algorithm W. What is omitted by the modi�ed Algorithm W is the

propagation of constraints imposed by the body of a let-expression on free variables appearing

in the de�nition part. This avoids the multiplicative e�ect described above and still produces

information of practical value to the user.

Our prototype implementation demonstrates the usefulness of our proposed programming

environment. However, it is not clear how much of an issue large assumption environments

really are in practice. In the near future, we intend to do a direct implementation of the of the

algorithm of Figure 3 in order to investigate these issues.

5 Conclusions

In this paper we presented a novel solution to the problem of diagnosing type errors. We

presented an unobtrusive extension to the programming environment that facilitates �nding the

source of type errors. We were able to give a simple description of the programming environment,

by means of a type de�nition and a corresponding type inference algorithm. We also described a

prototype implementation of the programming environment which only requires minor changes

to the current implementation.

We plan to implement a more realistic version of the programming environment, perhaps

in SML of New Jersey. In addition, the programming environment that we propose does not

eliminate the need for diagnostic messages and it would be interesting to integrate the work

described in this paper with the existing work on diagnostics. Another possible extension would

be to describe a similar programming environment for modules.

11

References

[BRTT93] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML Kit,

Version 1, 1993.

[BS95] Karen L. Bernstein and Eugene W. Stark. Debugging type errors (full version).

Technical report, State University of New York at Stony Brook, Computer Science

Department, 1995. http://www.cs.sunysb.edu/�stark/REPORTS/INDEX.html.

[Dam85] Luis Damas. Type Assignment in Programming Languages. PhD thesis, University

of Edinburgh, Edinburgh, U.K., 1985.

[DB94] Dominic Duggan and Frederick Bent. Explaining type inference. Technical Report

CS-94-14, University of Waterloo, Waterloo, Canada, 1994.

http://nuada.uwaterloo.ca/dduggan/papers.html.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programming.

In Ninth Annual ACM Symposium on Principles of Programming Languages, pages

207{212. Association for Computing Machinery, ACM Press, 1982.

[Jim95] Trevor Jim. What are principal typings and what are they good for? Technical

Report MIT/LCS/TM-532, Massachusetts Institute of Technology, Laboratory for

Computer Science, August 1995.

[JW86] Greg F. Johnson and Janet Walz. A maximum-ow approach to anomaly isolation in

uni�cation-based incremental type inference. In Thirteenth Annual ACM Symposium

on Principles of Programming Languages, pages 44{57. Association for Computing

Machinery, ACM Press, January 1986.

[Mit90] John C. Mitchell. Type systems for programming languages. In Handbook of The-

oretical Computer Science, volume B, pages 367{458. Elsevier Science Publishers,

1990.

[MM82] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM Trans-

actions on Programming Languages and Systems, 4(2):258{282, April 1982.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT

Press, Cambridge, MA, 1990.

[Rea89] Chris Reade. Elements of Functional Programming. Addison-Wesley Publishing

Company, 1989.

[SA93] Zhong Shao and Andrew Appel. Smartest recompilation. In Twentieth Annual ACM

Symposium on Principles of Programming Languages. Association for Computing

Machinery, ACM Press, January 1993.

[Tof87] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,

University of Edinburgh, Edinburgh, U.K., November 1987.

[Wan86] Mitchell Wand. Finding the source of type errors. In Thirteenth Annual ACM

Symposium on Principles of Programming Languages, pages 38{43. Association for

Computing Machinery, ACM Press, January 1986.

12

A Proofs

Lemma A.1 Some basic properties of generic instance (�) that follow immediately from the

de�nitions.

Recall that we are using the following naming conventions: � for type environments, � for

assumption environments, � for simple types, � for type schemes, � for substitutions, a for

variables and � for sets of simple types.

1. �

1

� � and �

2

� � if and only if �

1

[�

2

� �

2. If � � � and �(a) = � then �(a) � f�g

3. If � � � then (� n a) � (� n a)

4. For � = Gen(�; �

0

), � � � if and only if 9�; ��

0

= � and dom(�) \ tyvars(�) = ;

5. If � � � and (dom(�) \ tyvars(�)) = ; then �� � �

6. If � � � and a 62 dom(�) then � � � + [a:�]

7. If � � � and for all � 2 �, � � � then �+ [a:�] � � + [a:�]

8. If � � � and dom(�) = dom(�) then tyvar(�) � tyvar(�)

Lemma A.2 For all �, e and � such that � . e: � ,

a 2 dom(�) () a 2 fv(e)

Proof: Straightforward structural induction.

Lemma A.3 Substitution Lemma. If � . e: � then �� . e: �� .

Proof: Straightforward structural induction.

Theorem 1 If � ` e: � then there exists an assumption environment � such that � � � and

� . e: � . Conversely, if � . e: � and � � � then � ` e: � .

Proof: The �rst part of the proof is by induction on the height of the proof tree. For our

induction hypothesis we will assume that if we have a proof of height less than k that � ` e: �

then there exists an assumption environment � such that � � � and � . e: � . We will then

demonstrate that this assumption is su�cient to show that if we have a proof of height k that

� ` e: � then there exists an assumption environment � such that � � � and � . e: � . For our

proof, we will consider each possible bottom rule in the proof tree separately.

Case 1 [VAR] The proof is of the form:

� � �(a)

� ` a: �

V AR

therefore we also have:

[a: f�g] . a: �

V AR

where it is immediate from the de�nition of generic instance that [a: f�g]� �.

Case 2 [APP] The proof is of the form:

� ` e

1

: �

0

! � � ` e

2

: �

0

� ` e

1

e

2

: �

APP

13

By the induction hypothesis, there exists �

1

and �

2

such that �

1

. e

1

: �

0

! � and �

2

. e

2

: �

0

,

where �

1

� � and �

2

� �. Therefore we have:

�

1

. e

1

: �

0

! � �

2

. e

2

: �

0

�

1

[�

2

. e

1

e

2

: �

APP

Where by lemma A.1(1), �

1

[�

2

� �.

Case 3 [ABS] The proof is of the form:

� + [a: �

0

] ` e: �

� ` fn a) e: �

0

! �

ABS

By the induction hypothesis, we have � . e: � where � � � + [a: �

0

]. By lemma A.1(2),

�(a) � f�

0

g and we have:

� . e: � �(a) � f�

0

g

� n a . fn a) e: �

0

! �

ABS

Since we have � � � + [a: �

0

], by lemma A.1(3) it follows that (� n a) � �.

Case 4 [LET] The proof is of the form:

� ` e

1

: �

1

� + [a:�] ` e

2

: �

2

� = Gen(�; �

1

)

� ` let a = e

1

in e

2

: �

2

LET

By the induction hypothesis, we have that �

1

. e

1

: �

1

and �

2

. e

2

: �

2

where �

1

� � and

�

2

� � + [a:�]. Let us consider the case where a 62 fv(e

2

) separately from a 2 fv(e

2

).

If a 62 fv(e

2

) then we have:

�

1

. e

1

: �

1

�

2

. e

2

: �

2

a 62 fv(e

2

)

�

1

[�

2

. let a = e

1

in e

2

: �

2

LET

0

Since we have �

2

� � + [a:�], by lemma A.1(3), (�

2

n a) � �. Since a 62 fv(e

2

), by lemma

A.2 a 62 dom(�

2

) and �

2

n a = �

2

. Therefore we have that �

2

� � and by lemma A.1(1),

�

1

[�

2

� �.

If a 2 fv(e

2

) then since �

2

� � + [a:�], by lemma A.1(4), we have that for each � in �

2

(a)

there exists some �

�

such that �

�

�

1

= � and dom(�

�

) \ tyvars(�) = ;. Therefore we have:

�

1

. e

1

: �

1

�

2

. e

2

: �

2

�

�

�

1

= �; all � 2 �

2

(a) a 2 fv(e

2

)

(

S

�2�

2

(a)

�

�

�

1

) [(�

2

n a) . let a = e

1

in e

2

: �

2

LET

Since for each � 2 �

2

(a), dom(�

�

)\ tyvars(�) = ;, by lemma A.1(5), we have �

�

�

1

� �. Since

we have that �

2

� �+ [a:�], by lemma A.1(3), (�

2

n a) � �. Since �

2

(a) is �nite, by repeated

application of lemma A.1(1), it follows that (

S

�2�

2

(a)

�

�

�

1

) [(�

2

n a) � �.

Part 2: The second part of the proof is also by induction on the height of the proof tree.

For our induction hypothesis we will assume that if we have a proof of height less than k that

� . e: � and � � � then � ` e: � . We will then demonstrate that this assumption is su�cient to

show that if we have a proof of height k that � . e: � and � � � then � ` e: � . For our proof,

we will consider each possible bottom rule in the proof tree separately.

Case 1: [VAR] The proof is of the form:

[a: f�g] . a: �

V AR

14

For all � such that � � �(a), (that is [a: f�g]� �), we have:

� � �(a)

� ` a: �

V AR

Case 2 [APP] The proof is of the form:

�

1

. e

1

: �

0

! � �

2

. e

2

: �

0

�

1

[�

2

. e

1

e

2

: �

APP

By the induction hypothesis, we have that for all �

1

such that �

1

� �

1

, �

1

` e

1

: �

0

! � and for

all �

2

such that �

2

� �

2

, �

2

` e

2

: �

0

. Choose � such that (�

1

[�

2

) � �. By lemma A.1(1),

�

1

� � and �

2

� �, so we have � ` e

1

: �

0

! � and � ` e

2

: �

0

and:

� ` e

1

: �

0

! � � ` e

2

: �

0

� ` e

1

e

2

: �

APP

Case 3 [ABS] The proof is of the form:

� . e: � �(a) � f�

0

g

� n a . fn a) e: �

0

! �

ABS

Choose � such that (� n a) � �. Since �(a) � f�

0

g, by A.1(7) we have � � � + [a: �

0

] and by

the induction hypothesis, � + [a: �

0

] ` e: � . Therefore:

� + [a: �

0

] ` e: �

� ` fn a) e: �

0

! �

ABS

Case 4 [LET'] The proof is of the form:

�

1

. e

1

: �

1

�

2

. e

2

: �

2

a 62 fv(e

2

)

�

1

[�

2

. let a = e

1

in e

2

: �

2

LET

0

By the induction hypothesis, we have that for all �

1

such that �

1

� �

1

, �

1

` e

1

: �

1

and for

all �

2

such that �

2

� �

2

, �

2

` e

2

: �

2

. Choose � such that (�

1

[�

2

) � �. By lemma A.1(1),

�

1

� � and �

2

� �. Since a 62 fv(e

2

), by lemma A.2, a 62 dom(�) and therefore by lemma

A.1(6), �

2

� � + [a:�]. By the induction hypothesis, � ` e

1

: �

1

and � + [a:�] ` e

2

: �

2

and:

� ` e

1

: �

1

� + [a:�] ` e

2

: �

2

� = Gen(�; �

1

)

� ` let a = e

1

in e

2

: �

2

LET

Case 5 [LET] The proof is of the form:

�

1

. e

1

: �

1

�

2

. e

2

: �

2

�

�

�

1

= �; all � 2 �

2

(a) a 2 fv(e

2

)

(

S

�2�

2

(a)

�

�

�

1

) [(�

2

n a) . let a = e

1

in e

2

: �

2

LET

By the substitution lemma we can rename type variables such that tyvars(�

1

)\tyvars(�

2

) = ;.

We can also rename the �

�

appropriately so that �

�

�

1

= � is true and restrict the �

�

such that

dom(�

�

) � tyvars(�

1

) and ran(�

�

) � tyvars(�

2

). Therefore we have that tyvars(�

�

�

1

) \

dom(�

�

) = ;.

Choose �

0

such that (

S

�2�

2

(a)

�

�

�

1

)[(�

2

na) � �

0

and dom(�

0

) = dom((

S

�2�

2

(a)

�

�

�

1

)[

(�

2

n a)). By lemma A.1(8), tyvars(�

0

) � tyvars((

S

�2�

2

(a)

�

�

�

1

) [(�

2

n a)) and therefore

tyvars(�

0

) \ dom(�

�

) = ;. Let � = Gen(�; �

1

). By lemma A.1(4), for all � 2 �

2

(a), � � �.

Therefore by A.1(7) �

2

� �

0

+ [a:�].

15

Choose � such that (

S

�2�

2

(a)

�

�

�

1

) [(�

2

n a) � � (� does not have the same restriction

that �

0

had on it's domain). Since � has a �nite domain, by repeated application of lemma

A.1(6), we know that �

1

� � and �

2

� � + [a:�]. Therefore by the induction hypothesis,

� ` e

1

: �

1

and � + [a:�] ` e

2

: �

2

. Therefore we have:

� ` e

1

: �

1

� + [a:�] ` e

2

: �

2

� = Gen(�; �

1

)

� ` let a = e

1

in e

2

: �

2

LET

Theorem 2 If � . e: � then there exists an assumption environment �

0

, type �

0

, and sub-

stitution �, such that �

0

� e: �

0

, with ��

0

= � and ��

0

= � . Conversely, if � � e: � then

� . e: � .

Proof:

Part 1: We can show by induction on the height of the proof that if we have a proof that

� . e: � there exists an assumption environment �

0

, type �

0

, and substitution , such that

�

0

� e: �

0

, with �

0

= � and �

0

= � .

[VAR] The proof is of the form:

[a: f�g] . a: �

V AR

Therefore we have:

� is new

[a: f�g] � a: �

V AR

where = [�=�].

[APP] The proof is of the form:

�

1

. e

1

: �

0

! � �

2

. e

2

: �

0

�

1

[�

2

. e

1

e

2

: �

APP

By the induction hypothesis, we know that there exists �

0

1

, �

0

2

, �

1

, �

2

,

1

and

2

such that

� �

0

1

� e

1

: �

1

� �

0

2

� e

2

: �

2

�

1

�

0

1

= �

1

�

1

�

1

= �

0

! �

�

2

�

0

2

= �

2

�

2

�

2

= �

0

We may assume, without loss of generality, that the type variables that occur in �

0

1

and �

1

are

distinct from the type variables that occur in �

0

2

and �

2

, since we can rename type variables, if

necessary, by the substitution lemma (lemma A.3). Notice that since these sets of type variables

are disjoint, the substitutions

1

and

2

commute.

Let

0

= (

1

�

2

)+ [�=�]. Now we have that

0

�

1

= �

0

! � and

0

(�

2

! �) = �

0

! � so �

1

and �

2

! � are uni�able and there exists some � such that:

�

0

1

� e

1

: �

1

�

0

2

� e

2

: �

2

� = Uf�

1

= �

2

! �g � is new

��

0

1

[��

0

2

� e

1

e

2

: ��

APP

Since � is the most general uni�er for �

1

and �

2

! � we know there exists some such that

0

= � �. Therefore we have, (��

0

1

[��

0

2

) = �

1

[�

2

and (��) = � .

[ABS] The proof is of the form:

� . e: � �(a) � f�

0

g

� n a . fn a) e: �

0

! �

ABS

16

First let us consider the trivial case where �(a) is empty and therefore the set f� = � j � 2

�(a)g is trivially uni�able by the empty substitution, id. We immediately have:

� � e: � id = Uf� = � j � 2 �(a)g � is new

� n a � fn a) e: � ! �

ABS

and = [�

0

=�].

Now let us consider the case where �(a) = f�

0

g. By the induction hypothesis, we know

there exists �

1

; �

1

;

1

such that

� �

1

� e: �

1

�

1

�

1

= �

�

1

�

1

= �

Let

0

=

1

+ [�

0

=�]. Therefore

0

(�

1

(a)) = �(a) = f�

0

g and f� = � j � 2 �

1

(a)g is

uni�able, so there exists some � such that:

�

1

� e: �

1

� = Uf� = � j � 2 �

1

(a)g � is new

��

1

n a � fn a) e: �� ! ��

1

ABS

Since � is the most general uni�er of f� = � j � 2 �

1

(a)g there exists some such that

0

= � �. Therefore we have (��

1

n a) = � n a and (�� ! ��

1

) = �

0

! � .

[LET'] The proof is of the form:

�

1

. e

1

: �

1

�

2

. e

2

: �

2

a 62 fv(e

2

)

�

1

[�

2

. let a = e

1

in e

2

: �

2

LET

0

By the induction hypothesis, we know that there exists �

0

1

, �

0

2

, �

0

1

, �

0

2

,

1

and

2

such that

� �

0

1

� e

1

: �

0

1

� �

0

2

� e

1

: �

0

2

�

1

�

0

1

= �

1

�

1

�

0

1

= �

1

�

2

�

0

2

= �

2

�

2

�

0

2

= �

2

Therefore we have:

�

0

1

� e

1

: �

0

1

�

0

2

� e

2

: �

0

2

a 62 fv(e

2

)

�

0

1

[�

0

2

� let a = e

1

in e

2

: �

0

2

LET

0

We may assume, without loss of generality, that the type variables that occur in �

0

1

and �

0

1

are

distinct from the type variables that occur in �

0

2

and �

0

2

, since we can rename type variables, if

necessary, by the substitution lemma (lemma A.3). Notice that since these sets of type variables

are disjoint, the substitutions

1

and

2

commute.

Let =

1

�

2

. Therefore we have (�

0

1

[�

0

2

) = �

1

[�

2

and �

0

2

= �

2

.

[LET] The proof is of the form:

�

1

. e

1

: �

1

�

2

. e

2

: �

2

�

�

�

1

= �; all � 2 �

2

(a) a 2 fv(e

2

)

(

S

�2�

2

(a)

�

�

�

1

) [(�

2

n a) . let a = e

1

in e

2

: �

2

LET

By the induction hypothesis, we know that there exists �

0

1

, �

0

2

, �

0

1

, �

0

2

,

1

and

2

such that

� �

0

1

� e

1

: �

0

1

� �

0

2

� e

1

: �

0

2

17

�

1

�

0

1

= �

1

�

1

�

0

1

= �

1

�

2

�

0

2

= �

2

�

2

�

0

2

= �

2

We may assume, without loss of generality, that the type variables that occur in �

0

1

and

�

0

1

are distinct from the type variables that occur in �

0

2

and �

0

2

, since we can rename type

variables, if necessary, by the substitution lemma (lemma A.3). Notice that since these sets of

type variables are disjoint, the substitutions

1

and

2

commute. We may also assume, without

loss of generality, that dom(�

�

) � tyvars(�

1

).

Let

�

0

= �

(

2

�

0

)

� ((

1

� []

�1

�

0

) �

2

) and let

0

be the composition of the

�

0

for all

�

0

2 �

0

2

(a) where []

�1

�

0

is the function that removes the subscript �

0

. We have that

0

uni�es

f[�

0

1

]

�

0

= �

0

j �

0

2 �

0

2

(a)g and therefore there exists some � such that:

�

0

1

� e

1

: �

0

1

�

0

2

� e

2

: �

0

2

� = Uf[�

0

1

]

�

0

= �

0

j �

0

2 �

0

2

(a)g a 2 fv(e

2

)

�

�

(

S

�

0

2�

0

2

(a)

[�

0

1

]

�

0

) [(�

0

2

n a)

�

� let a = e

1

in e

2

: ��

0

2

LET

Since � is the most general uni�er of f[�

0

1

]

�

0

= �

0

j �

0

2 �

0

2

(a)g there exists some such that

0

= ��. Therefore we have (�

�

(

S

�

0

2�

0

2

(a)

[�

0

1

]

�

0

) [(�

0

2

n a)

�

) = (

S

�2�

2

(a)

�

�

�

1

)[(�

2

na)

and (��

0

2

) = �

2

.

Part 2: We can show by induction on the height of the proof that if we have a proof that

� � e: � then we can construct a proof that � . e: � .

[VAR] The proof is of the form:

� is new

[a: f�g] � a: �

V AR

Therefore we have

[a: f�g] . a: �

V AR

[APP] The proof is of the form:

�

1

� e

1

: �

1

�

2

� e

2

: �

2

� = U(�

1

= �

2

! �) � is new

�(�

1

[�

2

) � e

1

e

2

: ��

APP

By the induction hypothesis, we know that �

1

. e

1

: �

1

and �

2

. e

2

: �

2

. Therefore by the

substitution lemma we have ��

1

. e

1

: ��

2

! �� and ��

2

. e

2

: ��

2

.

��

1

. e

1

: ��

2

! �� ��

2

. e

2

: ��

2

�(�

1

[�

2

) . e

1

e

2

: ��

APP

[ABS] The proof is of the form:

� � e: � � = Uf� = � j � 2 �(a)g � is new

�(� n a) � fn a) e: �� ! ��

ABS

By the induction hypothesis, we know that � . e: � . Therefore by the substitution lemma we

have �� . e: �� . By construction � is the most general uni�er of the elements of �(a), therefore

��(a) � f��g. and we have:

�� . e: �� ��(a) � f��g

�� n a . fn a) e: �� ! ��

ABS

18

[LET'] The proof is of the form:

�

1

� e

1

: �

1

�

2

� e

2

: �

2

a 62 fv(e

2

)

�

1

[�

2

� let a = e

1

in e

2

: �

2

LET

0

Therefore by the induction hypothesis we immediately have:

�

1

. e

1

: �

1

�

2

. e

2

: �

2

a 62 fv(e

2

)

�

1

[�

2

. let a = e

1

in e

2

: �

2

LET

0

[LET] The proof is of the form:

�

1

� e

1

: �

1

�

2

� e

2

: �

2

� = Uf[�

1

]

�

= � j � 2 �

2

(a)g a 2 fv(e

2

)

�

�

(

S

�2�

2

(a)

[�

1

]

�

) [(�

2

n a)

�

� let a = e

1

in e

2

: ��

2

LET

By the induction hypothesis, we know that �

1

. e

1

: �

1

and �

2

. e

2

: �

2

. By the substitution

lemma we have ��

2

. e

2

: ��

2

. Let �

�

= � � []

�

. Therefore we have:

�

1

. e

1

: �

1

��

2

. e

2

: ��

2

�

�

�

1

= �; all � 2 �

2

(a) a 2 fv(e

2

)

(

S

�2�

2

(a)

�

�

�

1

) [(��

2

n a) . let a = e

1

in e

2

: �

2

LET

2

