
Concurrent Transition Systems

�

Eugene W. Stark

State University of New York at Stony Brook

Stony Brook, NY 11794

July 24, 1987

Abstract: Concurrent transition systems (CTS's), are ordinary nondeterministic transition sys-

tems that have been equipped with additional concurrency information, speci�ed in terms of a

binary residual operation on transitions. Each CTS C freely generates a complete CTS or compu-

tation category C

�

, whose arrows are equivalence classes of �nite computation sequences, modulo

a congruence induced by the concurrency information. The categorical composition on C

�

induces

a \pre�x" partial order on its arrows, and the computations of C are conveniently de�ned to be

the ideals of this partial order. The de�nition of computations as ideals has some pleasant prop-

erties, one of which is that the notion of a maximal ideal in certain circumstances can serve as a

replacement for the more troublesome notion of a fair computation sequence.

To illustrate the utility of CTS's, we use them to de�ne and investigate a dataow-like model of

concurrent computation. The model consists of machines, which generalize the sequential machines

of classical automata theory, and various operations (parallel product, input and output relabeling,

and feedback) on machines that correspond to ways of combiningmachines into networks. Using our

de�nition of computations as ideals, we de�ne a natural notion of observable equivalence of machines,

and show that it is the largest congruence, respecting parallel product and feedback, that does not

relate two machines with distinct input/output relations. In an attempt to obtain information

about the algebra of observable equivalence classes, we investigate a series of abstractions of the

machine model, show that these abstractions respect the feedback operation, and characterize

the homomorphic image of this operation in each case. A byproduct of our analysis is a simple

characterization of a large class of processes with functional input/output behavior, and a proof

that the feedback operation on such processes obeys Kahn's �xed-point principle.

1 Introduction

Labeled transition systems have been used as an operational semantics of concurrent processes. In

typical formulations [9, 8], a labeled transition system is de�ned to be a tuple M = (Q; q

0

;�;�),

where Q is a set of states, q

0

is a distinguished start state, � is a set of events, not containing the

distinguished symbol �, and � � Q � (� [�) � Q is called the transition relation. Given such a

transition system M , one can de�ne a computation sequence of M to be a sequence of the form

q

0

�

1

�!q

1

�

2

�! . . .

�

n

�!q

n

;

�

This paper is a revised and expanded version of [35], which it supersedes. Some of the results presented here

were reported, in an abbreviated form, in [36].

1

where each q

k

is in Q, each �

k

is in � [f�g, and (q

k

; �

k+1

; q

k+1

) 2 � for each k. The string

�

1

�

2

. . .�

n

is called the trace of the computation. Here we regard the set � as embedded in the

free monoid �

�

in the obvious way, and regard � as the identity element of this monoid; thus � does

not appear in a trace.

Formulations of labeled transition systems similar to the preceding have been used with some

success in the study of concurrent programming languages such as CCS [27] and CSP [14], especially

in the case where only �nite computations are of interest. However, in the study of concurrency it

is desirable to consider in�nite computations as well, since processes in a concurrent system (e.g. an

operating system) often are intended to run forever. Interesting properties of concurrent systems

(such as guaranteed service of requests) cannot be properly expressed unless in�nite computations

are included in the underlying semantic model.

When one attempts to extend the use of transition systems to encompass the description of

processes that run forever, things no longer work as smoothly as in the �nite case. If we wish to

de�ne an operation of parallel composition, for example, which takes two transition systems and

yields a new transition system that corresponds to the two original transition systems running in

parallel, the linear nature of computation sequences forces us to use an \interleaved step" model

of concurrency. Such an approach leads immediately to the so-called \fairness problem" [31]|a

distinction must be drawn between \fair" computations, in which each process takes in�nitely many

steps, and \unfair" computations, in which one process performs only �nitely many steps while the

other enjoys in�nitely many steps. Unfair computations can be screened out by applying some sort

of fairness predicate to computations, or some sort of scheduling mechanism can be introduced to

ensure that only fair computations are generated in the �rst place. Both approaches are math-

ematically inconvenient, since they involve the use of auxiliary notions (scheduling functions or

predicates) not part of the basic transition system model, and these auxiliary notions tend to be

ill-behaved (e.g. non-continuous).

For some time, the author has been interested in the possibility that by somehow viewing a

transition system as being or generating a category, we might eliminate some of the di�culties

associated with in�nite computations. The basic idea would be to try to use the notion of \com-

muting paths" in a category to model the the various interleaved representations of a concurrent

computation. It is clear that transition systems de�ne categories in a natural way. Given a tran-

sition system G = (Q; q

0

;�;�), we can de�ne a \computation category" G

�

whose object set is

Q and which has as arrows from q to r all �nite computation sequences of G that begin in state

q and end in state r, with composition corresponding to concatenation of computation sequences.

In�nite computation sequences with initial state q can be regarded as ideals (nonempty, downward-

closed, directed subsets) of the set G

�

(q; -) of all arrows of G

�

with domain q, partially ordered

by pre�x. Now, the categories G

�

that result by this construction are free categories having no

nontrivial commuting paths; thus we have apparently obtained little more than an insigni�cant

restatement of the de�nition of computation sequence. However, from the new point of view it is

interesting to ask whether some generalization of the usual notion of transition system might result

in computation categories in which there are nontrivial commuting paths.

In this paper, we provide an a�rmative answer to this question. We de�ne the notion of a

\concurrent transition system" (CTS), which consists of a (directed, multi-)graph, whose objects

(nodes) are states and whose arrows (arcs) are transitions, which has been equipped with some

additional concurrency information. Although not categories themselves, each CTS C freely gener-

ates a \complete CTS" or \computation category," C

�

whose states (objects) are the same as those

2

of C, and whose arrows (transitions) are equivalence classes of �nite computation sequences of C.

Each equivalence class can be thought of as the set of all interleaved views of a single underlying

concurrent computation. The \pre�x" relation induced by the categorical composition partially or-

ders the set of arrows of the computation category. We de�ne the \computations" of C, from start

state q

0

, to be the ideals of the set C

�

(q

0

;-) of all arrows of C

�

with domain q

0

, partially ordered

by pre�x. It follows from the ideal construction that the set of all computations from initial state

q is an algebraic directed-complete partial order.

The main body of this paper is organized as follows: In Section 2, we de�ne concurrent transition

systems, give some examples, and derive some basic properties of CTS's and the category CTS

in which they live. We establish the existence of the computation categories discussed above, and

also of related structures called \computation diagrams," which generalize the familiar notion of

\computation tree" for ordinary nondeterministic transition systems.

In Section 3, the theory developed in Section 2 is used to de�ne a dataow-like model of concur-

rent computation. The basic objects of the model are \machines," which are a CTS generalization

of the sequential machines of classical automata theory. We de�ne some operations (parallel prod-

uct, input and output relabeling, and feedback) on machines that correspond to various ways of

composing machines into networks. We de�ne a natural notion of \observable equivalence" of ma-

chines, and show that it is the largest congruence on machines, respecting parallel product and

feedback, that does not relate machines having distinct input/output relations. The \full abstrac-

tion problem" is de�ned as the problem of characterizing the structure of the quotient algebra of

machines, modulo observable equivalence.

In Section 4, we perform a rather extensive analysis of the feedback operation, with the dual

aims, of showing that our model is a reasonable one, and of attempting to make progress on the

full abstraction problem. We de�ne a sequence of abstraction mappings that starts with machines

and ends with input/output relations. For each mapping, we prove a theorem that shows that the

mapping is homomorphic with respect to the feedback operation. (The mapping to input/output

relations is homomorphic only for the subclass of \Kahn" machines, which have continuous functions

as their input/output behaviors.) Since some of the structures at the intermediate stages between

machines and input/output relations are similar to models of concurrent processes that have been

proposed in the literature, our analysis yields useful information about the relationships between

these models.

In Section 5 we summarize what we have accomplished, discuss how our work is related to that

of other authors, and mention possibilities for future research.

We assume that the reader is familiar with the basic notions of category theory. The necessary

background can be found in [23, 2, 13]. We also assume some familiarity with the theory of alge-

braic directed-complete partial orders, as used in denotational semantics. Reference [11] provides

background on this topic.

2 Concurrent Transition Systems

In this section, we de�ne concurrent transition systems and derive some of their basic properties.

A graph is a tuple G = (O;A; dom; cod), where O is a set of objects, A is a set of arrows, and

dom; cod are functions fromA toO, which map each arrow to its domain and codomain, respectively.

Arrows t; u of G are called composable if cod(t) = dom(u) and coinitial if dom(t) = dom(u). Let

Coin(G) denote the set of all coinitial pairs of arrows of G.

3

If G = (O;A; dom; cod) is a graph, then de�ne the augmented graph G

]

= (O

]

; A

]

; dom

]

; cod

]

)

to be the extension of G de�ned by: O

]

= O [f
g, A

]

= A [f!

q

: q 2 O

]

g, dom

]

(!

q

) = q, and

cod

]

(!

q

) =
, where
 is a new object not in O, and for each q 2 O

]

, !

q

is a distinct new arrow

not in A.

A concurrent transition system (CTS) is a structure (G; id; "), where

� G = (O;A; dom; cod) is a graph, called the underlying graph. The elements of O

]

(resp. O)

are called (resp. proper) states and the elements of A

]

(resp. A) are called (resp. proper)

transitions.

� id : O

]

! A

]

maps each q 2 O

]

to a distinguished identity transition id

q

.

� ": Coin(G

]

)! A

]

is a function, called the residual operation. We write t " u (read t \after"

u) for " (t; u).

These data are required to have the following properties:

1. For all q 2 O

]

, and all coinitial t; u 2 A

]

,

(a) dom

]

(id

q

) = cod

]

(id

q

) = q;

(b) dom

]

(t " u) = cod

]

(u), and

(c) cod

]

(t " u) = cod

]

(u " t).

2. For all t : q ! r in A

]

,

(a) id

q

" t = id

r

;

(b) t " id

q

= t; and

(c) t " t = id

r

.

3. For all coinitial t; u 2 A

]

, if t " u and u " t are both identities, then t = u.

4. For all coinitial t; u; v 2 A

]

, (v " t) " (u " t) = (v " u) " (t " u).

Axiom (4) can be visualized as shown in Figure 1.

In the sequel, we will drop the] from dom

]

and cod

]

. Note that it automatically follows from

the de�nition of a CTS that !

q

" t = !

r

and t " !

q

= !

= id

for all transitions t : q ! r,

since for each q, the transition !

q

is the only transition with domain q and codomain
. Note also

that states are actually not logically necessary in the de�nition of CTS, since they are in bijective

correspondence with the set of identity transitions. We shall occasionally take advantage of this

fact to give concise speci�cations of particular CTS's.

Coinitial transitions t; u of a CTS are called consistent if t " u is a proper transition (equivalently,

if u " t is proper), otherwise they are called conicting. A coinitial set of transitions is called

consistent if it is pairwise consistent. In de�ning the operation " for a CTS, we need only specify

which coinitial pairs of proper transitions are consistent, and to give the de�nition of " for such

pairs, since the remaining cases are �xed by the CTS axioms.

A CTS is called determinate if every coinitial pair of proper transitions is consistent. A CTS

is called complete if to every composable pair t; u of transitions there corresponds a transition v,

called a composite of t and u, such that t " v = id

cod(v)

and v " t = u.

4

H

H

H

H

H

H

H

HY

�

�

�

�

��

�

�

�

�

��

H

H

H

H

H

H

H

HY

6

6

6

6

�

�

�

�

��

H

H

H

H

H

H

H

HY

�

�

�

�

��

H

H

H

H

H

H

H

HY

u

v

t

u " t

v " u

t " u

v " t

(v " t) " (u " t)

= (v " u) " (t " u)

�

�

�=

Figure 1: CTS Axiom (4)

Example 1 { CTS's From Graphs

Every graph G lifts to a CTS Cts(G) in a \minimally consistent" way. More precisely, suppose

G = (O;A; dom; cod). Let G

0

= (O;A

0

; dom

0

; cod

0

) be de�ned so that A

0

= A] fid

q

: q 2 Og, and

dom

0

(id

q

) = cod

0

(id

q

) = q for all q 2 O. Let " be de�ned as follows:

t " u =

8

>

<

>

:

t; if u = id

dom(t)

id

cod(u)

; if t = u or t = id

dom(t)

!

cod(u)

; otherwise:

It is easily veri�ed that C = (G

0

; id; ") is a CTS. Moreover, assuming an appropriate de�nition

(provided in Section 2.2) of \CTS-morphism," it can be shown that the map Cts is the object map

of a functor, left-adjoint to the forgetful functor taking each CTS to its underlying graph.

Example 2 { Trace Algebras

A trace algebra is a monoid X such that:

1. For all t; u; v 2 X , if tu = tv, then u = v.

2. If � is the pre�x relation induced by the monoid operation (i.e. t � u i� 9v(tv = u)), then �

is a partial order with respect to which each pair t; u with an upper bound has a least upper

bound t _ u.

The elements of a trace algebra are called traces.

One class of examples of trace algebras are those obtained from \concurrent alphabets" [26].

Formally, a concurrent alphabet is a pair (�; k), where � is a set and k is an irreexive, symmetric

relation on �, called a concurrency relation. The concurrency relation induces a congruence � on

the free monoid �

�

, such that two strings are congruent i� one can be transformed into the other

by a �nite sequence of steps in which pairs of adjacent concurrent symbols are permuted. The

monoid �

�

= � is a trace algebra.

5

From a trace algebra X , we can construct a CTS C with one proper state, having the elements

of X as its proper transitions, and in which the monoid identity � is regarded as the single proper

identity transition. If t; u is a pair of proper transitions of C (i.e. elements of X), then we de�ne t

and u to be consistent if they have a least upper bound t_ u as elements of X . For such a pair, we

de�ne t " u to be the unique element of X with the property u(t " u) = t_ u. It is straightforward

to check that the CTS axioms are satis�ed by these de�nitions. Moreover, the CTS C is complete,

since the monoid operation yields, for each pair t; u of transitions, a transition tu with the properties

t " tu = � and tu " t = u.

Example 3 - CTS's From Petri Nets

In [38] a \net" is de�ned to be a bipartite directed graph N = (B;E;F), where the set of

nodes B [E is partitioned into a set E of events and a set B of conditions, and the relation

F � (B�E)[(E�B), is called the ow relation. A case of N is a set of conditions. For each event

e 2 E, the set pre(e) of preconditions of e is the set of all b 2 B such that (b; e) 2 F , and the set

post(e) of postconditions of e is the set of all b 2 B such that (e; b) 2 F . A set u of events is called

independent if for each pair e

1

; e

2

of elements of u, the sets pre(e

1

)[post(e

1

) and pre(e

2

)[post(e

2

)

are disjoint.

The transition relation of N is the set of all triples (c; u; c

0

), where c and c

0

are cases of N , and

u is an independent set of events of N such that:

1. For all e 2 u, pre(e) � c.

2. For all e 2 u, post(e) \ c = ;.

3. The case c

0

is obtained from c by removing all preconditions of events in u, and then adding

all postconditions of events in u.

We now obtain a CTS from N as follows: Take as states the cases of N . Take as proper

transitions the elements of the transition relation of N , de�ning dom(c; u; c

0

) = c and cod(c; u; c

0

) =

c

0

, and regarding the transitions (c; ;; c) as identities. De�ne coinitial pairs (c; u; d) and (c; v; d

0

) of

proper transitions to be consistent i� u [v is independent. For such pairs, de�ne

(c; u; d) " (c; v; d

0

) = (d

0

; unv; e);

where e is obtained from d

0

by removing all preconditions of events in unv and then adding all

postconditions of events in unv. That these de�nitions satisfy the CTS axioms is easily checked.

Example 4 - CTS's From �-Calculus

Let � be the set of terms of the pure �-calculus [4], and let ! denote reduction with respect

to rule (�). If C is a set of redexes in a term q, then a derivation relative to C is a derivation

q = q

0

! q

1

! . . .! q

n

, in which the redex contracted at each step is either in C or is a residual

(in Church's original sense) of a redex in C. A derivation relative to C is complete if the set of

residuals of C in q

n

is empty. Given a set C of redexes in a term q, it can be shown that there

is a �xed upper bound on the length of a derivation from q relative to C, and that all complete

derivations from q relative to C result in the same term. It therefore makes sense to write q

C

�!r,

if C is a set of redexes in q and any complete derivation relative to C results in r. Let us call such

triples q

C

�!r transitions. Suppose t is a transition q

C

�!r and u is a transition q

D

�!s. It can be

shown that the same set C=d of residuals of redexes in C is obtained for all complete derivations

6

@

@

@

@

@

@I

@

@

@

@

@

@I

�

�

�

�

�

��

@

@

@

@

@

@I

@

@

@

@

@

@I

�

�

�

�

�

��

�

�

�

�

�

��

vt

u

t " v

v " t

u " (v " t)

(v " t) " u

Figure 2:

d relative to D. Let C=D denote this set. It therefore makes sense to de�ne the residual t=u of

transition t with respect to u to be the transition s

C=D

�!p, where p is the unique result of a complete

derivation from s relative to C=D.

We now de�ne a CTS whose state set is �, and whose transitions are all transitions t as de�ned

above. The domain dom(t) of a transition t : q

C

�!r is the term q and the codomain cod(t) of t

is the term r. The identity transitions are those of the form q

;

�!q, all coinitial pairs of proper

transitions are consistent, and we de�ne and we de�ne t " u = t=u.

That the above de�nitions satisfy the CTS axioms follows from results of L�evy [22, 5]. A similar

construction can be used to obtain CTS's from left-linear term-rewriting systems without critical

pairs [15].

2.1 Consequences of the Axioms

De�ne a relation � on the transitions of a CTS by: t � u i� t; u are coinitial and t " u = id

cod(u)

.

We call � the pre�x relation.

Lemma 2.1.1 The pre�x relation is a partial order.

Proof { Reexivity holds because t " t = id

cod(t)

by axiom (2c).

To show transitivity, suppose t � u and u � v. Then t " u is an identity, so (t " u) " (v " u) is

an identity by axiom (2a). Since (t " u) " (v " u) = (t " v) " (u " v) by axiom (4), it follows that

(t " v) " (u " v) is an identity. But (u " v) is an identity because u � v, hence t " v is an identity

by axiom (2b).

Finally, � is antisymmetric because if t � u and u � t, then t " u and u " t are identities, hence

t = u by axiom (3).

Lemma 2.1.2 If a composite of t and u exists, then it is unique.

7

Proof { Suppose v and v

0

are composites of t and u. Then t " v

0

is an identity, so v " v

0

= (v "

v

0

) " (t " v

0

) by axiom (2b). By axiom (4), this is equal to (v " t) " (v

0

" t) = u " u, which is an

identity by axiom (2c). A symmetric argument shows that v

0

" v is an identity, so v = v

0

by axiom

(3).

We use tu to denote the composite of t and u, when it exists.

Lemma 2.1.3 Suppose t and v are coinitial, and the composite tu of t and u exists. Then

1. v " tu = (v " t) " u.

2. tu " v = (t " v)(u " (v " t)).

Proof { (See Figure 2.)

(1) v " tu = (v " tu) " (t " tu) = (v " t) " (tu " t) = (v " t) " u.

(2) Since (t " v) " (tu " v) = (t " tu) " (v " tu), which is an identity, and (tu " v) " (t " v) =

(tu " t) " (v " t) = u " (v " t), the result follows.

Lemma 2.1.4 Composition obeys the following laws:

1. For all t, t = id

dom(t)

t = t id

cod(t)

.

2. (a) If tu and (tu)v exist, then uv and t(uv) exist, and (tu)v = t(uv).

(b) If tu, uv, and t(uv) exist, then (tu)v exists and (tu)v = t(uv).

3. If tu and tv exist, and tu = tv, then u = v.

Proof { (1) follows directly from the de�nition of composite.

To show (2a), suppose tu and (tu)v exist. Then by Lemma 2.1.3, (tu)v " t = (tu " t)(v "

(t " tu)). But tu " t = u and t " tu is an identity, so (tu)v " t = uv. Since by Lemma 2.1.3,

t " (tu)v = (t " tu) " v, which is an identity, it follows that (tu)v = t(uv).

To show (2b), suppose tu, uv and t(uv) exist. By Lemma 2.1.3,

t(uv) " tu = (t " tu)(uv " (tu " t));

which is just v. Also,

tu " t(uv) = (t " t(uv))(u " (t(uv) " t));

which is an identity, so t(uv) = (tu)v.

For (3), suppose tu = tv, so that tu " tv and tv " tu are identities. Then u " v = (tu " t) " (tv "

t) = (tu " tv) " (t " tv), which is an identity. Similarly, v " u is an identity, so u = v.

We say that a transition v is a join of the coinitial transitions t; u if t � v, u � v, v " t = u " t,

and v " u = t " u.

Lemma 2.1.5 A transition v is a join of t and u i� v = t(u " t).

8

Proof { If v is a join of t and u, then t " v is an identity and v " t = u " t, so v = t(u " t).

Conversely, if v = t(u " t), then t � v, v " t = u " t, u " v = (u " t) " (u " t), which is an identity,

so u � v, and v " u = (t " u)((u " t) " (u " t)) = (t " u). Hence v is a join of t and u.

It follows from the preceding lemma and the uniqueness of composites that a join of t and u,

when it exists, is unique, and we denote it by t _ u. Moreover, if t _ u exists, then we have the

equality t(u " t) = t _ u = u(t " u).

Lemma 2.1.6 Suppose t _ u exists. Then t _ u is the least upper bound of t and u under �.

Proof { By de�nition, t_ u is an upper bound of t and u under �. Suppose l is any upper bound

of t and u. Let v = l " t and w = l " u, so that tv = l = uw. Now, (u " t) " v = (u " t) " (tv " t) =

(u " tv) " (t " tv) = (u " uw) " (t " tv), which is an identity, so u " t � v. Let m = v " (u " t), so

that v = (u " t)m. It then follows that l = tv = t(u " t)m = (t _ u)m, so that (t _ u) � l.

2.2 The Category CTS

If G = (O;A; dom; cod) and G

0

= (O

0

; A

0

; dom

0

; cod

0

) are graphs, then a graph morphism from G to

G

0

is a pair of maps � = (�

o

; �

a

), where �

o

: O! O

0

and �

a

: A! A

0

, such that dom

0

��

a

= �

o

�dom

and cod

0

� �

a

= �

o

� cod. In the sequel, we will drop the notational distinction between �

o

and �

a

,

writing simply � in both cases.

A CTS-morphism from a CTS C = (G; id; ") to a CTS C

0

= (G

0

; id

0

; "

0

) is a graph morphism

� : G! G

0

, with the following properties:

1. For all proper states q of C, �(id

q

) = id

0

�(q)

.

2. If t; u are consistent proper transitions of C, then �(t " u) = �(t) "

0

�(u).

It will be useful to think of a morphism � : C ! C

0

as extended to all states and transitions of C

(not just the proper ones), according to the de�nitions �(
) =
, and �(!

q

) = !

�(q)

. The set of all

CTS's forms a category CTS, when equipped with the CTS-morphisms as arrows.

In the sequel, the term \morphism" will mean \CTS-morphism," unless otherwise speci�ed.

Lemma 2.2.1 Suppose � : C ! C

0

is a morphism. Then

1. �(tu) = �(t)�(u) whenever tu exists and is a proper transition.

2. �(t _ u) = �(t) _ �(u) whenever t _ u exists and is a proper transition.

Proof { (1) Since t and tu are consistent, �(t) " �(tu) = �(t " tu), which is an identity. Also,

�(tu) " �(t) = �(tu " t) = �(u), so �(tu) = �(t)�(u).

(2) If t _ u exists and is a proper transition, then t and u are consistent, hence t and t _ u are

consistent. Thus, �(t _ u) " �(t) = �((t _ u) " t) = �(u " t) = �(u) " �(t). Also, �(t) " �(t _ u) =

�(t " (t _ u)), which is an identity. Symmetric reasoning shows that �(t _ u) " �(u) = �(t) " �(u)

and �(u) " �(t _ u) is an identity. It follows that �(t _ u) = �(t) _ �(u).

Lemma 2.2.2 The forgetful functor from CTS to Graph that takes each CTS C to its underlying

graph has a left adjoint, whose object map takes each graph G to the corresponding \minimally

consistent" CTS Cts(G).

9

Proof { Straightforward.

Note that since the forgetful functor fromCTS toGraph is a right adjoint, and hence preserves

limits, from the previous lemma we know that any limits existing in CTS must be lifted from

corresponding limits in Graph. In fact, we have:

Theorem 2.1 The following constructions in Graph lift to CTS:

1. Small limits.

2. Small coproducts.

Proof { (1) It su�ces to show that small products and equalizers of pairs of morphisms lift from

Graph to CTS, since a standard category-theoretic result (see, e.g. [23], p. 109) states that the

existence of small products and equalizers of pairs of morphisms implies the existence of all small

limits. The obvious constructions work in each case.

(2) The obvious construction works.

We do not know whether coequalizers of all pairs of morphisms exist in CTS. However, we can

prove a somewhat weaker result, and the quotient construction it requires will be of use in Section

2.3.

Suppose C is a CTS. A strong congruence on C is an equivalence relation � on the set of proper

transitions of C, such that

1. For all transitions t; t

0

; u; u

0

of C, if t � t

0

, u � u

0

, and t; u are consistent, then t

0

; u

0

are

consistent, and t " u � t

0

" u

0

.

2. For all coinitial transitions t; u of C, if t " u and u " t are both �-related to identities, then

t � u.

Since the de�ning properties of a strong congruence are evidently closure properties, it follows that

every binary relation on the transitions of a CTS C is contained in a least strong congruence on C.

If � is a strong congruence on C, then we may form the quotient CTS C= � as follows:

� Take the proper states of C as the proper states of C= �.

� De�ne the proper transitions of C= � to be the �-equivalence classes. We write [t] for the

equivalence class of t, and we de�ne the identities of C= � to be the equivalence classes of

identities of C. De�ne dom([t]) = dom(t) and cod([t]) = cod(t).

� De�ne [t]; [u] to be consistent i� t; u are consistent, in which case we de�ne [t] " [u] = [t " u].

It is easily shown, using the properties of a strong congruence, these de�nitions are independent of

the choice of t and u. It is also straightforward to check that C= � satis�es the CTS axioms.

A strong morphism is a morphism � : C ! D such that for all transitions t; t

0

; u of C, if t; u

are consistent and �(t) = �(t

0

), then t

0

; u are consistent. The quotient map from C to C= � is the

function � that takes each transition t of C to its �-equivalence class [t]. It is clear that � is a

strong morphism.

10

Theorem 2.2 Suppose C is a CTS, and R is a binary relation on the transitions of C. Let �

be the least strong congruence on C that contains R, and let � : C ! C= � be the quotient map.

Then for each strong morphism � : C ! D, with the property that tRu implies �(t) = �(u) for all

transitions t; u of C, there exists a unique morphism � : (C= �)! D, such that � = � � �.

Proof { Straightforward.

A CTS with start state is a pair (C; �), where C is a CTS, and � : 1! C is a morphism, called

the start state map, from the terminal object 1 of CTS to C. The start state of (C; �) is the image

under � of the single proper state of 1. If (C; �) and (C

0

; �

0

) are CTS's with start state, then a

morphism from (C; �) to (C

0

; �

0

) is a morphism � : C ! C

0

such that � � � = �

0

. Let CTS

�

denote

the category of CTS's with start state, and their morphisms. It is a straightforward consequence of

the results for CTS that the category CTS

�

has all small limits. It can also be shown that CTS

�

has all small coproducts.

2.3 Computation Categories

De�ne a computation category to be a small category C with the following properties:

1. C has a terminal object.

2. Every arrow of C is an epimorphism.

3. Every isomorphism of C is an identity.

4. C has a pushout for every coinitial pair of arrows.

Theorem 2.3 Suppose C = (G; id; ") is a complete CTS, and let � denote the composition operation

of C. Then C

0

= (G

]

; id; �) is a computation category. Conversely, suppose C

0

= (G

0

; id; �) is a

computation category. Since the terminal object of C

0

is unique by property (3), we may regard G

0

as an augmented graph G

]

. For coinitial arrows t; u, let t " u denote the arrow opposite t in the

pushout square determined by t and u. Then C = (G; id; ") is a complete CTS.

Proof { (() If a small category C

0

is given with properties (1)-(4), then standard category-

theoretic arguments su�ce to show that (G; id; ") satis�es the axioms for a complete CTS.

()) Conversely, given a complete CTS C, it follows from completeness and Lemma 2.1.4 that

C

0

is a category in which every arrow is an epimorphism. The state
 is clearly a terminal object

of C

0

. If v is an isomorphism of C

0

, with inverse v

0

, then v � vv

0

= id

dom(v)

and id

dom(v)

� v,

so v = id

dom(v)

= v

0

by Lemma 2.1.1. The completeness of C implies that every coinitial pair of

arrows t; u has a join t _ u, which is a least upper bound of t and u by Lemma 2.1.6. Thus, every

upper bound of t and u factors through t _ u. The uniqueness of such factorizations follows from

the fact that every arrow is an epimorphism. Since t(u " t) = t _ u = u(t " u), it is now immediate

that t; u; (u " t), and (t " u) form a pushout square in C

0

.

We now show that every CTS C freely generates a complete CTS C

�

, which has the same states

as C and whose transitions are equivalence classes of �nite composable sequences of transitions

of C. The construction generalizes the construction of the free category G

�

generated by a graph

G. The construction was discovered by L�evy [22] in the setting of the �-calculus, and adapted in

[5, 15] to the cases of recursive programs and left-linear term-rewriting systems without critical

11

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

a

1

a

2

a

n

b

1

b

2

b

m

u

t

u "

�

t t "

�

u

Figure 3: Extension of " to "

�

pairs. Consideration of problems in the theory of concurrency led to its independent rediscovery

by the author in the present axiomatic setting.

Suppose C = (G; id; ") is a CTS. Let G

�

denote the free category (objects=objects of G,

arrows=�nite composable sequences of arrows of G) generated by G. If t = q

0

a

1

�!q

1

a

2

�! . . .

a

n

�!q

n

is an arrow of G

�

, then let jtj denote the length n of t. For k > 0, let id

k

q

denote the arrow of G

�

which is the sequence consisting of k copies of id

q

. By convention, we de�ne id

0

q

to be the identity

for state q in G

�

.

Let "

�

be the extension to (G

�

)

]

of the operation " on G

]

, de�ned recursively by the following

properties (see Figure 3):

1. id

0

q

"

�

t = id

0

r

and t "

�

id

0

q

= t for all t : q ! r in G

�

.

2. For all t in G

�

and all a; b 2 G, with a; b coinitial and a; t composable,

at "

�

b =

(

(a " b)(t "

�

(b " a)); if a; b and t; b " a are consistent

!

cod(b)

; otherwise:

3. For all t; u in G

�

with juj > 0, and all b 2 G, with b; t coinitial and b; u composable,

t "

�

bu = (t "

�

b) "

�

u

4. !

q

"

�

t = !

r

and t "

�

!

q

= !

for all t : q ! r in (G

�

)

]

.

Lemma 2.3.1

1. For all objects q of (G

�

)

]

, all coinitial arrows t; u of (G

�

)

]

, and all k � 0,

(a) dom(id

k

q

) = cod(id

k

q

) = q;

12

(b) dom(t "

�

u) = cod(u); and

(c) cod(t "

�

u) = cod(u "

�

t).

2. For all arrows t : q ! r of (G

�

)

]

, and all k � 0,

(a) id

k

q

"

�

t = id

k

r

;

(b) t "

�

id

k

q

= t;

(c) t "

�

t = id

jtj

r

;

3. For all coinitial arrows t; u; v of (G

�

)

]

, (v "

�

t) "

�

(u "

�

t) = (v "

�

u) "

�

(t "

�

u).

Proof { Straightforward induction arguments using the properties of " and the de�nition of "

�

.

Let Cts(G

�

) denote the \minimally consistent" CTS with G

�

as its underlying graph, as de�ned

in Section 2, Example 1.

Let � be the binary relation on the arrows of G

�

de�ned by: t � u i� t "

�

u = id

jtj

r

and

u "

�

t = id

juj

r

.

Lemma 2.3.2 The relation � is a strong congruence on Cts(G

�

).

Proof { It is clear that � is symmetric. It is reexive because t "

�

t = id

jtj

r

by Lemma 2.3.1(2c).

Transitivity follows from Lemma 2.3.1(3), as in the proof of Lemma 2.1.1.

(1) Suppose transitions t; t

0

; u; u

0

of Cts(G

�

) are such that t � t

0

, u � u

0

, and t; u are consistent.

We show that t

0

; u are consistent and t "

�

u � t

0

"

�

u; a similar argument (which we omit) then

shows that t

0

; u

0

are consistent and t

0

"

�

u � t

0

"

�

u

0

. By Lemma 2.3.1(3), (t

0

"

�

u) "

�

(t "

�

u) = (t

0

"

�

t) "

�

(u "

�

t), which equals id

jt

0

j

t

by Lemma 2.3.1(2a) and the assumption that t � t

0

.

Similarly, (t "

�

u) "

�

(t

0

"

�

u) = (t "

�

t

0

) "

�

(u "

�

t

0

) = id

jtj

t

, hence t "

�

u � t

0

"

�

u. Since t and u are

consistent by assumption, it follows that t

0

and u are consistent.

(2) First note that it is immediate from Lemma 2.3.1(2a,b) that t � id

0

q

holds for a transition

of Cts(G

�

) i� t = id

jtj

q

. Now, suppose t " u and u " t are both �-related to identities. Then we

must have t " u = id

jtj

cod(u)

and u " t = id

juj

cod(t)

. But this states exactly that t � u.

De�ne the completion C

�

of C to be the quotient Cts(G

�

)= �. That C

�

is a complete CTS is

immediate from the completeness of Cts(G

�

) and Lemma 2.2.1.

Theorem 2.4 The map taking a CTS C to its completion C

�

is the object map of a functor from

CTS to the full subcategory CCTS of CTS whose objects are the complete CTS's, and this functor

is left-adjoint to the inclusion of CCTS in CTS.

Proof { Let �

C

: C ! C

�

take each transition t of C to its equivalence class [t]; then �

C

is

obviously a morphism. To prove the theorem, it su�ces to show that to each morphism � from C

to a complete CTS D, there is a unique morphism �

�

: C

�

! D satisfying �

�

� �

C

= �.

We �rst note that a straightforward induction using Lemma 2.3.1 establishes the following fact:

If

a

1

a

2

. . .a

n

"

�

b

1

b

2

. . . b

m

= c

1

c

2

. . . c

n

;

13

then

�(a

1

)�(a

2

) . . .�(a

n

) " �(b

1

)�(b

2

) . . .�(b

m

) = �(c

1

)�(c

2

) . . .�(c

n

):

Now, every proper transition of C

�

is either an identity or of the form [a

1

a

2

. . .a

n

], where n > 0

and each a

i

is a proper transition of C. By Lemma 2.2.1, any morphism �

�

: C

�

! D must satisfy

�

�

([a

1

a

2

. . .a

n

]) = �

�

([a

1

])�

�

([a

2

]) . . .�

�

([a

n

]). The condition �

�

� �

C

= � implies in addition that

�

�

([a

i

]) = �(a

i

), hence �

�

([a

1

a

2

. . .a

n

]) = �(a

1

)�(a

2

) . . .�(a

n

). Thus, there can be at most one

morphism �

�

: C

�

! D satisfying �

�

� �

C

= �.

To show that �

�

exists, it su�ces to show that for all proper transitions a

1

; a

2

; . . . ; a

n

and

b

1

; b

2

; . . . ; b

m

of C, if [a

1

a

2

. . .a

n

] = [b

1

b

2

. . .b

m

], then �(a

1

)�(a

2

) . . .�(a

n

) = �(b

1

)�(b

2

) . . .�(b

m

).

But if [a

1

a

2

. . .a

n

] = [b

1

b

2

. . .b

m

], then a

1

a

2

. . .a

n

"

�

b

1

b

2

. . . b

m

= id

n

cod(b

m

)

and b

1

b

2

. . .b

m

"

�

a

1

a

2

. . .a

n

= id

m

cod(a

n

)

. Applying the fact noted above, we see that

�(a

1

)�(a

2

) . . .�(a

n

) " �(b

1

)�(b

2

) . . .�(b

m

) and �(b

1

)�(b

2

) . . .�(b

m

) " �(a

1

)�(a

2

) . . .�(a

n

)

are identities, showing �(a

1

)�(a

2

) . . .�(a

n

) = �(b

1

)�(b

2

) . . .�(b

m

).

Finally, to show that the function �

�

is a morphism, we must show that it preserves identities

and translation. Each identity of C

�

is of the form [id

n

q

], where id

q

is an identity of C, and we must

have �

�

([id

n

q

]) = �(id

q

)

n

= id

�(q)

. Moreover, if [a

1

a

2

. . .a

n

] and [b

1

b

2

. . . b

m

] are consistent, then

using the fact noted above shows that

�

�

([a

1

a

2

. . .a

n

] " [b

1

b

2

. . . b

m

]) = �

�

([a

1

a

2

. . .a

n

"

�

b

1

b

2

. . .b

m

])

= �(a

1

)�(a

2

) . . .�(a

n

) " �(b

1

)�(b

2

) . . .�(b

m

)

= �

�

([a

1

a

2

. . .a

n

]) " �

�

([b

1

b

2

. . .b

m

]);

as required.

2.4 Computation Diagrams

In this section we generalize to CTS's the notions of \computation tree" and \computation" for

ordinary transition systems.

A computation diagram is a CTS D, whose completion D

�

is a poset category having an initial

(least) object. We regard the class of all computation diagrams as a full subcategory Diag of

CTS

�

, by identifying a computation D with the corresponding CTS with start state (D; �), whose

start state is the initial object of D.

De�ne the elements of a computation diagram D to be the proper initial arrows of D

�

. Note

that the elements of D are in bijective correspondence with the states of D. De�ne the successor

relation �

1

on the elements of D by t �

1

u i� u " t is a transition of D. The successor relation is

easily seen to be an irreexive relation, whose reexive, transitive closure is the pre�x relation �

on the set of elements of D.

Given a CTS with start state (C; �), let C

�

be the completion of C. De�ne the CTS Diag(C; �)

to have as proper states all transitions t of C

�

whose domain is the start state of (C; �), and as

transitions pairs (t; u) of states of Diag(C; �), such that t � u and u " t is a transition of C. De�ne

dom(t; u) = t and cod(t; u) = u. Let (t; u) and (t; v) be consistent in Diag(C; �) i� u and v are

consistent in C, in which case de�ne (t; u) " (t; v) = (v; u_ v). It is easily veri�ed that Diag(C; �)

is a computation diagram, and we call it the computation diagram of (C; �).

14

Theorem 2.5 The map, taking a CTS with start state (C; �) to its computation diagram Diag(C; �),

is the object map of a functor Diag : CTS

�

! Diag, which is right-adjoint to the inclusion of Diag

in CTS

�

.

Proof { Let �

C

: Diag(C; �)! (C; �) take each transition (t; u) of Diag(C; �) to the corresponding

transition u " t of C. It is straightforward to check that �

C

is a CTS

�

-morphism, and that every

morphism � from a computation diagram D to (C; �) factors uniquely through �

C

.

Recall that an ideal of a partially ordered set (K;�) is a subset J of K that is:

1. (Nonempty): J 6= ;.

2. (Downward-closed): If t 2 J and u 2 K are such that u � t, then u 2 J .

3. (Directed): If t 2 J and u 2 J , then there exists v 2 J such that t � v and u � v.

An ideal J of K is principal if it is the set of all elements below some element t of K.

We de�ne a computation of a CTS with start state (C; �) to be an ideal of the set of elements

of its computation diagram Diag(C; �), under the ordering �. A computation of C is called �nite

if it is a principal ideal, otherwise it is called in�nite. Note that the computations of (C; �) are

in natural bijective correspondence with the determinate subdiagrams of Diag(C; �). Although we

could have de�ned the computations of (C; �) to be the determinate subdiagrams of Diag(C; �), it

will be convenient later on to think of a computation of (C; �) as a set of transitions of C

�

, rather

than as a subdiagram of Diag(C; �).

A set J of computations of a CTS with start state (C; �) is called chain-complete if whenever

I is a subset of J that is linearly ordered with respect to inclusion, then

S

I is an element of J .

Lemma 2.4.1

1. The set of computations of a CTS with start state (C; �) is an algebraic directed-complete

poset under inclusion order, whose compact elements are exactly the �nite computations.

2. Every consistent set of elements of Diag(C; �) is included in a unique least computation of

(C; �).

3. If J is a nonempty, chain-complete set of computations of (C; �), then every element of J is

included in a maximal element of J .

Proof { (1) That the set of computations of (C; �) is an algebraic directed-complete poset, with

the �nite computations as isolated elements, is a standard property of the \completion by ideals"

of a partially ordered set (see e.g. [11]).

(2) is obvious from the fact that ideals are de�ned by closure properties.

(3) is just Zorn's Lemma applied to sets of computations.

We conclude this section with a result that shows that our generalized de�nition of computations

as ideals does not depart too radically from the more conventional notion of computation sequences.

A computation sequence for a CTS with start state (C; �) is a sequence ? = t

0

�

1

t

1

�

1

. . .�

1

t

n

of elements of Diag(C; �). The element t

n

is called the result of the computation sequence. Since

every element of Diag(C; �) is the result of some computation sequence for (C; �) (by the initiality

15

of ?), we may prove properties of �nite computations by induction on the length of a computation

sequence. A generalized computation sequence for (C; �) is a sequence ? = t

0

� t

1

� t

2

� . . . of

elements of Diag(C; �), such that for each k � 0, either t

k

�

1

t

k+1

or t

k

= t

k+1

. The ideal

W

1

k=0

t

k

is called the computation generated by the sequence t

0

� t

1

� t

2

. . ..

A coinitial set of transitions T of a CTS C is called independent if it is consistent, and for

all t 2 T and all �nite sets T

0

� T , if t �

W

T

0

, then t 2 T

0

. The CTS C is said to have �nite

concurrency if there are no in�nite independent sets of transitions in C.

Theorem 2.6 Suppose (C; �) is a CTS with start state, where C has �nite concurrency. Then

every computation of (C; �) is generated by some generalized computation sequence of (C; �).

Proof { Straightforward.

3 CTS Semantics of Process Networks

In this section, we show how concurrent transition systems can be used as the basis for a dataow-

like model of concurrent computation. The kind of model we consider is similar to those of [16,

17, 6, 10, 24, 34], and concerns a system of processes with internal state that communicate by

transmitting messages through named ports. Each port is shared by at most two processes, one of

which (called the \receiver") always inputs messages from the port, and the other of which (called

the \sender") always outputs messages to the port. Typically, ports are regarded as bu�ers that

transmit messages in FIFO order. However, for our purposes, it will be convenient to take a slightly

more abstract point of view in which we think of the state of a port as part of the internal state of

the reader of that port. This permits us to regard the transmission of a message by a sender and the

arrival of that message at the input port of a receiver as synchronized, simultaneous occurrences.

It will also be convenient to adopt a slightly more abstract point of view than usual, regarding the

number and type of the ports used by a process. That is, rather than assume that a process has

a speci�c number of input and output ports, each of which is capable of handling values from a

certain set, we merely assume that each process has a \type" (X; Y), where X and Y are trace

algebras whose elements represent possible message histories for the input and output ports of that

process, respectively. The example at the end of Section 3.1 will clarify this point.

Since we will be making frequent use of trace algebras (see Section 2, Example 2), some addi-

tional notation will be convenient. If X is a trace algebra, then we denote the identity of X by �

X

,

or just �, when X is clear from the context. We denote the pre�x ordering by �

X

, or just �, and

the join by _

X

, or just _. We identify a trace algebra X with the corresponding one-proper-state

CTS, so that trace algebras form a full subcategory of CTS. If X and Y are trace algebras, then

their product X � Y in CTS is also a trace algebra. We use �

X

and �

Y

to denote the projections

from X � Y to X and Y , respectively. We use the notation x; y to denote the element of X � Y

with �

X

(x; y) = x and �

Y

(x; y) = y. If � : C ! X � Y is a morphism, then we often write �

X

or

�

Y

as an abbreviation for �

X

�� and �

Y

��. The ideal space of X is the set X of ideals of X , which

is an algebraic directed-complete poset with respect to inclusion. It will be convenient to regard

X as included in X , by identifying each x 2 X with the corresponding principal ideal. We can

then view the inclusion order on X as an extension of the pre�x ordering � on X , and we use the

same symbol � in both cases. The elements of X � X are called the �nite elements of X, and all

other elements of X are called in�nite. A morphism � : X ! Y extends uniquely to a continuous

16

function � : X ! Y . We will generally identify X � Y and X � Y , exploiting the obvious natural

isomorphism.

3.1 Machines

Suppose C is a CTS. An endomorphism � : C ! C is orthogonal if,

� For all transitions t of C, if �(t) is an identity, then t is an identity.

� For all coinitial pairs t; u of transitions of C, if �(t) and �(u) are consistent, then so are t and

u.

An action of a trace algebra X on C is a monoid homomorphism � : X ! CTS(C;C), such that

for each x 2 X , the morphism �(x) is orthogonal. We usually write �

x

, instead of �(x), for the

application of an action � to argument x 2 X .

Suppose X and Y are trace algebras. An (X; Y)-machine is a four-tupleM = (C; �; �; �), where:

� C is a CTS, called the underlying CTS of M;

� � : 1! C is a morphism, called the start state map ofM.

� � : C ! Y is a morphism, called the output map of M;

� � : X ! CTS(C;C) is an action of X on C, called the input map ofM;

such that � � �

x

= � for all x 2 X .

If M = (C; �; �; �) and M

0

= (C

0

; �

0

; �

0

; �

0

) are (X; Y)-machines, then a morphism from M to

M

0

is a morphism � : C ! C

0

of the underlying CTS's, such that

1. �

0

= � � �.

2. � = �

0

� �.

3. �

0

x

� � = � � �

x

for all x 2 X .

Let Mach

X;Y

denote the category of (X; Y)-machines and their morphisms.

A machine is called a Kahn machine if its underlying CTS is determinate.

In the special case that X = 1 (the terminal object in CTS), an (X; Y)-machine will be called

a Y -automaton. Note that a Y -automaton is completely speci�ed by giving its underlying CTS C,

its start state map �, and its output map � : C ! Y , since there is only one possible input map

� : 1! CTS(C;C). Let Auto

Y

denote the category of Y -automata.

To illustrate the expressive power of the (X; Y)-machine model, we show how the axioms are

satis�ed by a kind of process that communicates with its environment by reading sequences of

values from input ports and writing sequences of values to output ports.

Formally, suppose V is a set of values, and m;n are natural numbers. Then a sequential dataow

process (SDP) with m input ports and n output ports is a triple (Q; �; A), where

� Q is a set of states, with � 2 Q a distinguished start state.

� A � (Q� (V

�

)

m

)� (V

�

)

n

� (Q� (V

�

)

m

) is a set of transitions.

17

such that

1. For all q 2 Q, the set A contains a transition ((q; �); �; (q; �)).

2. If the set A contains a transition ((q; x); y; (q

0

; x

0

)), then A also contains a transition

((q; xx

0

); y; (q

0

; x

0

x

0

)) for each x

0

2 X .

Each transition ((q; x); y; (q

0

; x

0

)) in A represents a possible process step, in which a vector x of

value sequences on the input ports of the process is replaced by a new vector x

0

(if x = x

00

x

0

, then

we may think of the pre�x x

00

of x as being consumed in the step), a vector y of value sequences is

transmitted to the output ports of the process, and the internal state of the process is changed from

q to q

0

. We think of input values arriving at the input port of a process as getting concatenated

with the current sequence of values in the port. Condition (2) above thus states that arrival of

new input values can never cause transitions enabled for a process to become disabled, only new

transitions to become enabled.

Any program expressed in a nondeterministic sequential programming language with primitives

for reading values from input ports and writing values to output ports, but not for testing for the

absence of values on input ports, can be regarded as de�ning an SDP. For m � 0, let (V

�

)

m

be the

trace algebra whose elements are m-vectors of elements of the free monoid V

�

, with composition

and identity de�ned componentwise. Assuming a suitable de�nition of the \input/output relation"

computed by a process (we shall provide such a de�nition in the sections to follow), it can be

shown that every continuous function from (V

�

)

m

to (V

�

)

n

is computed by an SDP. An example

of a non-functional process also representable as an SDP is \unfair merge," which has two input

ports and one output port, and executes a loop in which input is nondeterministically chosen from

one of the input ports and output on the output port. This merge is \unfair" because we do not

make any assumption about how often in a computation one enabled branch of a nondeterministic

choice may be rejected in favor of another (although we do introduce a kind of fairness assumption

with respect to choices between consistent transitions).

An SDP (Q; �; A) may be regarded as an (X; Y)-machineM = (C; �; �; �) as follows:

� Let X be the trace algebra (V

�

)

m

and Y the trace algebra (V

�

)

n

.

� Let the CTS C have as proper states the elements of Q, and as proper transitions the elements

of A. De�ne

dom((q; x); y; (q

0

; x

0

)) = q

cod((q; x); y; (q

0

; x

0

)) = q

0

:

Let the identities of C be the transitions ((q; �); �; (q; �)), and let " be de�ned so that two

coinitial transitions are consistent i� they are equal, or one is an identity.

� Let � : C ! Y take ((q; x); y; (q

0

; x

0

)) to y.

� Let � : X ! CTS

�

(C;C) be de�ned so that �

x

0

takes a transition ((q; x); y; (q

0

; x

0

)) 2 A to

the transition ((q; xx

0

); y; (q

0

; x

0

x

0

)) 2 A, which exists by condition (2) in the de�nition of an

SDP above.

It is straightforward to check that these de�nitions satisfy the requirements for an (X; Y)-machine.

18

? ?

?

?

?

�

��

�

��

?

?

?

?

??

? ?

M

M

M

0

M

M

�

�

X

Y

Y

0

X

0

Z

Z

X

Y

X

Y

Z

X

Y

Z

X

X

0

Y

Y

0

X

Y Y

X

Parallel Product

Output Relabeling

Input Relabeling

Feedback

Figure 4: Operations on Machines

3.2 An Algebra of Machines

We are interested in the properties of an algebra of machines, with respect to operations that

correspond to ways of building more complex machines from simpler components. Although many

such operations can be de�ned, in this paper we restrict our attention to parallel product, input and

output relabeling, and feedback. The e�ect of these operations is depicted schematically in Figure

4.

3.2.1 Parallel Product

Suppose M = (C; �; �; �) is an (X; Y)-machine and M

0

= (C

0

; �

0

; �

0

; �

0

) is an (X

0

; Y

0

)-machine.

De�ne the parallel product of M and M

0

to be the (X �X

0

; Y

0

� Y)-machine

M�M

0

= (C � C

0

; (�; �

0

); �

00

; �

00

);

where �

00

takes each transition (t; t

0

) ofM�M

0

to the trace �

0

(t

0

);�(t) 2 Y

0

� Y , and �

00

x;x

0

(t; t

0

) =

(�

x

(t); �

0

x

(t

0

)) for each x; x

0

2 X �X

0

and transition (t; t

0

) of C � C

0

.

19

Parallel product is easily seen to be the object map of a functor from Mach

X;Y

�Mach

X

0

;Y

0

to Mach

X�X

0

;Y

0

�Y

.

3.2.2 Output Relabeling

Suppose M = (C; �; �; �) is an (X; Y)-machine, and � : Y ! Z is a morphism. De�ne the output

relabeling of M by � to be the (X;Z)-machine

M B � = (C; �; � � �; �):

Output relabeling is the object map of a functor fromMach

X;Y

to Mach

X;Z

.

3.2.3 Input Relabeling

Suppose M = (C; �; �; �) is an (X; Y)-machine, and � : Z ! X is a morphism. De�ne the input

relabeling of M by � to be the (Z; Y)-machine

� BM = (C; �; �; � � �):

Input relabeling is the object map of a functor from Mach

X;Y

to Mach

Z;Y

.

3.2.4 Feedback

Suppose M = (C; �; �; �) is a (Z � X; Y � Z)-machine. De�ne the feedback fMg

	Z

of M with

respect to Z to be the (X; Y � Z)-machine

fMg

	Z

= (C

0

; �; �

0

; �

0

);

where

� C

0

is a CTS whose states and transitions are the same as those of C, but whose domain and

codomain functions are de�ned as follows:

dom

0

(t) = dom(t)

cod

0

(t) = �

�

Z

(t);�

X

(cod(t))

The identities of C

0

are the same as those of C. For coinitial t; u, de�ne

t "

0

u = �

�

Z

(u);�

X

(t " u):

� �

0

: C

0

! Y is de�ned by �

0

(t) = �(t).

� �

0

: X ! CTS(C

0

; C

0

) is de�ned by �

0

x

(t) = �

�

Z

;x

(t):

It is straightforward to verify that fMg

	Z

is, in fact, an (X; Y � Z)-machine. The assumption

that �

z;x

is orthogonal for all z; x 2 Z �X is used in the veri�cation of CTS axioms (3) and (4).

Intuitively, the machine fMg

	Z

represents the machineM with its Z-output \fed back" to its

Z-input. Thus, each transition t of fMg

	Z

is a transition of M that has been \composed" with

the e�ect, given by �

�

Z

(t);�

X

, of the feedback input generated by t.

The feedback operation can be shown to be the object map of a functor from Mach

Z�X;Y�Z

to Mach

X;Y�Z

.

20

3.3 Observable Equivalence

De�ne the pairing of an (X; Y) machineM and a (Y;X)-machineN to be the (X�Y)-automaton

hM;Ni = fM�Ng

	X�Y

:

Intuitively, the automaton hM;Ni represents a closed system consisting of machines M and N

executing in parallel, with the output of M feeding the input of N and the output of N feeding

the input of N .

Lemma 3.3.1

1. Suppose M is an (X; Y)-machine, N is a (Y;X)-machine, and � : X � Y ! Y � X takes

x; y to y; x. Then

hM;Ni ' hN ;MiB �:

2. Suppose M is an (X; Y)-machine, N is a (Z;X)-machine, and � : Y ! Z. Then

hM B �;Ni ' hM; � B Ni B (�

X

� (� � �

Y

)):

3. Suppose M is an (X; Y)-machine, N is a (Z;W)-machine, and P is a (W � Y;X � Z)-

machine. Then

hM� N ;Pi ' hM; fN � Pg

	Z�W

i:

Proof { Straightforward.

Although a result exactly analogous to (2) and (3) above does not hold for the feedback opera-

tion, we can obtain a useful weaker result (Lemma 3.3.2 below). To state it, we need to de�ne the

output set of an automaton. Output sets of automata are a special cases of input/output relations

of machines, which we will de�ne and investigate in more detail in Section 4.

Suppose A = (C; �; �) is a Y -automaton. The computations of A are the computations of the

CTS with start state (C; �). A computation J of A is maximal if it is not a proper subset of any

other computation of A. Now, if �

C

: Diag(C; �)! (C; �) denotes the universal morphism associated

with the right adjoint Diag, then � � �

C

: Diag(C; �)! Y extends uniquely to a continuous map �

from the cpo of computations of (C; �) to the ideal space Y of Y . Thus, each computation J of A

determines an ideal �(J) 2 Y , which we call the complete output trace of J . The output set Out(A)

of A is the set of all complete output traces determined by maximal computations of A.

We also need a (Z; Z)-machine I

Z

that simply passes its input through unchanged to its output.

Lemma 4.6.2 provides such a machine, and we anticipate this result here, rather than restating a

special case.

Lemma 3.3.2 Suppose M is a (Z � X; Y � Z)-machine, and N is a (Y � Z;X)-machine. Let

� : Y �Z ! Y �Z�Z be the morphism that takes y; z to y; z; z, and let � : Z�X�Y �Z ! X�Y �Z

be the morphism that takes z

0

; x; y; z to x; y; z. Then

OuthfMg

	Z

;Ni = Out(hM; �B (N � I

Z

)i B �):

21

Proof { Suppose hfMg

	Z

;Ni = (C; �; �) and hM; �B (N � I

Z

)i B � = (C

0

; �

0

; �

0

). Let (D; �) =

Diag(C; �) and (D

0

; �

0

) = Diag(C

0

; �

0

). We can construct morphisms � : D

�

! (D

0

)

�

and �

0

:

(D

0

)

�

! D

�

, preserving the initial state, and such that (�

0

)

�

= �

�

� �, �

0

� � = id

Diag(C;�)

, and

t

0

� �(�

0

(t

0

)) for all elements t

0

of Diag(C

0

; �). From this, it follows that the output sets of the two

automata are identical. We omit the details.

We say that (X; Y)-machines M and M

0

are observably equivalent, and we write M �M

0

, if

we have

OuthM;Ni = OuthM

0

;Ni

for all (Y;X)-machinesN . Here we use the idea of de�ning process equivalences based on indistin-

guishability with respect to tests performed by \observers" or \environments," which is discussed

in [12].

Theorem 3.1 Observable equivalence is a congruence with respect to parallel product, output re-

labeling, and feedback. It is also a congruence with respect to input relabeling by left-invertible

morphisms. That is,

1. Suppose M and M

0

are (X; Y)-machines, and M�M

0

. Then

(a) M�N �M

0

�N , for all machines N .

(b) M B � �M

0

B � for all morphisms � : Y ! Z.

(c) � B M � � B M

0

for all morphisms � : Z ! X for which there exists a morphism

�

0

: X ! Z with �

0

� � = id

Z

.

2. Suppose M and M

0

are (Z �X; Y � Z)-machines. If M�M

0

, then fMg

	Z

� fM

0

g

	Z

.

Moreover, � is the largest congruence on machines, respecting parallel product and feedback, that

does not relate automata with distinct output sets.

Proof { (1a) Let P be an arbitrary (W � Y;X �Z)-machine, and let � be as in Lemma 3.3.1(3).

Using that lemma and the equivalence of M and M

0

, we have:

OuthM�N ;Pi = OuthM; fN � Pg

	Z�W

i

= OuthM

0

; fN � Pg

	Z�W

i

= OuthM

0

� N ;Pi:

(1b) Similar to (1a), but using Lemma 3.3.1(2).

(1c) Similar to (1b), but using the isomorphism

h� BM;Ni ' hM;N B �i B ((�

0

� �

X

)� �

Y

);

obtained from Lemma 3.3.1(1, 2), plus the assumption that �

0

� � = id

Z

.

(2) Similar to the above, but using Lemma 3.3.2.

To show that � is the largest congruence that respects parallel product and feedback, but does

not relate automata with distinct output sets, suppose � is a congruence on machines that relates

two (X; Y)-machines M and M

0

that are not related by �. By de�nition of �, there exists a

(Y;X)-machine N such that

OuthM;Ni 6= OuthM

0

;Ni:

22

But we must have hM;Ni � hM

0

;Ni by the assumption that � is a congruence with respect to

parallel product and feedback. Hence � relates two automata with distinct output sets.

The full abstraction problem for machines is the problem of characterizing the structure of the

quotient algebra of machines modulo observable equivalence. The di�culty of this problem has

become apparent since it was �rst pointed out by Keller [18] and more conclusively by Brock and

Ackerman [7] (the so-called \Brock-Ackerman anomaly") that the mapping taking machines to

their input/output relations is not homomorphic with respect to feedback. Since then, a number

of researchers [31, 32, 3, 19, 34, 20] have proposed process models that incorporate somewhat more

information than just input/output relations. Abramsky [1], has shown the full abstractness of a

powerdomain model, with respect to a notion of observable equivalence based on �nite computa-

tions. To the author's knowledge, though, none of these models has been shown both consistent

with (i.e. a homomorphic image of) an operational semantics as well as fully abstract (i.e. observ-

ably equivalent processes have identical images), when both in�nite and �nite computations are

considered.

4 An Analysis of Feedback

It would seem that a deep understanding of the feedback operation is prerequisite to solving the

full abstraction problem. Whereas the parallel product operation is readily seen to be respected

by the mapping from machines to input/output relations, the same does not hold for the feedback

operation. The input/output relation of a (Z � X; Y � Z)-machine M simply does not contain

enough information, in general, to determine the input/output relation of fMg

	Z

.

In an attempt to make progress on the full abstraction problem, in this section we investigate

how the feedback operation behaves under a sequence of mappings that starts with machines and

ends with input/output relations. The idea is to try to delete more and more information, getting

successively more abstract representations of the behavior of machines, until we cannot see how to

delete any more information and still preserve the machine operations. Some of the representations

at intermediate stages between machines and input/output relations are similar to various models

that have been proposed for concurrent processes. Thus, as a byproduct of our analysis, we obtain

an improved understanding of the relationship between these models.

Our �rst mapping takes an (X; Y)-machine to a corresponding (X � Y)-automaton. Whereas

machines can be thought of as a CTS generalization of the sequential machines of classical automata

theory, automata can be thought of as a CTS generalization of classical nondeterministic automata,

or the labeled transition systems used, e.g. in [9, 8]. Our second mapping \unwinds" automata to

obtain their \synchronization diagrams," which are a generalization of \synchronization trees" [42].

We then show how each synchronization diagram determines a set of \behaviors," which represent

\fair" or \completed" computations. Abstracting further from sets of behaviors, we obtain sets of

\histories," which are related to the \pomset" model of [32, 33]. We then map sets of histories

to sets of \scenarios", where a scenario represents information about causal relationships between

input and output in a single computation. Our scenarios are similar in spirit, although not formally

identical to, the scenarios originally de�ned by Brock and Ackerman [7, 6]. Finally, we show how

scenario sets determine input/output relations.

For each of the mappings, we prove a theorem showing a sense in which the mapping is ho-

momorphic with respect to the feedback operation on machines. All of the mappings except the

23

one to input/output relations are homomorphic with respect to the full algebra of machines. The

mapping from to input/output relations is homomorphic only on the subalgebra of Kahn machines.

(Its failure to be homomorphic for unrestricted machines is the Brock-Ackerman anomaly already

mentioned.) We show that the input/output relation of an (X; Y)-Kahn machine is the graph of a

continuous function from X to Y , and that the map from Kahn machines to continuous functions

transforms feedback into a certain least-�xed-point construction. This least-�xed-point charac-

terization of feedback was �rst noted by Kahn [16], and has been called the \Kahn Principle."

Although the Kahn Principle has been proved before [10], our proof applies to a more general,

axiomatically de�ned class of processes.

4.1 Automata

Given x 2 X, let

^

X denote the (Y;X)-machine (X; �; id

X

; �), where � is the unique proper state of

X and �

y

: X ! X is id

X

for each y 2 Y . Intuitively,

^

X is a machine that ignores its input, and is

capable of outputting an arbitrary element of X at any time. Each (X; Y)-machineM determines

a corresponding (X � Y)-automaton Auto(M), under the de�nition

Auto(M) = hM;

^

Xi:

De�ne an (X � Y)-automaton A to be an (X; Y)-input/output automaton (resp. (X; Y)-Kahn

automaton) if A ' Auto(M) for some (X; Y)-machine (resp. (X; Y)-Kahn machine)M.

We now characterize the structure of input/output automata. To state this result, some addi-

tional terminology will be convenient. Suppose C is a CTS, and � : C ! X is a morphism. We

say that a proper transition t of A is canonical w.r.t. �, if for any other proper transition t

0

of C,

with dom(t) = dom(t

0

) and �(t

0

) = �(t), we have t � t

0

. Note that canonical transitions, when they

exist, are uniquely determined by their domain and their image under �.

Theorem 4.1 An (X � Y)-automaton A = (C; �; �) is an (X; Y)-input/output automaton i� A

has the following properties:

1. For each proper state q of A, and each x 2 X, there exists a transition x

q

of C, with dom(x

q

) =

q and �

X

(x

q

) = x, such that x

q

is canonical w.r.t. �

X

.

2. Each proper transition t : q ! r of A, has a decomposition t = x

q

_ u, where x = �

X

(t).

3. For each proper transition t : q ! r of A, and each x 2 X, we have x

q

" t = (x " �(t))

r

.

4. For each proper transition t : q ! r of A, and each x 2 X, if x and �(t) are consistent, then

x

q

and t are consistent, and x

q

_ t exists in A.

5. For each proper transition t : q ! r of A, and each x 2 X, if �

X

(t) = � and t " x

q

= id

r

,

then t = id

q

.

Moreover, A is a Kahn automaton i� it has the additional property:

6. For each coinitial pair t; u of proper transitions of A, if �

X

(t) and �

X

(u) are consistent, then

t and u are consistent.

24

Proof { We show: ()) If A ' Auto(M) for some M, then A has properties (1)-(5), and also

property (6) in case M is a Kahn machine. (() If A has properties (1)-(5), then A ' Auto(M)

for someM, and if A has property (6), then M can be chosen to be a Kahn machine.

()) Suppose A ' Auto(M). Since properties (1)-(5) are preserved under isomorphism, we

may suppose without loss of generality that A = Auto(M). Then the state set of A is (in bijective

correspondence with) the state set of M, and the transitions of A are pairs (t; x), where t is a

transition of M and x 2 X . It is easily shown that the transitions x

q

= (id

q

; x) are the canonical

transitions required by property (1). The remaining properties then follow by straightforward

calculations, which we omit.

(() Suppose A = (C; �; �) has properties (1)-(5). We show how to construct M so that

A ' Auto(M). It is easily veri�ed that the states of C, equipped with all transitions t of C

such that �

X

(t) = �, de�ne a sub-automaton A

0

= (C

0

; �; �

0

) of A. Let � : X ! CTS(C

0

; C

0

) be

de�ned by �

x

(t) = t " x

dom(q)

. Straightforward calculations, which we omit, from the de�nitions

and properties (1)-(5) su�ce to verify thatM = (C

0

; �; �

0

Y

; �) is an (X; Y)-machine. It is also easily

veri�ed that if A has property (6), then M is a Kahn machine.

We claim that A ' Auto(M). The required isomorphism � : Auto(M)! A is obtained as the

morphism that takes each transition (u; x) : dom(u)! �

x

(cod(u)) of Auto(M) to the join x

q

_u in

A, which exists by property (4). The morphism � is surjective on transitions because by property

(2), every proper transition t of A has a decomposition t = x

q

_ u, where x = �

X

(t). To show

that it is injective on transitions, it su�ces to show the uniqueness of such decompositions in A.

If x

q

_ u and x

q

_ u

0

are two decompositions of t, then (x

q

_ u) " (x

q

_ u

0

) is an identity transition.

Since (x

q

_u) " (x

q

_u

0

) = [x

q

" (x

q

_u

0

)]_ [u " (x

q

_u

0

)], it follows that u " (x

q

_u

0

) is an identity

transition. However, u " (x

q

_ u

0

) = (u " u

0

) " (x

q

" u

0

), and x

q

" u

0

= x

cod(u

0

)

by property (3).

Hence u " u

0

is an identity transition by property (5). Similar reasoning shows that u

0

" u is an

identity transition, thus u = u

0

.

In case A = (C; �; �) is an (X; Y)-input/output automaton, we will refer to the canonical

transitions x

q

of A as pure-input transitions, and to decompositions t = x

q

_ v, with x = �

X

(t),

as pure-input/output decompositions. It will also sometimes be convenient to use �

in

and �

out

as

alternate notations for �

X

and �

Y

, respectively.

We now determine how the feedback operation on machines is transformed by the map from

machines to automata. The relabeling functor

-B (�

Z

� id

W�Z

) : Auto

W�Z

! Auto

Z�W�Z

has a right adjoint

f -g

=Z

: Auto

Z�W�Z

! Auto

W�Z

;

whose object map takes each Z � W � Z-automaton A = (C; �; �) to the (W � Z)-automaton

fAg

=Z

= (C

0

; �; �

0

), where C

0

is the sub-CTS of C consisting of all transitions t of C for which the

two Z components of �(t) are equal, and �

0

takes each t in C

0

to �

W�Z

(t).

Theorem 4.2 Suppose M is a (Z �X; Y � Z)-machine. Then

Auto(fMg

	Z

) ' fAuto(M)g

=Z

Proof { IfM = (C; �; �; �), then the required isomorphismmaps a transition (t; x) of Auto(fMg

	Z

)

to the corresponding transition (t; �

Z

(t); x) of fAuto(M)g

=Z

. The details are straightforward, and

are omitted.

25

4.2 Synchronization Diagrams

If W is a trace algebra, then a W -synchronization diagram is a W -automaton D = (D;?; �), whose

underlying CTS D is a computation diagram with initial state ?. Since ? can be determined from

the structure of D, it is redundant information for synchronization diagrams, and we henceforth

omit mention of it. Let Diag

W

denote the full subcategory of Auto

W

, whose objects are the

W -synchronization diagrams.

Suppose A = (C; �; �) is a W -automaton. De�ne the diagram of A to be the synchronization

diagram Diag(A) = (Diag(C; �); � � �

C

), where �

C

: Diag(C; �)! (C; �) is the universal morphism

associated with the right adjoint Diag.

An (X � Y)-synchronization diagram is called an (X; Y)-input/output diagram (resp. (X; Y)-

Kahn diagram) if it is isomorphic to Diag(A) for some (X; Y)-input/output automaton (resp. (X; Y)-

Kahn automaton) A.

Lemma 4.2.1 An (X � Y)-synchronization diagram is an (X; Y)-input/output diagram (resp.

(X; Y)-Kahn diagram) i� it is an (X; Y)-input/output automaton (resp. (X; Y)-Kahn automaton).

Proof { The result is easily established by noting that the properties of Theorem 4.1 are preserved

under the \unwinding construction" by which Diag(A) is obtained from A.

Lemma 4.2.2 Suppose D = (D; �) is an (X; Y)-input/output diagram.

1. For all x 2 X, there exists an element t

x

of D such that �

X

(t

x

) = x, and such that if u is

any element of D with �

X

(u) = �

X

(t

x

), then t

x

� u.

2. If u is an element of D, and x 2 X is consistent with �

X

(u), then t

x

and u are consistent.

3. Suppose D is a Kahn diagram. If t and u are two elements of D such that �

X

(t) and �

X

(u)

are consistent, then t and u are consistent.

Proof { Straightforward from Lemma 4.2.1.

The elements t

x

in (1) above are called the pure-input elements of D.

We now determine the form taken by the feedback operation on synchronization diagrams.

Suppose D = (D; �) is a (Z�W �Z)-synchronization diagram. Let �

Z

1

and �

Z

2

be the projections

of � on the �rst and second Z components, respectively. De�ne a feedback computation sequence

for D to be a computation sequence t

0

�

1

t

1

�

1

. . . �

1

t

n

for D, such that �

Z

1

(t

k

) = �

Z

2

(t

k

)

for 1 � k � n. An element of D is called feedback-reachable if it is the result of some feedback

computation sequence forD, and a state ofD is called feedback-reachable if it is the codomain of some

feedback-reachable element of D. The feedback-reachable subdiagram of D is the full subdiagram

D

0

of D whose states are all the feedback-reachable states of D. De�ne fDg

:

=Z

= (D

0

; �

0

), where

D

0

is the feedback-reachable subdiagram of D, and �

0

(t) = �

W�Z

(t).

Theorem 4.3 Suppose A is a (Z �W � Z)-automaton. Then

Diag(fAg

=Z

) ' fDiag(A)g

:

=Z

:

26

Proof { Straightforward from the observation that both functors

Diag(f -g

=Z

) :Auto

Z�W�Z

! Diag

W�Z

and

fDiag(-)g

:

=Z

:Auto

Z�W�Z

! Diag

W�Z

are right-adjoint to the composition of the output-relabeling functor

- B (�

Z

� id

W�Z

) :Auto

W�Z

! Auto

Z�W�Z

with the inclusion of Diag

W�Z

in Auto

W�Z

. Since two right adjoints to the same functor are

naturally isomorphic, the result follows.

4.3 Behaviors

If D = (D; �) is a W -synchronization diagram, then each consistent set J of elements of D deter-

mines a consistent subset �(J) of W , which we call the history of J with respect to �. The set �(J)

extends to a least ideal �(J) 2 W , which we call the complete trace of J with respect to �. If D is

an (X; Y)-input/output diagram, and �(J) = x; y, then we call x the complete input trace, and y

the complete output trace, of J . A behavior of D is a computation J of D that is maximal among

all computations of D with the same complete input trace as J .

Lemma 4.3.1 Suppose D = (D; �) is an (X; Y)-input/output diagram. Then

1. Each consistent set J of elements of D extends to a behavior of D having the same complete

input trace as J. In particular, for each x 2 X there is a behavior of D with x as its complete

input trace. Moreover, if D is a Kahn diagram, then its behaviors are uniquely determined by

their complete input traces.

2. If J is a behavior of D with complete input trace x, and x � x

0

, then J extends to a behavior

J

0

of D with complete input trace x

0

.

3. If fJ

i

: i 2 Ig is any directed collection of behaviors of D, then

W

fJ

i

: i 2 Ig is also a behavior

of D.

Proof { (1) Suppose J is a consistent set of elements of D. Then the class of all consistent sets

of elements of D with the same complete input trace as J is nonempty, and is easily seen to be

chain-complete. Hence by Lemma 2.4.1 this class has a maximal element, which is a behavior of D

with the same complete input trace as J . In the special case that the given set J is the set of all

pure-input elements of D whose input traces are pre�xes of x, this construction yields a behavior

of D with complete input trace x. Moreover, the existence of two distinct behaviors of D with the

same complete input trace implies the existence of two inconsistent elements of D with consistent

input traces. Since by Lemma 4.2.2, this cannot happen when D is a Kahn diagram, we conclude

that behaviors of Kahn diagrams are uniquely determined by their input traces.

(2) Given a behavior J of D with complete input trace x, and given x

0

with x � x

0

, let K be

the set of all pure-input elements of D whose input traces are pre�xes of x

0

. Then the set J [K is

27

consistent by Lemma 4.2.2, and has complete input trace x

0

, hence it extends to a behavior J

0

of

D that has complete input trace x

0

.

(3) Suppose the set J =

W

fJ

i

: i 2 Ig were not a behavior of D. Then there would exist some

element t of D whose input trace is a pre�x of the complete input trace of J , but such that t 62 J .

But some J

i

must have a complete input trace with that of t as a pre�x, hence t 2 J

i

because J

i

is

a behavior of D. Since this contradicts the assumption t 62 J , we conclude that t cannot exist.

If (K;�) is a partially ordered set, and J � K, then J is called co�nal in K if for every element

t of K there exists an element u of J with t � u.

Lemma 4.3.2 Suppose D = (D; �) is a (Z �W � Z)-synchronization diagram, and K is a com-

putation of D. Let J be the set of feedback-reachable elements of K. Then J is co�nal in K i� J

and K have the same complete trace.

Proof { If J is co�nal in K then it is obvious that J and K have the same complete trace.

Conversely, suppose K has complete trace z;w; z. Let t 2 K be given; then we can choose u 2 J

such that �(t) � �(u). Since K is determinate, t and u must be consistent, and hence �(t " u) = �.

Since u 2 J , hence is feedback-reachable in K, it then follows easily that t _ u = u(t " u) is

feedback-reachable in K, hence is in J . Thus, t _ u 2 J is such that t � t _ u, as required.

Theorem 4.4 Suppose D = (D; �) is a (Z � X; Y � Z)-input/output diagram. Then a set J of

elements of D is a behavior of fDg

:

=Z

i� there exists a behavior K of D, such that J is the set of

feedback-reachable elements of K, and J is co�nal in K.

Proof { ()) Suppose J is a behavior of fDg

:

=Z

, with �(J) = z; x; y; z. By Lemma 4.3.1, J

extends to a behavior K of D, with complete input trace z; x. Let J

0

denote the feedback-reachable

subdiagram of K. Then J � J

0

, because every element of J is the result of a computation sequence

in J , and J � K means that every computation sequence in J is a feedback computation sequence

in K. Also, J

0

� J , because each element of a feedback computation sequence in K is consistent

with J , and has input trace a pre�x of x, hence is in J because J is a behavior of fDg

:

=Z

. Thus

J = J

0

.

We claim that J is co�nal in K. To establish this, we show by induction on n, that if t is a

element of K, and t is the result t

n

of a computation sequence t

0

�

1

t

1

�

1

. . . �

1

t

n

for K, then

there exists an element u

n

of J with t

n

� u

n

.

In the basis case, we have t

0

= ?, so we may take u

0

= ?.

For the induction step, suppose we have established the result for n, and consider the case

of n + 1. Then t is the result t

n+1

of a computation sequence t

0

�

1

t

1

�

1

. . . �

1

t

n+1

of K.

Applying the induction hypothesis to the computation sequence t

0

�

1

t

1

�

1

. . . �

1

t

n

, we obtain

an element u

n

of J with t

n

� u

n

. Let v = t

n+1

" t

n

, then v is a transition of D by de�nition of

a computation sequence. (See Figure 5.) Now, �

in

Z

(t

n+1

) � z, because t

n+1

2 K and �

in

Z

(K) = z.

Since we also have �

in

Z

(J) = z, and u

n

is an element of J , there must exist an element u

0

n

of J ,

with u

n

� u

0

n

and �

in

Z

(t

n+1

) � �

in

Z

(u

0

n

). Let v

0

= v " (u

0

n

" t

n

); then �

in

Z

(v

0

) = �. Moreover, v

0

is

a transition of D because v is. Let v

00

be the pure-input transition of D with dom(v

00

) = dom(v

0

)

and �

in

(v

00

) = �

out

Z

(v

0

); �

X

. Let w = v

0

_ v

00

, which exists by Theorem 4.1. Let u

n+1

= u

0

n

w, then

u

n+1

is feedback-reachable, and t

n+1

� u

n+1

.

28

J

J

J

J

J

J]

@

@I

�

�

�

�

�

�

�

��

6

�

�

�

�

�

�

�

�>

�

�

�

�

�

�

�

�>

@

@I

�

��

6

�

��

@

@I

u

n

u

0

n

u

n+1

v

00

v

0

w

t

n

t

n+1

�

�

�

�

�

�

�

�:

v

Figure 5: Proof of Theorem 4.4

To complete the induction step, it remains to be shown that u

n+1

2 J . It su�ces, since J is a

behavior of fDg

:

=Z

, to show that �

X

(u

n+1

) � x and that u

n+1

is consistent with J . That u

n+1

is

consistent with J is clear, since u

n+1

= t

n+1

_ u

0

n

v

00

, and both t

n+1

and u

0

n

v

00

are consistent with

J . Also, �

X

(u

n+1

) � x holds, since �

X

(u

n+1

) = �

X

(t

n+1

_ u

0

n

v

00

) = �

X

(t

n+1

) _ �

X

(u

0

n

), and both

t

n+1

and u

0

n

are in K.

(() Suppose K is a behavior of D. Let J be the set of feedback-reachable elements of K, and

suppose J is co�nal in K. Then J and K have the same complete input trace, say z; x, with respect

to �. We claim that J is a behavior of fDg

:

=Z

; that is, J is maximal among all computations J

0

of fDg

:

=Z

with �

X

(J

0

) = x. To show this, we show that if t is a feedback-reachable element of D,

consistent with J , and such that �

X

(t) � x, then t 2 K. It then follows that t 2 J because J is

the feedback-reachable subdiagram of K.

We proceed by induction on the length n of a feedback computation sequence t

0

�

1

t

1

�

1

. . . �

1

t

n

for D, with result t.

In the basis case, we have t = t

0

= ?, hence t 2 K.

For the induction step, suppose we have shown the result for n, and consider the case of n+ 1.

Then t is the result t

n+1

of a feedback computation sequence t

0

�

1

t

1

�

1

. . . �

1

t

n+1

, and t is

consistent with J . By the induction hypothesis, t

n

2 K. Let u = t

n+1

" t

n

, then u is a transition

of D and we have �

in

Z

(t

n+1

) = �

out

Z

(t

n+1

), by de�nition of a feedback computation sequence.

Now, u has a decomposition u = v_w, where v is the pure-input transition of D with dom(v) =

dom(u) and �

in

(v) = �

in

Z

(u); �

X

. Then t

n

w is an element of D that is consistent with J , and has

the property �

in

Z

(t

n

w) = �

in

Z

(t

n

) � z. Since J is co�nal in K and t

n

w is consistent with J , we

must have t

n

w consistent with K, and hence in K, because K is a behavior. Thus, �

in

Z

(t

n+1

) =

�

out

Z

(t

n+1

) = �

out

Z

(t

n

u) = �

out

Z

(t

n

w) � z. But then t

n+1

must be in K, since it is consistent with J ,

hence with K, we have �

in

Z

(t

n+1

) � z, and K is a behavior.

4.4 Histories

An (X; Y)-history is a nonempty, join-closed, and directed subset H of X � Y , with the following

additional property: for each x; y 2 H , there exists a sequence

�

X

; �

Y

= x

0

; y

0

� x

1

; y

1

� . . . � x

n

; y

n

= x; y;

29

such that for each k with 0 � k < n, the trace x

n

; y

n+1

is in H . We call such a sequence a

computation sequence for H , and the trace x; y its result. If H is an (X; Y)-history, then the ideal

x; y =

W

H 2 X � Y is called the complete trace of H , with x called the complete input trace and

y called the complete output trace.

If J is a behavior of an (X; Y)-input/output diagram, then it is easy to see from the properties

of such diagrams that the history �(J) of J is, in fact, an (X; Y)-history.

Suppose H is a (Z�X; Y �Z)-history. A feedback computation sequence forH is a computation

sequence

z

0

; x

0

; y

0

; z

0

� z

1

; x

1

; y

1

; z

1

� . . . � z

n

; x

n

; y

n

; z

n

;

for H . If z; x; y; z is the result z

n

; x

n

; y

n

; z

n

of a feedback computation sequence for H , then we say

that z; x; y; z is feedback-reachable in H . It is easy to see that the set of all x; y; z 2 X�Y �Z such

that z; x; y; z is feedback-reachable in H is an (X; Y � Z)-history, and we denote it by fHg

	Z

.

Lemma 4.4.1 Suppose D = (D; �) is a (Z �X; Y �Z)-input/output diagram. If H is the history

of a behavior K of D, then fHg

	Z

is the history of the set of feedback-reachable elements of K.

Proof { Let J be the set of feedback-reachable elements of K, and let G = fHg

	Z

.

To see that the history of J is a subset of G, suppose x; y; z is in the history of J . Then z; x; y; z

is the trace of the result t

n

of a feedback computation sequence t

0

�

1

t

1

�

1

. . . �

1

t

n

for K. Let

z

k

; x

k

; y

k

; z

k

be the trace of t

k

, for each k. We claim that the sequence

z

0

; x

0

; y

0

; z

0

� z

1

; x

1

; y

1

; z

1

� . . . � z

n

; x

n

; y

n

; z

n

is a feedback computation sequence for H , thus showing that x; y; z = x

n

; y

n

; z

n

2 fHg

	Z

. We

show this as follows: Let u

k

= t

k+1

" t

k

; then u

k

is a transition of D. By the properties of

input/output diagrams, we may write u

k

= v

k

_w

k

, where v

k

is the pure-input transition of D with

dom(v

k

) = dom(u

k

) and trace �

in

(u

k

); �

Y�Z

. Then w

k

has trace �

Z�X

;�

out

(u

k

), so t

k

w

k

has trace

z

k

; x

k

; y

k+1

; z

k+1

. Since t

k

w

k

� t

k+1

2 K, we must have t

k

w

k

2 K, and hence z

k

; x

k

; y

k+1

; z

k+1

2

H . But this is exactly what is required to show that the z

k

; x

k

; y

k

; z

k

form a feedback computation

sequence for H .

Conversely, if x; y; z 2 G, then z; x; y; z is the result z

n

; x

n

; y

n

; z

n

of a feedback computation

sequence

z

0

; x

0

; y

0

; z

0

� z

1

; x

1

; y

1

; z

1

� . . . � z

n

; x

n

; y

n

; z

n

for H . We claim that there exists a feedback computation sequence

t

0

�

1

t

1

�

1

. . .�

1

t

n

for K, and nonnegative integers 0 = m

0

; m

1

; . . . ; m

n

= n, such that z

k

; x

k

; y

k

; z

k

is the trace of t

m

k

,

for each k.

The construction proceeds by induction on k. For the basis case (k = 0), we take m

0

= 0, and

t

0

= ?. Suppose now, for some k with 0 � k < n, that we have constructed m

k

and t

0

�

1

t

1

�

1

. . . �

1

t

m

k

2 K, such that t

m

k

has trace z

k

; x

k

; y

k

; z

k

. By de�nition of a feedback sequence, we know

that z

k

; x

k

; y

k+1

; z

k+1

is in H , hence is the trace of an element u

k

of K. Without loss of generality,

we may assume that t

k

� u

k

. Thus, we may obtain v

0

�

1

v

1

�

1

. . . �

1

v

p

2 K, with v

0

= t

m

k

and

v

p

= u

k

. For 0 � i � p, let w

i

be the pure-input element of D with trace �

out

Z

(v

i

); �

X

; �

Y

; �

Z

. Note

that then v

i

_ w

i

exists for each i with 0 � i � p, and we have v

i

_ w

i

�

1

v

i+1

_ w

i+1

for each i

30

with 0 � i < p, by the properties of input/output diagrams. Moreover, v

i

_w

i

2 K for each i with

0 � i � p because v

i

2 K and �

in

(w

i

) � z

k+1

, which is a pre�x of the complete input trace of H ,

hence of K. Let m

k+1

= m

k

+ p, and let t

m

k

+i

= v

i

_ w

i

for each i with 0 < i � p. Then

t

0

�

1

t

1

�

1

. . . �

1

t

m

k

�

1

t

m

k

+1

�

1

. . . �

1

t

m

k+1

is the required feedback computation sequence for K, thus completing the induction step and the

proof.

Theorem 4.5 Suppose D = (D; �) is a (Z�X; Y �Z)-input/output diagram. Then an (X; Y �Z)-

history G, with complete trace x; y; z, is a history of fDg

:

=Z

i� G = fHg

	Z

for some history H of

D with complete trace z; x; y; z.

Proof { If G is a history of fDg

:

=Z

, with complete trace x; y; z, then G is the history of some

behavior J of fDg

:

=Z

. By Theorem 4.4, there exists a behavior K of D such that J is the set of

feedback-reachable elements of K, and J is co�nal in K. Let H be the history of K; then H has

complete trace z; x; y; z by Lemma 4.3.2. Moreover, G = fHg

	Z

by Lemma 4.4.1.

Conversely, suppose G = fHg

	Z

for some history H of D. Suppose G has complete trace x; y; z

and H has complete trace z; x; y; z. Then H is the history of some behavior K of D. By Lemma

4.4.1, G is the history of the set J of feedback-compatible elements of K, from which it follows by

Lemma 4.3.2 that J is co�nal in K. Thus, J is a behavior of fDg

:

=Z

, and G is a history of fDg

:

=Z

.

4.5 Scenarios

An (X; Y)-Kahn function is a continuous function � from an initial segment (a nonempty, downward-

closed, and directed-complete subset) of dom(�) of X to Y . If dom(�) = X, then � is called total.

If U is an initial segment of X, then the set of all (X; Y)-Kahn functions with domain U forms a

directed-complete poset under the argumentwise ordering. We use the traditional notations v and

t to denote this ordering and the associated supremum operation, respectively.

Suppose � is a (Z � X; Y � Z)-Kahn function. We say that � is feedback-compatible if y; z 2

�(dom(�)) implies z; x 2 dom(�) for all x 2 dom(�). Note that total (Z�X; Y �Z)-Kahn functions

are always feedback-compatible.

If � is feedback compatible, then de�ne the feedback functional � associated with �, to be the

functional

� : [�

X

(dom(�))! Y � Z]! [�

X

(dom(�))! Y � Z]

that takes each (X; Y �Z)-Kahn function : �

X

(dom(�))! Y �Z to an (X; Y �Z)-Kahn function

�() = � � ((�

Z

�)� id

dom()

):

The feedback-compatibility of � guarantees that � is well-de�ned, and it is easily veri�ed that �

is continuous. De�ne f�g

	Z

to be the least �xed point of �.

Lemma 4.5.1 If � is a feedback-compatible (Z�X; Y �Z)-Kahn function, and � is the associated

feedback functional, then

f�g

	Z

=

1

G

k=0

�

(k)

;

where �

(0)

is the identically � function, and �

(k+1)

= �(�

(k)

) for each k � 0.

31

Proof { Standard.

An (X; Y)-scenario is an (X; Y)-Kahn function whose domain is directed. The pair

�

_

dom(�)

�

;

�

_

�(dom(�))

�

is called the complete trace of �, with

W

dom(�) called the complete input trace and

W

�(dom(�))

called the complete output trace.

Suppose H is an (X; Y)-history, with complete trace x

0

; y

0

. Then H determines an (X; Y)-

scenario

� : fx 2 X : x � x

0

g ! Y ;

according to the de�nition

�(x) =

_

fy 2 Y : 9x; y 2 H; x � xg:

Intuitively, a scenario represents some information about how inputs precede outputs in a single

computation. That is, �(x) = y i�, in a single computation with scenario �, the input trace x

\enables" the output trace y in the sense that it is possible for arbitrarily large �nite pre�xes y of

y to be generated in response to inputs that are �nite pre�xes of x.

Brock and Ackerman [7, 6] have de�ned \scenario" based on the notion of when �nite inputs

\must precede" �nite outputs. The two notions of scenario are evidently equivalent, since in a

computation with complete trace x

0

; y

0

, x \enables" y i� every �nite pre�x x of x

0

that \must

precede" some �nite pre�x y of y is already a pre�x of x, and x \must precede" y i� for all x � x

0

,

if x \enables" y, then x � x. We �nd that a de�nition of scenario based on \enables," rather than

\must precede," is easier to relate to Kahn's continuous function model of processes.

Lemma 4.5.2 Suppose H is a (Z �X; Y � Z)-history, with scenario �. Let G = fHg

	Z

, and let

 be the scenario of G. If � is feedback-compatible, then = f�g

	Z

.

Proof { We show ()) (x) � f�g

	Z

(x) for all x 2 X, and (() is a �xed point of the feedback

functional associated with �.

(() Suppose (x) = y; z. Let y; z be an arbitrary �nite pre�x of y; z. Then there exists a

feedback computation sequence

z

0

; x

0

; y

0

; z

0

� z

1

; x

1

; y

1

; z

1

� . . . � z

n

; x

n

; y

n

; z

n

for H , such that x

n

� x and y; z � y

n

; z

n

. A simple induction shows that for each k with 0 � k < n

we have

y

k+1

; z

k+1

� �

(k+1)

(x);

where �

(k)

is as de�ned in Lemma 4.5.1. It follows that y; z � f�g

	Z

(x). Since y; z was an arbitrary

�nite pre�x of y; z, it follows that y; z � f�g

	Z

(x), as was to be shown.

()) Since we already know that v f�g

	Z

, to show that is a �xed point of the feedback

functional � associated with �, it remains only to show that �() v . That is, we must show

that �((�

Z

((x)); x) � (x) for all x 2 X . To show this, it su�ces to show that for all x; y; z 2 G,

if y

0

; z

0

is a �nite pre�x of �(z; x), then there exists x; y

00

; z

00

2 G, such that y

0

� y

00

and z

0

� z

00

.

32

Now, if x; y; z 2 G, then x; y; z is the result x

n

; y

n

; z

n

of a feedback computation sequence

z

0

; x

0

; y

0

; z

0

� z

1

; x

1

; y

1

; z

1

� . . . � z

n

; x

n

; y

n

; z

n

for H . If y

0

; z

0

� �(z; x), then z; x; y

00

; z

00

2 H for some y

00

2 Y and z

00

2 Z with y

0

� y

00

and

z

0

� z

00

. This shows that

z

0

; x

0

; y

0

; z

0

� z

1

; x

1

; y

1

; z

1

� . . .� z

n

; x

n

; y

n

; z

n

� z

00

; x; y

00

; z

00

is a feedback sequence for H . It follows that x; y

00

; z

00

is in G.

Theorem 4.6 Suppose D = (D; �) is a (Z�X; Y �Z)-input/output diagram. Then an (X; Y �Z)-

scenario , with complete trace x; y; z, is a scenario of fDg

:

=Z

i� = f�g

	Z

, where � is a scenario

of D with complete trace z; x; y; z.

Proof { If is a scenario of fDg

:

=Z

, with complete trace x; y; z, then it is the scenario of some

history G of fDg

:

=Z

, with the same complete trace. By Theorem 4.5 there exists a history H of D,

with complete trace z; x; y; z, such that G = fHg

	Z

. If � is the scenario of H , then � is obviously

feedback-compatible, and = f�g

	Z

by Lemma 4.5.2.

Conversely, if = f�g

	Z

has complete trace x; y; z, where � is a scenario of D with complete

trace z; x; y; z, then � is the scenario of some history H of D, and is clearly feedback-compatible.

By Theorem 4.5, fHg

	Z

is a history of fDg

:

=Z

, and by Lemma 4.5.2, fHg

	Z

has scenario .

4.6 Input/Output Relations

Given an (X; Y)-input/output diagram D, de�ne the input/output relation Reln(D) of D to be the

set of all complete traces of scenarios of D.

Lemma 4.6.1 Suppose D is an (X; Y)-input/output diagram. Then Reln(D) is:

� (Total) For all x 2 X, there exists y 2 Y such that x; y 2 Reln(D).

� (Monotone) If x; y 2 Reln(D), and x � x

0

, then there exists y

0

, with y � y

0

, such that

x

0

; y

0

2 Reln(D).

Moreover, if D is a Kahn diagram, then Reln(D) is (the graph of) a total (X; Y)-Kahn function,

and the scenarios of D are exactly the restrictions of Reln(D) to directed initial segments of X.

Proof { Straightforward from Lemma 4.3.1.

If R � X � Y , then let R

�n

denote the set of �nite pre�xes of elements of R. The relation R is

called continuous if, for all x 2 X, whenever U is a maximal directed subset of

fy 2 Y : 9x � x; x; y 2 R

�n

g;

then x; (

W

U) 2 R. Note that ifR is the graph of a total (X; Y)-Kahn function, then R is continuous.

Lemma 4.6.2 Suppose R � X � Y is total, monotone, and continuous. Then there exists an

(X; Y)-machine M with R as its input/output relation.

33

Proof { De�ne the machineM as follows:

� Proper states: all elements x; y 2 R

�n

. Take �

X

; �

Y

as the start state.

� Proper transitions: all pairs (x; y; v) 2 R

�n

�Y , such that x; yv 2 R

�n

. De�ne dom(x; y; v) =

x; y and cod(x; y; v) = x; yv. Take the transitions (x; y; �

Y

) as identities.

� Residual: de�ne (x; y; v) and (x; y; v

0

) to be consistent i� v and v

0

are consistent, in which

case de�ne

(x; y; v) " (x; y; v

0

) = (x; yv

0

; v " v

0

):

� Output map: de�ne �(x; y; v) = v.

� Input map: de�ne �

x

0

(x; y; v) = (xx

0

; y; v).

It is not di�cult to verify thatM is an (X; Y)-machine. Moreover, a set H � X �Y is the history

of a behavior ofM exactly when �

X

(H) is an ideal x of X , and �

Y

(H) is a maximal directed subset

of

fy 2 Y : 9x � x; x; y 2 R

�n

g:

Since R is continuous, it follows that M has R as its input/output relation.

Lemma 4.6.3 Suppose � is a total (Z �X; Y �Z)-Kahn function with complete trace z; x; y; z,

is the restriction of � to pre�xes of z; x, and f g

	Z

has trace x; y; z. Then f g

	Z

is the restriction

of f�g

	Z

to pre�xes of x.

Proof { A simple induction shows that for each k � 0 the scenario

(k)

is the restriction to

pre�xes of x of �

(k)

, where

(k)

and �

(k)

are as de�ned in Lemma 4.5.1. From this, the result

follows by continuity of restriction.

Lemma 4.6.4 Suppose � is a total (Z �X; Y � Z)-Kahn function. Then f�g

	Z

(x) = y; z i� the

restriction of � to pre�xes of z; x is feedback-compatible, and f g

	Z

has complete trace x; y; z.

Proof { Suppose f�g

	Z

(x) = y; z. Let be the restriction of � to pre�xes of z; x. Then

�(z; x) = y; z, so is feedback-compatible. By Lemma 4.6.3, f g

	Z

is the restriction of f�g

	Z

to

pre�xes of x, hence x; y; z is the complete trace of f g

	Z

.

Conversely, suppose the restriction of � to pre�xes of z; x is feedback-compatible, and f g

	Z

has trace x; y; z. By Lemma 4.6.3, f g

	Z

is the restriction to pre�xes of x of f�g

	Z

. Since f g

	Z

has complete trace x; y; z, it follows that (f g

	Z

)(x) = y; z, and hence f�g

	Z

(x) = y; z.

Theorem 4.7 (Kahn Principle) Suppose D is a (Z �X; Y � Z)-Kahn diagram. Then

Reln(fDg

:

=Z

) = fReln(D)g

	Z

:

Proof { By de�nition of Reln, x; y; z 2 Reln(fDg

:

=Z

) i� there exists a scenario of fDg

:

=Z

with

complete trace x; y; z. By Lemma 4.6.4, this is true i� there exists a feedback-compatible scenario

� of D, with trace z; x; y; z, such that f�g

	Z

has trace x; y; z. By Lemma 4.6.3, this is true i� the

restriction � of Reln(D) to pre�xes of z; x is feedback-compatible, has trace z; x; y; z, and f�g

	Z

has trace x; y; z. By Lemma 4.6.4, this is true i� x; y; z 2 fReln(D)g

	Z

.

34

5 Discussion

The author was led to de�ne concurrent transition systems because of the apparent di�culty of

establishing relationships between operational and denotational models of concurrent computation.

The problems, of �nding a natural characterization of a large class of dataow-like processes with

functional behavior, and of proving that the feedback operation on such processes satis�es the

Kahn Principle, served as primary motivating examples. Before trying the concurrent transition

system approach reported here, an attempt was made to try to solve these problems using a

model of processes based on ordinary (nondeterministic) labeled transition systems. Although

other researchers have shown how various parallel composition operations of CCS and CSP can be

given reasonably natural de�nitions in such a model, our situation is somewhat di�erent, because

we have drawn a distinction between input and output, and because we are interested in in�nite

computations as well as �nite ones.

There were two di�culties that seemed inherent in an approach based on ordinary transition

systems. The �rst di�culty arose from the fact that, although we are interested in in�nite com-

putations of a system, we are only interested in those in�nite computations that are \completed"

in the sense that each process produces all the output implied by the input it has received. The

usual method of handling this is to distinguish between \fair" and \unfair" computations. This

approach leads to technical problems, as pointed out in Section 1. The second di�culty with the

nondeterministic transition system approach was that the notion of \primitive" or \atomic" steps

of a process seemed not to behave smoothly with respect to the feedback operation. One can see

the problem by considering an \identity" process, which simply passes its input through unchanged

to its output. One would like to have the atomic steps of this process correspond to the receipt

of input and the issuance of output. Now, consider what happens when the output of the identity

process is fed back to its input. The \intuitively correct" result of this construction is a process

that produces no output. It seems most natural to de�ne the atomic steps of the fed-back iden-

tity to correspond to the simultaneous issuance of output and the absorption of that output as

feedback input. However, the question arises of how to de�ne the construction in such a way that

\nonintuitive" computations, in which output is produced, are avoided.

In retrospect, concurrent transition systems seem to provide exactly the right structure to

circumvent the di�culties mentioned above. The fairness problem is solved, in the concurrent

transition system approach, by replacing the notion \fair computation sequence" by the more

convenient notion \behavior" or \maximal ideal." The atomic step problem is solved by restricting

attention to a class of processes whose transitions have pure-input/output decompositions. In

essence, the existence of such decompositions means that there is an inherent delay of one atomic

step between input and output, and this allows nonintuitive computations to be avoided. The

existence of pure-input/output decompositions is easily and naturally expressed with concurrent

transition systems, whereas it is not clear how the same could be done with ordinary transition

systems.

5.1 Related Work

As mentioned in Section 2, the de�ning axioms for concurrent transition systems are satis�ed by

the derivation relation of the �-calculus, and the computation category construction is an abstract

version of a construction that has already been found useful in that setting. The goal of the �-

calculus work [22, 5], and the extension of this work to term-rewriting systems [15], is to try to �nd

35

reduction strategies that are optimal in the sense that only redexes that are \needed" are contracted,

and each needed redex is contracted only once. The main theorem one tries to prove is that every

derivation is in a sense equivalent to an optimal derivation. To make the notions \needed redex"

and \equivalent derivations" precise, the \residual" operation is de�ned. Intuitively, the residual

operation serves to keep track of what happens to one redex when others are contracted. A redex

is \needed" if it (or its residuals) must be contracted in any derivation sequence that leads to a

normal form. Two derivation sequences are regarded as equivalent i� the same set of reductions is

performed in each, where the notion \same set of reductions" is interpreted modulo residuals. The

residual operation for CTS's was introduced for an essentially similar purpose: to keep track of

what happens to a particular atomic transition (say for one process) of a system, when other atomic

steps (say for other, concurrently executing processes) are executed. Two computation sequences

are regarded as equivalent representatives of the same concurrent computation if they contain the

\same set of atomic steps."

A di�erence between the CTS and and term-rewriting settings are that in the former we regard

inconsistent pairs of coinitial transitions as meaningful, whereas in the latter one is usually interested

only in conuent or Church-Rosser systems. Also, with CTS's we are interested in nonterminating

computations, whereas in the rewriting situation one is primarily interested in terminating or

normalizing computations.

Several authors have investigated algebraic structures for modeling concurrency that seem re-

lated to concurrent transition systems. Winskel [42] de�nes the notion of a \synchronization tree,"

which is a (possibly in�nite) tree whose arcs are labeled with elements of a \synchronization al-

gebra." In [41], labeled event structures [29] are used in place of labeled trees. Using various

synchronization algebras, Winskel is able to show several notions of parallel composition from CCS

and CSP to be special cases of a single de�nition. It is clear that Winskel's trees are special cases of

our computation diagrams. Also, Winskel's synchronization algebras are rather similar to our trace

algebras. Speci�cally, a trace algebra can be regarded as a synchronization algebra if we identify

Winskel's � with our �, and Winskel's operation � with our operation _. It is not possible, in

general, to regard a synchronization algebra as a trace algebra, since the latter are somewhat more

highly structured. We use trace algebras to label the transitions of CTS's in essentially the same

way as Winskel uses synchronization algebras to label trees. However, we �nd it an advantage that

trace algebras are a particular kind of CTS. By regarding Winskel's synchronization trees as special

cases of our synchronization diagrams, essentially the same parallel composition constructions can

be carried out in our framework.

Event structures and CTS's can be related as follows: Given a CTS with start state (C; �), it

is straightforward to make the set of elements of Diag(C; �) into an event structure by de�ning the

\consistent" sets of elements to be the �nite sets that are consistent in the sense we have de�ned

here, and de�ning a consistent set T to \enable" an element t i� there is a subset U of T such

that (

W

U) �

1

t. Conversely, the set of \con�gurations" of an event structure is a partially ordered

set in which every �nite subset with an upper bound has a least upper bound, and hence is easily

made into a complete CTS, by taking con�gurations as proper states and the ordering relation as

the set of proper transitions. In a sense, CTS's can be thought of as a somewhat more primitive

operational model than event structures, since in the former one is free to designate the set of

states, whereas in the latter, states are always obtained as con�gurations.

Main and Benson [25] use ideas from multilinear algebra to model nondeterministic and concur-

rent processes without iteration or recursion. An important role is played by \positive semi-rings,"

36

whose formal properties are closely related the trace algebras used in the present paper. Essentially,

a trace algebra Z is a positive semiring in which a left-cancellation law holds for multiplication,

and in which there is a further connection between addition and multiplication; namely, addition

is least upper bound with respect to the pre�x order induced by multiplication.

Arbib and Manes [2] have developed a categorical theory of automata, which generalizes several

classical situations. They generalize the notion of an \action" or \transition map" as a function

� : Q � X ! Q to the notion of a \dynamics," which is a morphism � : X(Q) ! Q, where Q is

an object of an arbitrary category K, and X is an endofunctor of K. Arbib and Manes' theory is

applied to \port automata" in [37]. In that paper, concurrency is modeled by interleaving, and the

issue of fair in�nite computations is not considered. It would be nice if the de�nition of \action" we

have given here could be shown to be a special case of Arbib and Manes' dynamics. However, we

have yet to identify the proper endofunctor X of CTS to achieve this goal. The product-forming

functor (- �X) does not yield a general enough class of dynamics.

The work of Winkowski [39, 40], is motivated by considerations in the theory of Petri nets.

In [39], Winkowski de�nes the notion of a \behavior algebra," which is a category equipped with

(among other things) a partial binary operation + on the arrows of the category, representing

independent concurrent composition. The properties of a behavior algebra are similar in many

respects to those enjoyed by the computation categories de�ned in this paper. However, the theory

of computation categories appears to be somewhat simpler than that of behavior algebras, primar-

ily due to the fact that in computation categories there is a connection between concurrency and

pushouts. The existence of this connection means that the concurrency information in a computa-

tion category can be obtained entirely from the structure of the category itself, without requiring

the speci�cation of additional information such as the operation + of a behavior algebra. It also

makes possible the de�nition of computations as ideals, which is substantially simpler than the

de�nition of \histories" given by Winkowski.

Staples and Nguyen [34] de�ne a dataow-like model in which a process is represented by a

partially ordered set whose elements are labeled by \histories" (\traces," in our terminology). Pro-

cesses are required to satisfy a collection of axioms, which appear related to the properties enjoyed

by synchronization diagrams in the present paper. It would seem that by taking an input/output

synchronization diagram and equipping the cpo of its computations with the map that takes each

computation to its complete trace, one obtains a structure that is similar to the processes of Staples

and Nguyen, both in formal properties and in intuitive content. However, there is not an exact

correspondence, since one of Staples and Nguyen's axioms concerns greatest lower bounds, whose

existence we have not found it necessary to assume.

Labella and Pettorossi [21] have given categorical characterizations of various operations of

CCS and CSP. In their approach they take as given a semantics of these languages de�ned in

terms of equivalence classes of trees. A suitable de�nition of morphism makes the set of all these

equivalence classes into a category, in which their characterizations are valid. The characterizations

they obtain are not particularly simple, and one is not left with the feeling they are likely to

translate to categories obtained from other concurrent programming languages. In contrast, in the

present paper we hope that by de�ning a model in which simple categorical constructions appear to

correspond to intuitively meaningful semantic operations on processes, we can use the same model

to de�ne the semantics of a number of di�erent concurrent programming languages.

37

5.2 Directions for Future Research

One obvious avenue for future research is to extend the machine model to include a way of de�ning

machines recursively. Presumably, a recursive de�nition of an (X; Y)-machine would denote a limit

of an inverse system generated by a suitable continuous endofunctor on Mach

X;Y

. To properly

develop this idea, we have to establish that such a limit construction would produce a machine

with the intuitively correct set of computations. We also have to establish the continuity of a set

of network-building operations, such as the parallel product, relabeling, and feedback operations

de�ned in this paper.

Although the machine model de�ned here is capable of representing a large class of processes,

including processes with functional input output behavior and an \unfair merge" process, it is

possible to show that \fair merge" cannot be modeled. In addition, it is impossible to model

processes that have \conicts" or \race conditions" between input and output. An interesting

question is whether it is possible to generalize our de�nitions in a natural way, so that a larger

class of processes can be modeled. One way to approach this is to investigate classes of automata

obtained by weakening some of the conditions of Theorem 4.1.

In Section 4, we pointed out that the feedback operation on machines, when mapped to automata

and synchronization diagrams, could be characterized as right-adjoint to a relabeling functor. The

parallel product of automata can also be characterized in a similar way. This phenomenon suggests

the idea of de�ning a \process algebra" to be an (X; Y)-indexed collection of categories Proc

X;Y

,

and to require that operations on processes be de�ned as adjoints to various naturally occurring

functors. The advantages of such an approach include the ability to compare the concrete form

taken by the \same operations" in di�erent process algebras, and automatic proofs of continuity

of operations arising from the adjoint characterizations. However, it is not clear whether such an

approach is feasible, since we do not yet have an adjoint characterization of the feedback operation

on machines, nor do we know whether it is possible to impose useful categorical structure on the

behavior, history, and input/output relation models.

It would be nice to understand better the relationships between the CTS-based models de�ned

in this paper and other models of concurrency, especially Petri Nets. One question here would be

to see how much of the modeling power of Petri Nets is shared by CTS's, which are somewhat more

abstract. Comparisons of input/output automata with labeled transition system models of CCS

and CSP would also be useful. An interesting question is how the notion of \bisimulation" [30, 28],

which is fundamental for ordinary transition systems, might be reasonably generalized to CTS's.

Finally, the full abstraction problem for machines remains open. Although we were not able

to solve this problem in this paper, we have been able to make the problem more concrete by

establishing the existence of a seemingly natural \fully abstract" algebra of processes. Moreover,

we feel that the information about the feedback operation we have obtained is likely to be useful

in ultimately resolving this important question.

Acknowledgement

I am grateful to the anonymous referees for their careful reading and perceptive comments.

References

[1] S. Abramsky. Experiments, powerdomains, and fully abstract models for applicative multipro-

gramming. In Foundations of Computation Theory, pages 1{13, Springer-Verlag. Volume 158

38

of Lecture Notes in Computer Science, 1983.

[2] M. A. Arbib and E. G. Manes. Arrows, Structures, and Functors: The Categorical Imperative.

Academic Press, 1975.

[3] R. J. Back and N. Mannila. A re�nement of Kahn's semantics to handle nondeterminism and

communication. In Proc. ACM Symposium on Principles of Distributed Computing, pages 111{

120, 1982.

[4] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Volume 103 of Studies in

Logic and the Foundations of Mathematics, North-Holland, 1981.

[5] G. Berry and J.-J. L�evy. Minimal and optimal computations of recursive programs. Journal

of the ACM, 26(1):148{175, January 1979.

[6] J. D. Brock. A Formal Model of Non-Determinate Dataow Computation. PhD thesis, Mas-

sachusetts Institute of Technology, 1983. Available as MIT/LCS/TR-309.

[7] J. D. Brock and W. B. Ackerman. Scenarios: a model of non-determinate computation.

In Formalization of Programming Concepts, pages 252{259, Springer-Verlag. Volume 107 of

Lecture Notes in Computer Science, 1981.

[8] S. D. Brookes. On the relationship of ccs and csp. In ICALP 83, Springer Verlag, 1983.

[9] S. D. Brookes and W. C. Rounds. Behavioral equivalence relations induced by programming

logics. In Proceedings of ICALP 83, 1983.

[10] A. A. Faustini. An operational semantics for pure dataow. In Automata, Languages, and

Programming, 9th Colloquium, pages 212{224, Springer-Verlag. Volume 140 of Lecture Notes

in Computer Science, 1982.

[11] I. Guessarian. Algebraic Semantics. Volume 99 of Lecture Notes in Computer Science, Springer

Verlag, 1981.

[12] M. Hennessy and R. de Nicola. Testing equivalences for processes. In ICALP 1983, Springer-

Verlag. Volume 154 of Lecture Notes in Computer Science, 1983.

[13] H. Herrlich and G. E. Strecker. Category Theory. Sigma Series in Pure Mathematics, Helder-

mann Verlag, 1979.

[14] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666{

676, 1978.

[15] G. Huet. Formal structures for computation and deduction (�rst edition). May 1986. Unpub-

lished manuscript. INRIA, France.

[16] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,

editor, Information Processing 74, North-Holland, 1974.

[17] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In B. Gilchrist,

editor, Information Processing 77, North-Holland, 1977.

39

[18] R. M. Keller. Denotational models for parallel programs with indeterminate operators. In E. J.

Neuhold, editor, Formal Description of Programming Concepts, pages 337{366, North-Holland.

1978.

[19] R. M. Keller and P. Panangaden. Semantics of networks containing indeterminate operators.

In Seminar on Concurrency, pages 479{496, Springer-Verlag. Volume 197 of Lecture Notes in

Computer Science, 1984.

[20] J. N. Kok. Denotational semantics of nets with nondeterminism. In ESOP 86, pages 237{249,

Springer-Verlag. Volume 213 of Lecture Notes in Computer Science, March 1986.

[21] A. Labella and A. Pettorossi. Categorical models for handshaking communications. In Annales

Societatis Mathematicae Polonae. SERIES IV: Fundamenta Informaticae, 1985.

[22] J.-J. L�evy. R�eductions Correctes et Optimales dans le Lambda Calcul. PhD thesis, Universit�e

Paris VII, 1978.

[23] S. Mac Lane. Categories for the Working Mathematician. Volume 5 of Graduate Texts in

Mathematics, Springer Verlag, 1971.

[24] D. B. MacQueen. Models for Distributed Computing. Technical Report 351, INRIA, 1979.

[25] M. G. Main and D. B. Benson. Functional behavior of nondeterministic and concurrent pro-

grams. Information and Control, 62:144{189, 1984.

[26] A. Mazurkiewicz. Trace theory. In Advanced Course on Petri Nets, GMD, Bad Honnef,

September 1986.

[27] R. Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes in Computer

Science, Springer Verlag, 1980.

[28] R. Milner. Lectures on a calculus for communicating systems. In Seminar on Concurrency,

pages 197{220, Springer-Verlag. Volume 197 of Lecture Notes in Computer Science, 1984.

[29] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and domains, part I.

Theoretical Computer Science, 13:85{108, 1981.

[30] D. M. R. Park. Concurrency and automata on in�nite sequences. In Theoretical Computer

Science, Springer-Verlag. Volume 104 of Lecture Notes in Computer Science, 1981.

[31] D. M. R. Park. The \fairness problem" and nondeterministic computing networks. In Proceed-

ings, 4th Advanced Course on Theoretical Computer Science, Mathematisch Centrum, 1982.

[32] V. R. Pratt. On the composition of processes. In Ninth Annual ACM Symposium on Principles

of Programming Languages, pages 213{223, January 1982.

[33] V. R. Pratt. The pomset model of parallel processes: unifying the temporal and the spatial.

In Seminar on Concurrency, pages 180{196, Springer-Verlag. Volume 197 of Lecture Notes in

Computer Science, July 1984.

40

[34] J. Staples and V. L. Nguyen. A �xpoint semantics for nondeterministic data ow. Journal of

the ACM, 32(2):411{444, April 1985.

[35] E. W. Stark. The Computation Category of a Concurrent Transition System. Technical Re-

port 86/08, State University of New York at Stony Brook Computer Science Dept., May 1986.

[36] E. W. Stark. Concurrent transition system semantics of process networks. In Fourteenth ACM

Symposium on Principles of Programming Languages, pages 199{210, January 1987.

[37] M. Steenstrup, M. A. Arbib, and E. G. Manes. Port automata and the algebra of concurrent

processes. JCSS, 27(1):29{50, 1983.

[38] P. S. Thiagarajan. Elementary net systems. In Advanced Course on Petri Nets, GMD, Bad

Honnef, September 1986.

[39] J. Winkowski. An algebraic description of system behaviors. Theoretical Computer Science,

21:315{340, 1982.

[40] J. Winkowski. Behaviors of concurrent systems. Theoretical Computer Science, 12:39{60, 1980.

[41] G. Winskel. Event structures. In Advanced Course on Petri Nets, GMD, Bad Honnef, Septem-

ber 1986.

[42] G. Winskel. Synchronization trees. Theoretical Computer Science, 34:33{82, 1984.

41

