
Connections between a Concrete and an

Abstract Model of Concurrent Systems

Eugene W. Stark

�

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

Abstract

We de�ne a concrete operational model of concurrent systems, called trace

automata. For such automata, there is a natural notion of permutation equiv-

alence of computation sequences, which holds between two computation se-

quences precisely when they represent two interleaved views of the \same con-

current computation." Alternatively, permutation equivalence can be charac-

terized in terms of a residual operation on transitions of the automaton, and

many interesting properties of concurrent computations can be expressed with

the help of this operation. In particular, concurrent computations, ordered by

\pre�x," form a Scott domain whose structure we characterize up to isomor-

phism.

By axiomatizing the properties of the residual operation, we obtain a more

abstract formulation of automata, which we call concurrent transition systems

(CTS's). By exploiting a correspondence between concurrent alphabets and

certain CTS's, we are able to use the rich algebraic structure of CTS's to

obtain results in trace theory. Finally, we connect CTS's and trace automata

by obtaining a characterization of those CTS's that correspond in a natural way

to trace automata, and we show how the correspondence suggests an interesting

notion of morphism of trace automata.

1 Introduction

Labeled transition systems (LTS's) have been used frequently as an operational se-

mantics of concurrent processes. In typical formulations, an LTS is a tuple A =

(E;Q; T; �), where E is a set of events, Q is a set of states, � 2 Q is a distinguished

start state, and T � Q�E�Q is a set of transitions, which represent potential com-

putation steps. Although useful for many applications, LTS's are not ideally suited

as a model of concurrency, since they contain no mathematical structure with which

�

Research supported in part by NSF Grant CCR-8702247.

1

concurrency can be represented and reasoned about directly. Instead, concurrency in

computations must be represented somewhat arti�cially by interleaving, and reason-

ing about concurrency requires that we make use of auxiliary information (e.g. which

pairs of transitions \commute") not explicitly formalized in the LTS model.

In an e�ort to get explicit concurrency information into the de�nition of a tran-

sition system, we might introduce a symmetric, irre
exive concurrency relation k on

E, and require that the transitions respect this concurrency information in a suitable

sense. Although there is some
exibility in the exact sense in which concurrency

is to be respected by the transitions, the end result is essentially the class of trace

automata which we de�ne below. This kind of automaton, which arises naturally in

the study of trace theory [1, 11], has been the subject of investigation by Bednarczyk

[2], Kwiatkowska [8], and Shields [13], and has been used by the author to study

nondeterministic data
ow networks [12, 17]. The familiar mapping that takes a �nite

computation sequence of an automaton to the string it generates is now replaced

by a monotone mapping from the pre�x-ordered set of �nite computation sequences

to the pre�x-ordered set of traces, which are equivalence classes of strings modulo a

congruence relation induced by the concurrency relation.

We can actually go a bit further than this. If we regard computation sequences

having the same trace as \equivalent interleaved views" of a single concurrent com-

putation, and we factor the poset of computation sequences by this equivalence, then

the trace mapping becomes an isomorphism between the resulting poset of \�nite con-

current computations" and the \trace language" generated by the automaton, where

the latter is viewed as a subset of the pre�x-ordered set of all traces. Ideal completion

of the poset of �nite concurrent computations results in a Scott domain containing

both �nite and in�nite concurrent computations. The domain of concurrent com-

putations is much more interesting than the poset of �nite computation sequences,

since concurrency is re
ected in the former through the existence of nontrivial upper

bounds. Since our goal is to make concurrency explicit, one might argue that concur-

rent computations, rather than computation sequences, ought to be the main focus

of attention.

One of our main results is the following characterization of the structure of the

domains of concurrent computations of trace automata:

The domain of concurrent computations of a trace automaton is iso-

morphic to a normal subdomain U of the domain

�

E of traces generated

by the event set E and concurrency relation k, where the inclusion of U

in

�

E preserves prime intervals. Conversely, if U is a normal subdomain of

a domain

�

E of traces, such that the inclusion of U in

�

E preserves prime

intervals, then U is isomorphic to the domain of concurrent computations

of a trace automaton.

The proof of this characterization theorem uses in an essential way the observation

that equivalence of computations can be described, independently of trace theory,

using the concept of a \residual operation" on computation sequences. Intuitively,

taking the residual of a computation sequence
 \after" a computation sequence �

corresponds to \cancelling from
 the greatest common pre�x, up to concurrency, of

 and �." The computation sequences
 and � are equivalent precisely when each is

completely cancelled by the other. Residuals have previously been used by L�evy [9]

in the study of the �-calculus, to de�ne the notion of strongly equivalent reductions.

The same ideas can also be applied [3, 4, 7] to the study of recursive programs and

left-linear term-rewriting systems without critical pairs. In that work, residuals are

used to keep track of what happens to one redex in a term while other redexes are

contracted. Our use here is analogous: the residual operation allows us to keep

track of what happens to one enabled transition in a system while other concurrent

transitions are executed. Boudol and Castellani [5] have also exploited the use of

residuals and permutation equivalence in reasoning about concurrency.

By axiomatizing the properties of a residual operation necessary to obtain the

equivalence relation on computation sequences, we arrive at the de�nition of con-

current transition systems (CTS's) [15, 16]. The de�ning axioms generate a rich

algebraic theory, which we have found to be of use in the study of concurrent systems

[12, 15, 17]. A suitable de�nition of morphism makes the class of all CTS's into a

category CTS, which has small limits, small coproducts, small �ltered colimits, and

is cartesian closed. Moreover, many interesting constructions on automata have uni-

versal or couniversal characterizations either in CTS or in functor categories built

from it. Included among these constructions are those that extract the computational

behavior of a CTS.

In this paper, we give the details of the story outlined above. Our goal is to

motivate explicitly the connection, between the concrete, easily understood trace

automaton model, and the more abstract concurrent transition systems which the

author has described elsewhere [15, 16]. To complete this connection between abstract

and concrete, we exhibit properties that characterize up to isomorphism those CTS's

that are derived from \event automata."

2 Trace Automata

In this paper, all sets whose cardinality is left unspeci�ed are assumed to be at most

countable.

A concurrent alphabet is a set E, equipped with a symmetric, irre
exive binary

relation k

E

, called the concurrency relation.

A trace automaton (henceforth simply \automaton") is a tuple A = (E;Q; T),

where

� E is a concurrent alphabet, whose elements are called events. We assume that

E does not contain the special symbol �, called the identity event.

� Q is a set of states.

� T � Q � (E [f�g) � Q is a set of transitions. We usually write t : q

a

�!r, or

just q

a

�!r, to denote a transition t = (q; a; r) in T .

These data are required to satisfy the following conditions:

(Identity) q

�

�!r i� q = r.

(Disambiguation) If q

a

�!r and q

a

�!r

0

, then r = r

0

.

(Commutativity) For all states q and events a; b, if ak

E

b, q

a

�!r, and q

b

�!s, then

for some state p there exist transitions s

a

�!p and r

b

�!p.

A trace automaton with start state is a tuple (E;Q; T; �), where (E;Q; T) is a trace

automaton, and � 2 Q is a distinguished state.

Intuitively, if a 2 E, then a transition q

a

�!r represents a potential computation

step ofA in which event a occurs and the state changes from q to r. Identity transitions

id

q

= (q

�

�!q) do not represent steps of A. Rather, these transitions play a purely

technical role, which will become evident when we de�ne the notion of a \residual

operation" below. We say that event a 2 E is enabled in state q if there exists

a transition q

a

�!r. By the disambiguation condition, if q

a

�!r, then r is uniquely

determined by q and a. If t : q

a

�!r, then q is called the domain dom(t) of t and r is

called the codomain cod(t) of t. Transitions t and u are called coinitial if dom(t) =

dom(u).

A �nite computation sequence for an automaton is a �nite sequence
 of non-

identity transitions of the form:

q

0

a

1

�!q

1

a

2

�! . . .

a

n

�!q

n

:

The number n is called the length j
j of
. By convention, we regard an identity

transition id

q

. as identical to the computation sequence of length zero from state q.

An in�nite computation sequence is an in�nite sequence of non-identity transitions:

q

0

a

1

�!q

1

a

2

�! . . . :

We extend notation and terminology for transitions to computation sequences, so

that if
 is a computation sequence, then the domain dom(
) of
 is the state q

0

,

and if
 is �nite, then the codomain cod(
) of
 is the state q

n

. We write
 : q ! r

to assert that
 is a �nite computation sequence with domain q and codomain r.

A computation sequence
 is initial if dom(
) is the distinguished start state �. If

 : q ! r and � : q

0

! r

0

are �nite computation sequences, then
 and � are called

composable if q

0

= r, and we de�ne their composition to be the �nite computation

sequence
� : q ! r

0

, obtained by concatenating
 and � and identifying cod(
) with

dom(�). The operation of composition of �nite computation sequences is associative,

and identity transitions (computation sequences of length 0) behave as units for it. A

�nite computation sequence
 is a pre�x of a computation sequence �, and we write

 � �, i� there exists a computation sequence � with
� = �.

Trace automata (with start state) are nearly identical to the \forward stable asyn-

chronous systems" of Bednarczyk [2]; the di�erence being that we retain his forward

stability axiom (our commutativity axiom), but we omit his axiom stating that if

q

a

�!r, r

b

�!s, and ak

E

b, then for some state p there exist transitions q

b

�!p and

p

a

�!s. Although Bednarczyk seems to treat this axiom as more fundamental than

forward stability, it seems overly restrictive, and we shall see that much can be done

without it.

Trace automata can be used as the basis for an operational model of nondeter-

ministic data
ow networks, which consist of a collection of concurrently and asyn-

chronously executing processes that communicate by passing \value tokens" over

named \ports." This is done by introducing additional structure to distinguish be-

tween \input events," \output events," and \internal events," and then requiring

that input and output events have a speci�c form that re
ects the port structure. We

give below some of the de�nitions to illustrate how this is done. The reader wishing

further discussion is referred to [10, 12, 15, 17].

An input/output automaton is a triple (A;X; Y), where A = (E;Q; T; �) is a trace

automaton with start state, and X, Y are disjoint subsets of E, called the sets of input

events and output events, respectively. Elements of E n (X [Y) are called internal

events. The following property is required to hold:

(Receptivity) For all states q and input events a, event a is enabled in state q.

A port automaton is an input/output automaton (A;X; Y) equipped with a set V

of values, a set I of input ports, and a set O of output ports, such that X = I � V ,

Y = O � V , and such that whenever (p; v) and (p

0

; v

0

) are events in X [Y , then

(p; v)k

E

(p

0

; v

0

) i� p = p

0

.

Two particularly well-behaved classes of input/output automata are the \mono-

tone" automata and the \determinate" automata. An input/output automaton is

monotone if the following additional property holds:

(Monotonicity) ak

E

b whenever a 2 X and b 2 E nX.

Intuitively, the monotonicity property states that the arrival of input cannot disable

any enabled output or internal transitions, since if b is an output event enabled in

state q, and if a is an arbitrary input event, then ak

E

b by monotonicity, q

a

�!r for

some r by receptivity, hence b is enabled in state r by commutativity. An automaton

is determinate if it satis�es the following condition:

(Determinacy) Suppose q

b

�!r and q

c

�!s, where b and c are distinct non-input

events. Then bk

E

c.

It can be shown [15, 16] that determinate input/output automata have functional

input/output behavior.

2.1 Concurrent Computations

A partially ordered set (D;v) is consistently complete if each pair of elements of D

that have an upper bound, have a least upper bound. A (Scott) domain is an !-

algebraic, consistently complete CPO D = (D;v;?). A domain D is �nitary if for

all �nite (=isolated=compact) elements d 2 D the set fd

0

2 D : d

0

v dg is �nite.

An atom of D is a minimal non-? element of D. If D and E are domains, then a

monotone map f : D ! E is continuous if it preserves suprema of !-chains, strict

if f(?

D

) = ?

E

, and additive if whenever d; d

0

are consistent elements of D, then

f(d); f(d

0

) are consistent elements of E, and f(d t d

0

) = f(d) t f(d

0

). The map f

re
ects consistency if whenever f(d) and f(d

0

) are consistent elements of E, then d

and d

0

are consistent elements of D.

The set of all �nite and in�nite initial computation sequences of a trace automa-

ton with start state A = (E;Q; T; �), forms a domain when equipped with the pre�x

ordering �. This domain is of limited utility, since it does not take into account any

concurrency information. However, there is a natural notion of \permutation equiva-

lence" of computations of A, which captures the idea of \equivalent interleaved views"

of the same concurrent computation. By factoring the domain of initial computation

sequences by permutation equivalence we obtain a more useful and interesting domain

of \concurrent computations."

Formally, de�ne permutation equivalence to be the least congruence �, respecting

concatenation, on the set of �nite computation sequences of A such that:

� Computation sequences q

a

�!r

b

�!p and q

b

�!s

a

�!p are �-related if ak

E

b.

Closely related to permutation equivalence is the permutation preorder relation

<

�

on

�nite computation sequences of A, which is de�ned to be the transitive closure of (�

[�). It is not di�cult to see that
 � � i�

<

�

� and �

<

�

.

Permutation preorder extends in a straightforward way to in�nite computation

sequences as well: if

0

and �

0

are coinitial �nite or in�nite computation sequences,

then de�ne

0

<

�

�

0

to hold i� for every �nite
 �

0

there exists a �nite � � �

0

, such

that

<

�

�. We may then extend permutation equivalence to in�nite computation

sequences by de�ning

0

� �

0

i�

0

<

�

�

0

and �

0

<

�

0

.

2.1.1 Permutation Preorder and Traces

Because the concurrency in a trace automaton is completely determined by the con-

currency relation on events, we can describe permutation preorder as the preorder

induced by a certain mapping from computation sequences to a domain of \traces."

To state this formally, we need some basic de�nitions from trace theory [1, 2, 11].

Suppose E is a concurrent alphabet. Let E

�

denote the free monoid generated by

E, then there is a least congruence �

E

on E

�

such that ak

E

b implies ab �

E

ba for all

a; b 2 E. The quotient E

�

=�

E

is the free partially commutative monoid generated by

E, and its elements are called traces. We use � to denote the monoid identity, and if

x 2 E

�

, then we use [x] to denote the corresponding element of E

�

=�

E

. De�ne the

relation v on the monoid E

�

=�

E

by: [x] v [y] i� 9[z]([x][z] = [y]). It is not di�cult

to show that v is a partial order, with � as a least element. Let

�

E denote the ideal

completion of this partial order, then

�

E is an algebraic CPO whose �nite elements are

the principal ideals generated by elements of E

�

=�

E

. We call

�

E the domain of traces

generated by the concurrent alphabet E. (This terminology is justi�ed by Lemma 2.3,

which shows that

�

E is consistently complete, hence a domain. For the moment, we

only need the fact that

�

E is an algebraic CPO.) Notice that since the �nite elements

of

�

E are in bijective correspondence with the elements of E

�

=�

E

, they inherit the

monoid operation of E

�

=�

E

, with the least element of

�

E as the monoid identity. In

the sequel, we identify elements of E

�

=� with the corresponding �nite elements of

�

E.

Now, suppose

 = q

0

a

1

�!q

1

a

2

�! . . .

is a �nite or in�nite computation sequence of an automaton A = (E;Q; T). De�ne

the trace of
 to be the element tr(
) =

F

k�0

[a

1

a

2

. . . a

k

] of the domain of traces

�

E. Obvious consequences of this de�nition are: (1) tr(id

q

) = �, (2) if
 and � are

composable �nite computation sequences, then tr(
�) = tr(
)tr(�), and (3) the map

tr is continuous, with respect to the pre�x ordering � on computation sequences and

the ordering v on traces.

Theorem 1 Suppose
 and � are coinitial computation sequences. Then

<

�

� holds

i� tr(
) v tr(�).

Proof { We �rst prove the result for the special case that
 and � are �nite. Suppose

<

�

�. Then there exists a �nite sequence

 = �

0

; �

1

; . . . ; �

n

= �;

such that for each k with 0 � k < n, one of the following two relationships holds:

1. �

k

� �

k+1

.

2. �

k+1

is obtained from �

k

by replacing a subsequence of the form q

a

�!r

b

�!p,

where ak

E

b, by a sequence q

b

�!s

a

�!p.

In case (1), tr(�

k

) v tr(�

k+1

), and in case (2), tr(�

k

) = tr(�

k+1

). Hence tr(
) v tr(�)

by re
exivity and transitivity of v.

Conversely, suppose tr(
) v tr(�). Let x and y be the sequences of events appear-

ing in
 and �, respectively. Then [x] = tr(
) v tr(�) = [y], so by de�nition of v there

exists z such that xz � y. It follows that the string y can be transformed into the

string xz by a �nite sequence of steps in which adjacent pairs of concurrent symbols

are permuted. By performing the same sequence of permutation steps starting with

�, we obtain a proof that � �

E

� for some computation sequence �.

We now extend the result to include in�nite computation sequences. Suppose

0

<

�

�

0

, where

0

and �

0

are arbitrary. Given any �nite [x] v tr(

0

), by the continuity

of the map tr with respect to the pre�x ordering �, there exists a �nite
 �

0

such

that [x] v tr(
). Choose a �nite � � �

0

such that

<

�

�, then tr(
) v tr(�) by

the �nite case of the theorem. Thus, for each �nite [x] v tr(

0

) there exists a �nite

[y] v tr(�

0

) such that [x] v [y]. By the fact that the CPO

�

E is algebraic, it follows

that tr(

0

) v tr(�

0

).

Conversely, suppose tr(

0

) v tr(�

0

). Given a �nite
 �

0

, let [x] = tr(
). Then

[x] v tr(

0

) so by algebraicity of

�

E we may choose a �nite [y] v tr(�

0

) such that

[x] v [y]. By continuity of tr with respect to the pre�x ordering � on computation

sequences, there exists a �nite � � �

0

such that [y] v tr(�). But then

<

�

� by the

�nite case of the theorem.

2.1.2 Permutation Preorder and Residuals

The permutation preorder can also be characterized in a much di�erent, and ulti-

mately more useful way, using the notion of the \residual" of one �nite computation

sequence \after" another. Residuals, previously used for the �-calculus and term-

rewriting systems [3, 4, 7, 9], have been shown in [12, 15, 16] to be extremely useful

in reasoning about concurrent systems. Here, we formalize the notion of residual as

a partial binary operation " on �nite computation sequences, such that
 " � (read

\after" �) is de�ned, and
 and � are said to be consistent, exactly when
 and � are

coinitial �nite computation sequences that could both be part of the \same concurrent

computation." In general, � will then contain some transitions that \overlap" with

and some transitions that are \concurrent" with
, and the residual
 " � is de�ned

to be what is left of
 after the part of � that overlaps with it has been \cancelled."

The residual
 " � is unde�ned when
 contains some nondeterministic choice that

is incompatible with a choice made in �. In this case we say that
 and � con
ict.

Observe that we distinguish between two types of choice that may be represented in

an automaton: concurrent choice, in which events a, b with akb are both enabled in

the same state q, and nondeterministic choice, in which a and b are both enabled in

state q but we do not have akb.

We �rst de�ne the residual operation for coinitial computation sequences
 : q ! r

and � : q ! s of length � 1. There are three cases:

1. If
 = id

q

, then
 " � = id

s

and � "
 = �.

2. If
 is a non-identity transition q

a

�!r, and � is a non-identity transition q

a

�!s,

then r = s by the disambiguation condition. De�ne
 " � = id

s

= id

r

= � "
.

3. If
 is a non-identity transition q

a

�!r, and � is a non-identity transition q

b

�!s,

where a 6= b, then
 " � and � "
 are de�ned i� ak

E

b. In this case, the

commutativity property implies there must exist transitions s

a

�!p and r

b

�!p,

which we take as
 " � and � "
, respectively.

Lemma 2.1 The operation " has the following properties, where
, �, and � denote

computation sequences of length � 1.

1. If
 " � is de�ned, then so is � "
, and we have dom(
 " �) = cod(�),

dom(� "
) = cod(
), and cod(
 " �) = cod(� "
).

2. For all
 : q ! r, (a) id

q

"
 = id

r

; (b)
 " id

q

=
; and (c)
 "
 = id

r

.

3. For all coinitial
; �; �, (� "
) " (� "
) = (� " �) " (
 " �), whenever either

side is de�ned.

4. For all coinitial
 : q ! r and � : q ! s, if
 " � = id

s

and � "
 = id

r

, then

 = �.

Moreover, " extends uniquely to an operation on �nite computation sequences, in such

a way that properties (1)-(3) are preserved and such that the following additional

identities hold whenever either side is de�ned:

5.
 " �� = (
 " �) " �

�� "
 = (� "
)(� " (
 " �)):

Proof { (1), (2), and (4) are obvious from the de�nitions. (3) is proved by a straight-

forward case analysis on
, �, and � (see [12]).

The extension of " to �nite computation sequences is done using (5) as a recursive

de�nition. Veri�cation that the resulting extension has properties (1), (2), and (3)

is then done by induction on the lengths of the computation sequences involved.

Property (4) does not necessarily hold for the extension; for example, because if

 = q

a

�!r

b

�!p and � = q

b

�!s

a

�!p with ak

E

b, then
 " � = id

p

= � "
, but
 6= �.

We now derive the connection between residuals and permutation preorder. If

and � are coinitial, then de�ne

�

�

� i�
 " � is an identity.

Lemma 2.2 The relation

�

�

is a preorder.

Proof { Re
exivity holds because
 "
 = id

q

, where q = cod(
). To show transi-

tivity, suppose

�

�

� and �

�

�

�. Then
 " � is an identity, so (
 " �) " (� " �) is an

identity. Since (
 " �) " (� " �) = (
 " �) " (� " �), it follows that (
 " �) " (� " �) is

an identity. But � " � is an identity because �

�

�

�, hence
 " � is an identity.

Theorem 2 Suppose
 and � are coinitial �nite computation sequences. Then

<

�

�

i�

�

�

�.

Proof { Suppose

<

�

�. Then there exists a �nite sequence

 = �

0

; �

1

; . . . ; �

n

= �;

such that for each k with 0 � k < n, one of the following two relationships holds:

1. �

k

� �

k+1

.

2. �

k+1

is obtained from �

k

by replacing a subsequence of the form q

a

�!r

b

�!p,

where ak

E

b, by a sequence q

b

�!s

a

�!p.

In case (1), �

k+1

= �

k

� for some �, so by Lemma 2.1, �

k

" �

k+1

= (�

k

" �

k

) " �, which

is an identity, hence �

k

�

�

�

k+1

. In case (2), �

k

= �tu

0

�

0

and �

k+1

= �ut

0

�

0

, where t is

the transition q

a

�!r, u is the transition q

b

�!s, t

0

= t " u, and u

0

= u " t. From this,

a straightforward calculation using Lemma 2.1 shows that �

k

" �

k+1

is an identity, so

�

k

�

�

�

k+1

. Since �

k

�

�

�

k+1

both in case (1) and in case (2), the result

�

�

� follows

by the re
exivity and transitivity of

�

�

.

Conversely, suppose

�

�

�. Let � = � "
, then
, �, and � are related as

depicted in Figure 1, where the sides of each small diamond are single transitions,

and the apex of each small diamond is obtained by applying the residual operation

to the transitions forming its base. From this diagram, we may read o� a proof that

� � �. This is done by starting with the computation sequence
� represented by

the path around the left-hand side of the large diamond, and, beginning with the

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

@

@I

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

a

1

a

2

a

n

a

0

n

b

00

1

b

0

1

b

1

b

2

b

m

�

� = � "
 id =
 " �

Figure 1: Residuals and Permutation Preorder

leftmost small diamond in the diagram, successively replacing the pairs of transitions

forming the left-hand sides of the small diamonds by the pairs of transitions forming

the right-hand sides. For example, in the �rst step we would replace a

n

b

00

1

by b

0

1

a

0

n

.

Eventually, these replacement steps transform the sequence
� into the computation

sequence represented by the path around the right-hand side of the large diamond;

that is, into �.

Having characterized permutation preorder in terms of residuals, we may now

obtain a great deal of information about the structure of the set of computation

sequences, under the permutation preorder. The main result is Theorem 4 below. I

do not know how to prove such a strong result without using residuals.

Lemma 2.3 Suppose
 and � are coinitial �nite computation sequences. Then
 and

� have an upper bound with respect to

<

�

i�
 " � is de�ned. Moreover, if
 " �

is de�ned, then
 and � have a supremum with respect to

<

�

, given by
(� "
) or

�(
 " �), which are permutation equivalent.

Proof { If
 and � have an upper bound � with respect to

<

�

, then
 " � and

(
 " �) " (� " �) are identities. But (
 " �) " (� " �) = (
 " �) " (� " �), hence
 " � is

de�ned.

Conversely, if
 " � is de�ned, then since
 "
(� "
) = (
 "
) " (� "
) and

� "
(� "
) = (� "
) " (� "
), both of which are identities, it is clear that
(� "
)

is a

<

�

-upper bound of
 and �. Suppose � is any

<

�

-upper bound of
 and �. Then

(� "
) " � = (
 " �)((� "
) " (� "
)) = (
 " �)((� " �) " (
 " �));

which is an identity, so
(� "
)

<

�

�.

Theorem 3 Suppose A = (E;Q; T) is a trace automaton, and q 2 Q. Then the set

of permutation equivalence classes of computation sequences from state q, equipped

with the partial order induced by

<

�

, is a domain, whose �nite elements are exactly

the equivalence classes of �nite computation sequences.

Proof { The set of �nite computation sequences from state q is countable, and from

Lemma 2.3 we know that whenever
 and � have an upper bound with respect to

<

�

,

then they have a supremum with respect to

<

�

. Then the ideal completion I of the

preorder

<

�

is a domain whose �nite elements are exactly the principal ideals. Let h be

the map that takes each

<

�

-equivalence class [
] to the set h([
]) = f� : � �nite; �

<

�

g.

The set h([
]) is obviously nonempty and downward-closed. It is also directed, because

if � 2 h([
]) and �

0

2 h([
]), then � and �

0

have a

<

�

-supremum, which must also be

in h([
]). Thus, h([
]) is an ideal of

<

�

.

We claim that the map h is an order-isomorphism, from the partially ordered set

of permutation equivalence classes of computation sequences from state q, to I. Since

h takes each equivalence class [
] with
 �nite to the principal ideal generated by
,

we will then have the desired result. Obviously h satis�es h([
]) � h([�]) i�

<

�

�.

Note that h is injective, because if [
] 6= [�] then either
 has a �nite pre�x

0

such

that

0

62 h([�]), or else � has a �nite pre�x �

0

such that �

0

62 h([
]). To complete the

proof, we must show that h is also surjective; that is, every

<

�

-ideal � of the set of

�nite computation sequences is h([
]) for some computation sequence
.

Suppose � 2 I. We �rst observe that � is at most countable (because the set of

all �nite computation sequences is countable), hence has an enumeration (perhaps

with repetition) �

0

; �

1

; Next, we inductively construct a sequence

0

�

1

� . . .

of elements of �, forming a chain under the pre�x ordering, such that �

k

<

�

k+1

for

all k � 0. For the basis step, let

0

= id

q

, which is in � because � is an ideal. For

the induction step, suppose

k

2 � has been de�ned for some k � 0. Since �

k

;

k

2 �,

and � is directed, it follows by Lemma 2.3 that �

k

and

k

are consistent. De�ne

k+1

=

k

(�

k

"

k

). Clearly,

k

is a pre�x of

k+1

. Since

k+1

is a

<

�

-supremum of

f

k

; �

k

g � �, and since the ideal � is closed under suprema of �nite subsets, it follows

that

k+1

2 �. Also, �

k

<

�

k+1

, since �

k

"

k+1

= (�

k

"

k

) " (�

k

"

k

) = id.

Let
 be the supremum of the chain

0

�

1

� . . . with respect to the pre�x

ordering. We claim that h([
]) = �. Clearly, if � 2 �, then � = �

k

for some k � 0,

hence �

<

�

k+1

. This shows � � h([
]). Conversely, if � is a �nite computation

sequence with �

<

�

, then �

<

�

� for some �nite pre�x � of
. But this means �

<

�

k

for some k � 0, hence h([
]) � � because

k

2 � and � is an ideal.

To proceed further, we need some additional information about the structure of

the domain of traces

�

E generated by a concurrent alphabet E. De�ne a trace domain

to be a structure (D;v;?; �), where (D;v;?) is a �nitary domain with least element

?, and if D

o

denotes the set of �nite elements of D, then (D

o

; �;?) is a monoid. In

addition, the following are required to hold:

1. For all x; y 2 D

o

, we have x v y i� there exists z 2 D

o

with xz = y.

2. For all x; y; z 2 D

o

, if xy = xz then y = z.

3. For all distinct atoms a; b 2 D, we have a; b consistent i� ab = ba, and then

a t b = ab = ba.

On any trace domain D, we may de�ne a partial binary operation n on D

o

, such that

x n y is de�ned i� x and y are consistent, and if so, then x n y is the unique z such

that yz = x t y. Obviously the domain of de�nition of n is symmetric, and x = y i�

x n y = � = y n x.

Lemma 2.4 Suppose (D;v;?; �) is a trace domain. Then the following identities

hold for �nite x; y; z, whenever either side is de�ned:

1. x(y t z) = xy t xz.

2. z n xy = (z n x) n y.

3. xy n z = (x n z)(y n (z n x)).

Proof { Omitted.

We will prove the following lemma in Section 3.5 below.

Lemma 2.5 Suppose E is a concurrent alphabet. Then (

�

E;v; �; �) is a trace domain.

Conversely, a structure (D;v;?; �) is a trace domain i� it is isomorphic to (

�

E;v; �; �)

for some concurrent alphabet E.

Lemma 2.6 Suppose
 and � are coinitial �nite computation sequences of a trace

automaton. Then
 and � are consistent i� tr(
) and tr(�) are consistent, in which

case tr(
 " �) = tr(
) n tr(�).

Proof { The proof is by induction on the pair of lengths (j
j; j�j). For the special

cases: j
j = 0 or j�j = 0, the result is trivial. For the basis case of j
j = j�j = 1 we

have that
 is a single transition t : q

a

�!r and � is a single transition u : q

b

�!s, so

tr(
) = [a] and tr(�) = [b]. Then
 and � are consistent i� one of the following cases

occurs:

1. a = b.

2. a 6= b and ak

E

b.

By Lemma 2.5, traces [a] and [b] are consistent i� one of these two cases occurs. In

case (1), traces [a] and [b] are equal, and tr(
 " �) = � = tr(
) n tr(�). In case (2),

[a] n [b] = [a], hence tr(
 " �) = [a] = tr(
) n tr(�).

For the induction step, suppose j
j > 1 and j�j � 1. (We omit the case j
j � 1

and j�j > 1, which is symmetric.) Then
 = ��, where j�j � 1 and j�j � 1. Suppose

tr(�) = [x], tr(�) = [y], and tr(�) = [z]. By Lemma 2.1,
 and � are consistent i� �

and � are consistent and also � " � and � are consistent. If
 and � are consistent,

then

 " � = (� " �)(� " (� " �))

� "
 = (� " �) " �:

Applying the induction hypothesis and Lemma 2.4, we see that

tr(
 " �) = (tr(�) " tr(�))(tr(�) " (tr(�) " tr(�))) = [x][y] n [z] = tr(
) n tr(�)

tr(� "
) = (tr(�) " tr(�)) " tr(�) = [z] n [x][y] = tr(�) n tr(
):

Conversely, suppose tr(
) and tr(�) are consistent. Since then tr(�) and tr(�)

are consistent, by the induction hypothesis we know that � and � are consistent,

tr(� " �) = tr(�) n tr(�), and tr(� " �) = tr(�) n tr(�). Now, since tr(
) and tr(�) are

consistent, and tr(�) v tr(
), it follows that tr(
) and tr(�) t tr(�) are consistent.

Moreover, tr(
) = tr(�)tr(�) and tr(�) t tr(�) = tr(�)(tr(�) n tr(�)), so it follows that

tr(�) and tr(�) n tr(�) are consistent. Applying the induction hypothesis once again

shows that � and � n � are consistent. Since � and � are consistent, and � " � and �

are consistent, it follows that
 and � are consistent, as was to be shown.

A subdomain of a domain D is a subset U of D, which is a domain under the

restriction of the ordering on D, and is such that the inclusion of U in D is strict and

continuous. A subdomain U of D is normal if for all d 2 D, the set fe 2 U : e v dg

is directed.

Lemma 2.7 Domain D

0

is isomorphic to a normal subdomain of D i� there exists

a strict, additive, continuous injection f : D

0

! D that also re
ects consistency.

Proof { Omitted.

An interval in a domain D is a pair (d; d

0

) of elements of D, with d v d

0

. A

prime interval is an interval (d; d

0

) such that d < d

0

, and there exists no d

00

2 D with

d < d

00

< d

0

.

Theorem 4 Suppose D is the domain of permutation equivalence classes of initial

computation sequences of a trace automaton with start state A = (E;Q; T; �). Then

D is isomorphic to a normal subdomain U of

�

E, such that the inclusion of U in

�

E

preserves prime intervals. Conversely, if U is a normal subdomain of

�

E, such that the

inclusion of U in

�

E preserves prime intervals, then U is isomorphic to the domain of

permutation equivalence classes of initial computation sequences of a trace automaton

with start state.

Proof { Suppose domain D is the domain of permutation equivalence classes [
] of

initial computation sequences
 of a trace automaton with start state A = (E;Q; T; �).

Each computation sequence
 of A determines a trace tr(
) 2

�

E. By Lemma 2.6, if

<

�

�, then tr(
) n tr(�) = �, so tr(
) v tr(�). It follows that the mapping tr from

computation sequences to traces induces a monotone injection (which we also denote

by tr) from D to

�

E. Clearly, the map tr is strict. It also preserves prime intervals,

because an interval ([
]; [�]) in D is prime i� � �
t for some nonidentity transition

t, and an interval ([x]; [y]) in

�

E is prime i� y � xe for some e 2 E.

To see that tr is continuous, it su�ces to show that it preserves suprema of

<

�

-

chains. Suppose

0

<

�

1

<

�

. . . is a chain with supremum
. By a dovetailing argument

using !-algebraicity and consistent completeness, we may construct a pre�x-ordered

chain of �nite computation sequences �

0

� �

1

� . . . with the following properties:

1. For all j � 0, there exists k � 0 such that �

j

<

�

k

.

2. For all k � 0, and all �nite �

<

�

k

, there exists j � 0 such that �

<

�

�

j

.

It follows that

F

k

tr(�

k

) =

F

k

tr(

k

), and if � is the �-supremum of �

0

� �

1

� . . ., then

� �
. Since it is obvious from the de�nition that tr is continuous with respect to the

pre�x ordering �, we may then conclude that tr(
) = tr(�) =

F

k

tr(�

k

) =

F

k

tr(

k

).

To see that tr is additive, suppose
 and � are consistent �nite computation

sequences. Then � =
(� "
) is a

<

�

-supremum of
 and �. Moreover, tr(�) =

tr(
)(tr(�) n tr(
)) = tr(
) t tr(�) by Lemmas 2.4 and 2.5. Finally, if tr(
) and tr(�)

are consistent, then
 and � are consistent by Lemma 2.6, so tr re
ects consistency.

Since the map tr is a strict, additive, continuous injection that re
ects consistency, it

is a isomorphism from D to a normal subdomain of

�

E by Lemma 2.7.

Conversely, suppose U is a normal subdomain of

�

E for some concurrent alphabet

E, such that the inclusion of U in

�

E preserves prime intervals. Let A = (E;U

o

; T; �),

where U

o

is the set of �nite elements of U , and where T contains id

�

all identity

transitions id

[x]

with [x] 2 U

o

, and all transitions [x]

a

�![xa] where both [x] and

[xa] 2 U

o

. It is easy to check that A satis�es the conditions for an automaton. If

is an initial computation sequence of A, then tr(�) is a �nite element of U for each

�nite pre�x � of
, so tr(
) 2 U by continuity of tr. Conversely, if [x] 2 U , then we

may choose a chain [x

0

] v [x

1

] v . . . of �nite elements of U such that

F

k

[x

k

] = [x].

Since the inclusion of U in

�

E preserves prime intervals, and the domain

�

E is �nitary,

we may assume without loss of generality that for each k � 0, either x

k+1

= x

k

or else

x

k+1

= x

k

a for some a 2 E. It is then a simple matter to construct a corresponding

initial computation sequence
 of A, such that tr(
) = [x].

It can be shown (see [14]), that a domain D is isomorphic to a normal subdomain

U of a domain of traces

�

E, where the inclusion of U in

�

E preserves prime intervals, if

and only if D is an event domain [6, 18]. Event domains, in turn, are those that are

isomorphic to the domains of \con�gurations" of an \event structure" determined by

an enabling relation and a binary con
ict relation. Thus, trace automata generate

the same class of domains as event structures.

3 Concurrent Transition Systems

The notion of the residual of one computation sequence after another was crucial in

the results of the previous section. The properties of the residual operation that were

used in the proofs can be axiomatized, and the result is concurrent transition systems

[15, 16]. As we have shown in these papers and in [12, 17], many interesting prop-

erties of automata can be established from these axioms. An advantage of the more

abstract, axiomatic formulation is that there is an obvious way in which concurrent

transition systems can be made into a category, which we call CTS. The category

CTS has a surprisingly rich structure, and categorical constructions in it and re-

lated functor categories correspond directly to many natural constructions we wish

to perform on automata, including the extraction of their computational behavior.

After investigating the properties of CTS, we shall see that a certain mapping from

trace automata to CTS suggests an interesting way to make trace automata into a

category.

An abstract automaton is a structure A = (Q;T;dom; cod; id), where

� Q is a set of states.

� T is a set of transitions.

� dom; cod : T ! Q are functions that map each transition to its domain and

codomain, respectively.

� id : Q! T maps each state q in Q to a distinguished identity transition id

q

2 T ,

such that dom(id

q

) = cod(id

q

) = q.

Let Coin(A) denote the set of all coinitial pairs of transitions of A. A residual

operation on an automaton A = (Q;T;dom; cod; id) is a partial function ": Coin(A)!

T , such that the following conditions hold (we write t " u instead of " (t; u), and we

read it as \t after u"):

1. If t " u is de�ned, then so is u " t, and then dom(t " u) = cod(u), dom(u " t) =

cod(t), and cod(t " u) = cod(u " t).

2. For all t : q ! r in T , (a) id

q

" t = id

r

; (b) t " id

q

= t; and (c) t " t = id

r

.

3. For all coinitial t; u; v 2 T , (v " t) " (u " t) = (v " u) " (t " u), whenever either

side is de�ned.

A residual operation is extensional if it satis�es the additional condition:

4. For all coinitial transitions t; u, if t " u and u " t are both identities, then t = u.

A concurrent transition system (CTS) is a pair C = (A; "), where A is an abstract

automaton and " is an extensional residual operation on A. If " is a residual operation,

but not necessarily extensional, then C is called a pre-CTS. Coinitial transitions

t; u of a pre-CTS are called consistent if t " u is de�ned (equivalently, if u " t is

de�ned), otherwise they are called con
icting. We think of consistent transitions

as representing actions that might arise in a single concurrent computation, and of

con
icting transitions as representing incompatible nondeterministic choices. If t and

u are consistent, then we think of t " u as what remains of the transition t after the

transition u has occurred.

The results of the previous section allow us to associate with each trace automaton

A = (E;Q; T) a CTS C

A

whose states, transitions, and identities are those of A, and

whose residual operation is de�ned as in Section 2.1.2. It is also interesting to observe

that a concurrent alphabet E can be viewed as the set of nonidentity transitions of a

one-state CTS, such that a; b 2 E are consistent exactly when either a = b or ak

E

b,

and in the latter case a " b = a and b " a = b. We shall put this observation to good

use in Section 3.5.

Suppose A = (Q;T;dom; cod; id) and A

0

= (Q

0

; T

0

;dom

0

; cod

0

; id

0

) are automata.

Then a morphism from A to A

0

is a pair of maps � = (�

o

; �

a

), where �

o

: Q! Q

0

and

�

a

: T ! T

0

, such that dom

0

��

a

= �

o

�dom, cod

0

��

a

= �

o

�cod, and id

0

��

o

= �

a

�id. In

the sequel, we will drop the notational distinction between �

o

and �

a

, writing simply

� in both cases. Let Auto denote the category of automata and their morphisms.

A morphism from a pre-CTS B = (A; ") to a pre-CTS B

0

= (A

0

; "

0

) is a morphism

� : A! A

0

of the underlying automata, with the following additional property:

� If t; u are consistent transitions of B, then �(t) and �(u) are consistent transi-

tions of B

0

, and �(t " u) = �(t) "

0

�(u).

The class of all pre-CTS's forms a category PCTS, when equipped with the CTS-

morphisms as arrows. Let CTS denote the full subcategory of PCTS whose objects

are the CTS's.

The following result shows that there is a universal way to obtain a CTS from a

pre-CTS.

Lemma 3.1 Suppose B is a pre-CTS. Then there exists a CTS B

[

, and a morphism

[

B

: B ! B

[

, with the following property: if C is any CTS equipped with a morphism

� : B ! C, then there exists a unique morphism �

[

: B

[

! C with � = �

[

� [

B

.

Proof { Suppose B = (A; "). De�ne a binary relation � on transitions of B by:

t � u i� t " u = id and u " t = id. Let A

[

be the automaton whose states are

those of A, but whose transitions are �-equivalence classes [t] of transitions of A,

with domain, codomain, and identities de�ned in the obvious way. De�ne "

[

by:

[t] "

[

[u] = [t " u], and let B

[

= (A

[

; "

[

). De�ne [

B

: B ! B

[

to take each transition

t of A to the corresponding �-equivalence class [t], which is a transition of A

[

. One

may now verify that B

[

and [

B

are well-de�ned and have the required properties.

Corollary 3.1 CTS is a re
ective subcategory of PCTS.

Proof { Lemma 3.1 shows that the inclusion of CTS in PCTS has a left adjoint,

whose object map takes B to B

[

.

There is also a universal way to lift an automaton to a CTS.

Lemma 3.2 Suppose A is an automaton. Then there exists a CTS A

]

= (A; ") with

the following property: Given a CTS C

0

= (A

0

; "

0

), every morphism � : A ! A

0

in

Auto is also a morphism � : A

]

! C

0

in CTS.

Proof { Given an automaton A, let t " u be de�ned for coinitial transitions t; u of A

i� either t = u or else either t or u is an identity. If t = u or t = id, then t " u = id,

and if u is an identity, then t " u = t. Let A

]

= (A; "), then it is easy to see that A

]

has the required property.

Corollary 3.2 Auto is isomorphic to a core
ective subcategory of CTS.

Proof { Lemma 3.2 shows that the forgetful functor Auto : CTS! Auto has a left

adjoint, whose object map takes A to A

]

, and which is full and faithful.

3.1 Basic Consequences of the CTS Axioms

De�ne a relation � on the transitions of a CTS by: t � u i� t; u are coinitial and

t " u = id. We say that a transition v is a join of the coinitial transitions t; u if t � v,

u � v, v " t = u " t, and v " u = t " u. If t and u are composable, then we say that

a transition v is a composite of t; u if t " v = id and v " t = u.

The following results are proved in [16]. The reader may enjoy working out the

proofs, since they are good examples of how to work with residuals.

Lemma 3.3 Suppose C is a CTS.

1. The relation � is a partial order.

2. If a composite of t and u exists, then it is unique. (We denote it by tu.)

3. Suppose t and v are coinitial, and the composite tu of t and u exists.

(a) v " tu = (v " t) " u.

(b) tu " v = (t " v)(u " (v " t)).

4. Composition obeys the following laws:

(a) For all t, t = id t = t id.

(b) i. If tu and (tu)v exist, then uv and t(uv) exist, and (tu)v = t(uv).

ii. If tu, uv, and t(uv) exist, then (tu)v exists and (tu)v = t(uv).

(c) If tu and tv exist, and tu = tv, then u = v.

5. A transition v is a join of t and u i� v = t(u " t). Hence a join of t and u, if

it exists, is unique. (We denote it by t_ u.) Moreover, if t_ u exists, then it is

the least upper bound of t and u under �.

Lemma 3.4 Suppose � : C ! C

0

is a morphism. Then

1. �(tu) = �(t)�(u) whenever tu exists.

2. �(t _ u) = �(t) _ �(u) whenever t _ u exists.

3.2 Completion of a CTS

A CTS is called complete if every composable pair of transitions has a composite.

Complete CTS's play a fundamental role in the process of extracting the computa-

tional behavior of a CTS. In particular, each CTS C freely generates a completion C

�

,

whose states are the same as those of C, and whose transitions are certain equivalence

classes of �nite sequences of transitions of C. In case C is the CTS C

A

corresponding

to a trace automaton A, then the transitions of C

�

A

are precisely the permutation

equivalence classes of �nite computation sequences of A.

Lemma 3.5 Suppose C is a CTS. Then there exists a complete CTS C

�

, and a

morphism \

C

: C ! C

�

, with the following property: if C

0

is any complete CTS

equipped with a morphism � : C ! C

0

, then there exists a unique morphism �

�

:

C

�

! C

0

such that � = �

�

� \

C

.

Proof { Suppose C = (A; ") is a CTS. Let A

�

be the automaton whose states are

those of A, and whose transitions are the �nite computation sequences of A, with

the computation sequences of length 0 as the identity transitions. If we identify each

nonidentity transition of A with the corresponding computation sequence of length

1, then the residual operation " on A extends uniquely to a residual operation "

�

on

A

�

, such that the following hold whenever either side is de�ned:

� "

�

� = (� "

�

) "

�

�;
� "

�

� = (
 "

�

�)(� "

�

(� "

�

)):

Then B = (A

�

; "

�

) is a pre-CTS. Moreover, the map � : C ! B that takes each state

of C to the same state of B and each nonidentity transition of C to the corresponding

computation sequence of length 1, is a morphism. De�ne C

�

= B

[

and de�ne \

C

:

C ! C

�

by: \

C

= [

B

� �. One may now verify that C

�

and \

C

have the stated

properties.

Let CCTS denote the full subcategory of CTS having the complete CTS's as

objects.

Corollary 3.3 CCTS is a re
ective subcategory of CTS.

Proof { Lemma 3.5 shows that the inclusion of CCTS in CTS has a left adjoint,

whose object map takes C to C

�

.

Theorem 5 If C

A

is the CTS associated with a trace automaton A, then up to iso-

morphism, C

�

A

is the CTS whose states are the states of A and whose transitions are

the permutation equivalence classes of �nite computation sequences of A, with residual

given by Lemma 2.1.

Proof { By the construction in Lemma 3.5, C

�

A

has as states the states of A and

as transitions the �-equivalence classes of �nite computation sequences of A, where

 � � holds i�
 "

�

� = id and � "

�

 = id. By Theorem 2, � is nothing more than

permutation equivalence.

In later sections, we need a characterization of the complete CTS's that was proved

in [16]. De�ne a computation category to be a small category C with the following

properties:

1. Every arrow is an epimorphism.

2. The only isomorphisms are identities.

3. C has bounded pushouts: whenever t; u are coinitial arrows of C such that

tv = uw for some arrows v;w, then t and u have a pushout.

For the statement of the next result, we observe that a category is nothing more than

a pair (A; �), where A is an automaton and � is an associative composition on the

transitions of A, having the identities of A as units.

Lemma 3.6 Suppose C = (A; ") is a complete CTS, and let � denote the composition

operation of C. Then C

0

= (A; �) is a computation category. Conversely, suppose

C

0

= (A; �) is a computation category. For coinitial arrows t; u of A, let t " u be

de�ned i� tv = uw for some arrows v;w, in which case let t " u be the side opposite t

in a pushout square with t; u as its base. Then C = (A; ") is a complete CTS, whose

composition operation coincides with that of C.

Proof { Omitted.

3.3 Computation Diagrams

In this section we generalize to CTS's the notions of \computation tree" and \com-

putation" for ordinary transition systems. Given a CTS C, the set of all transitions

of its completion C

�

from a designated state �, forms the set of states of another com-

plete CTS D, which we call the complete computation diagram of C with respect to

�. Transitions of D represent pre�x relationships between concurrent computations;

accordingly, there is at most one transition between any two states of D.

Formally, a pointed CTS is a pair (C; �), where C is a CTS, and � is a distinguished

state of C, called the start state. Let CTS

�

(resp. CCTS

�

) denote the category of

pointed CTS's (resp. pointed, complete CTS's) and morphisms that preserve the start

state.

A complete computation diagram is a pointed CTS (D;?), such thatD is complete,

and for each state q of D, there is a unique transition 0

q

: ? ! q in D. The � partial

order on transitions of D determines a corresponding ordering � on states of D,

de�ned by: q � r i� 0

q

� 0

r

. Then the set of states of D, partially ordered by �,

has ? as a least element, and by Lemma 3.6 has the property that any pair of states

with an upper bound, has a least upper bound.

There is a universal way to obtain a complete computation diagram from a pointed,

complete CTS.

Lemma 3.7 Suppose (C; �) is a pointed, complete CTS. Then there exists a complete

computation diagram CDiag(C; �) = (D;?), and a CTS

�

-morphism

" : CDiag(C; �)! (C; �);

with the following property: if (D

0

;?

0

) is any other complete computation diagram,

equipped with a morphism � : (D

0

;?

0

) ! (C; �), then there exists a unique CTS

�

-

morphism �

y

: (D

0

;?

0

)! CDiag(C; �) such that � = " � �

y

.

Proof { Given (C; �), let D be the complete CTS whose states are all transitions t

of C such that dom(t) = �, and in which there is a unique transition from t to u i�

t � u. Let ? = id

�

. Let " : (D;?) ! (C; �) take each state t of D to the state cod(t)

of C, and each transition from t to u in D to the transition u " t in C. One may now

easily check that (D;?) and " have the required properties.

Let CDiag denote the full subcategory of CTS

�

whose objects are the complete

computation diagrams.

Theorem 6 CDiag is core
ective in CCTS

�

.

Proof { Lemma 3.7 shows that the inclusion of CDiag in CCTS

�

has a right adjoint,

whose object map takes (C; �) to CDiag(C; �).

Theorem 7 Suppose (C

A

; �) is the pointed CTS determined by a trace automaton A

with start state, and let (D;?) = CDiag(C

A

; �) be its complete computation diagram.

Then up to isomorphism, D is the poset of �nite initial concurrent computations of

A.

Proof { Obvious from Theorem 5 and the construction of CDiag(C

A

; �) given in the

proof of Lemma 3.7.

Noting that the domain of all computations of A may be obtained by ideal com-

pletion of the poset of �nite computations, we make the following general de�nition:

� A computation of a pointed CTS (C; �) is an ideal of its complete computation

diagram. A computation is �nite if it is a principal ideal, otherwise it is in�nite.

3.4 The Category CTS

The category CTS has a great deal of structure making it suitable for use in con-

structing models of concurrent systems.

Theorem 8 The category CTS:

1. has equalizers and small products, hence all small limits.

2. has small coproducts.

3. is cartesian closed.

4. has small �ltered colimits.

Proof { The proofs of (1) and (2) use the obvious constructions. Assertion (3) is

proved in [16].

To show (4), let D be a small �ltered category, and let L : D ! CTS be a functor.

Our objective is to construct a colimit of L. Let V denote the set of objects of D, and

let E denote the set of its arrows. For each i 2 V , let C

i

= (A

i

; "

i

) denote the CTS

Li, where A

i

= (Q

i

; T

i

;dom

i

; cod

i

; id

i

). De�ne T to be the disjoint union

`

i2V

T

i

.

Let the relation � on T be de�ned as follows: t � u i� there exist arrows f : i ! k

and g : j ! k in D such that t 2 T

i

, u 2 T

j

, and Lf(t) = Lg(u). One may now show

that � is an equivalence relation, and then construct a CTS C having the equivalence

classes of � as its transitions. The CTS C is the base of a colimiting cone over L.

3.5 Application to Trace Theory

In this section, we show how the theory of CTS's can be used to obtain results in

trace theory. Typically, proofs in trace theory make use of the representation of traces

by their \dependency graphs" [1, 11]. In contrast, proofs using CTS theory involve

residuals. One of our goals is to prove Lemma 2.5, which we have already used in the

proof of Theorem 4.

We �rst establish a correspondence between concurrent alphabets and certain

CTS's. This correspondence extends to yield a correspondence between free partially

commutative monoids and certain complete CTS's.

Lemma 3.8 Suppose E is a concurrent alphabet. Then E is the set of nonidentity

transitions of a one-state CTS C

E

, in which a " b is de�ned for a; b 2 E precisely

when ak

E

b, and in that case a " b = a. Conversely, suppose C is a one-state CTS

in which a " b = a whenever a and b are consistent, distinct, nonidentity transitions.

Let E

C

be the concurrent alphabet whose elements are the nonidentity transitions of

C, with ak

E

C

b de�ned to hold i� a and b are consistent and distinct. Then E

C

E

= E

and C

E

C

' C.

Proof { Straightforward.

Lemma 3.9 Suppose C is a one-state complete CTS. Then x " y is de�ned i� x and

y have an upper bound with respect to the ordering �. Moreover, the transitions of

C, equipped with the identity and composition of C, form a monoid Mon(C) with the

following properties:

1. For all x; y; z 2 Mon(C), if xy = xz then y = z.

2. De�ne x v y i� 9z(xz = y). Then v is a consistently complete partial order

with the identity transition of C as a least element.

Proof { Immediate from Lemma 3.6.

From Lemma 3.9, it follows that the residual operation on C can be recovered

from the monoid Mon(C), because x " y is de�ned i� x and y have an upper bound

with respect to v (which is the same relation as �), in which case x " y is the unique

z such that yz = x t y.

Lemma 3.10 Suppose E is a concurrent alphabet. Then Mon(C

E

) ' E

�

=�.

Proof { The transitions of C

�

E

are permutation equivalence classes [
] of �nite compu-

tation sequences
 of C

E

. De�ne a map � from Mon(C

�

E

) to E

�

=� by: �([
]) = tr(
).

Note that
 is well-de�ned, because if [
] = [�], then tr(
) = tr(�) by Theorem 1.

Also, � is a monoid homomorphism, because �(id) = � and �([
][�]) = �([
�]) =

tr(
�) = tr(
)tr(�) = �([
])�([�]). The map � is injective, because if �([
]) = �([�]),

then tr(
) = tr(�) hence [
] = [�] by Theorem 1. Finally, � is surjective, because

if [x] 2 E

�

=�, then we may construct a computation sequence
 of C

E

, such that

the sequence of events appearing in
 is x, hence such that tr(
) = [x]. Since � is a

bijective monoid homomorphism, it is an isomorphism.

We are now equipped to prove Lemma 2.5.

Proof of Lemma 2.5 { ()) Suppose E is a concurrent alphabet. By de�nition of

�

E, the set

�

E

o

of �nite elements of

�

E is the set of elements of a monoid isomorphic to

the free partially commutative monoid (E

�

=�

E

; �; �). By Lemma 3.10, this monoid is

isomorphic to the monoid Mon(C

�

E

). Since the residual operation of C

�

E

can be recov-

ered from Mon(C

�

E

) it makes sense to use this operation to reason about Mon(C

�

E

),

hence about E

�

=�.

Now, by Lemma 3.9, the relation v on Mon(C

�

E

) is a consistently complete partial

order with � as a least element. Since the ideal completion of a consistently complete

partial order with a least element is a domain, it follows that

�

E is a domain. We

observe that

�

E is �nitary, because if [x] is a �nite element of

�

E, then jf[y] : [y] v [x]gj

is bounded by the number of pre�xes of permutations of x, which is �nite.

Property (1) of a trace domain holds for

�

E by de�nition of v. Property (2) of

a trace domain is immediate from Lemma 3.9. It remains to verify property (3) of

a trace domain. The atoms of E

�

=� are precisely the �-equivalence classes [a] of

elements a of E. Suppose [a] and [b] are distinct atoms. By Lemma 3.9, [a] and [b]

are consistent i� [a] " [b] is de�ned. But by de�nition of C

E

, [a] " [b] is de�ned for

distinct [a]; [b] i� ak

E

b, hence i� [a][b] = [b][a]. In that case, [a] t [b] = [a]([b] " [a]) =

[a][b] = [b][a], by de�nition of " on C

E

.

(() Conversely, suppose (D;v; �;?) is a trace domain. De�ne a concurrent al-

phabet E whose elements are the atoms of D, and which has ak

E

b i� a 6= b and

[a][b] = [b][a]. By property (3) of a trace domain, the monoid homomorphism that

takes each element [a

1

. . . a

n

] of E

�

(with a

1

; . . . ; a

n

2 E) to the corresponding �-

nite element a

1

. . . a

n

of D respects �, thus induces a monoid homomorphism from

(E

�

=�) ! D

o

, and this monoid homomorphism extends uniquely to a continuous

map � :

�

E ! D. Property (1) of a trace domain, together with the fact that D is

�nitary, implies that every element of D

o

factors via � into a �nite sequence of atoms.

Thus, � is surjective.

It remains to be shown that � is injective. It su�ces to show that � is injective

when restricted to E

�

=�, since then the injectiveness of � on all of

�

E will follow by

algebraicity. It is easy to see that �(x) = ? i� x = �. A straightforward argument

by induction on the length of a factorization into atoms shows that [x] n [y] is de�ned

in

�

E i� �([x]) n �([y]) is de�ned in D, and then �([x] n [y]) = �([x]) n �([y]). Hence,

�([x]) = �([y]) i� �([x]) n �([y]) = ? = �([y]) n �([x]), which holds i� �([x] n [y]) =

� = �([y] n [x]), that is, i� [x] n [y] = � = [y] n [x]. Thus, � is injective, hence is an

isomorphism.

The correspondence between concurrent alphabets and one-state CTS's suggests

a way to make the class of concurrent alphabets into a category. Formally, if E and

F are concurrent alphabets, then de�ne a strong morphism from E to F to be an

�-preserving map � : (E [f�g)! (F [f�g), such that ak

E

b implies �(a) 6= �(b). Let

SAlph denote the category of concurrent alphabets and strong morphisms.

Lemma 3.11 The map that takes a concurrent alphabet E to the CTS C

E

extends

to an equivalence of SAlph to the full subcategory of CTS whose objects are the

one-state CTS's C such that a " b = a whenever a and b are distinct consistent

nonidentity transitions of C.

Proof { Omitted.

The category SAlph is not particularly interesting. However, there is another way

to map concurrent alphabets to one-state CTS's. This mapping leads to an alternative

notion of \weak morphism" of concurrent alphabets. The resulting category Alph of

concurrent alphabets and weak morphisms is also equivalent to a full subcategory of

CTS, and is much more interesting than SAlph.

Formally, if E is a concurrent alphabet, then call a subset U of E commuting

if ak

E

b whenever a and b are distinct elements of E. Let Com(E) denote the set

of all �nite commuting subsets of E. A weak morphism from E to F is a function

� : Com(E)! Com(F) such that

1. �(;) = ;.

2. If U [V 2 Com(E), then �(U)[�(V) 2 Com(F), and �(U nV) = �(U)n�(V).

Here the symbol n denotes set di�erence. Let Alph denote the category of concurrent

alphabets and weak morphisms.

A CTS C is called join-complete if every consistent coinitial pair of transitions of

C has a join. The join-completion C is the sub-CTS

b

C of C

�

whose transitions are

precisely those transitions of C

�

that can be expressed as a �nite join t

1

_ . . . _ t

n

,

where t

1

; . . . ; t

n

are transitions of C.

Theorem 9 The map that takes a concurrent alphabet E to the CTS

b

C

E

extends to

an equivalence of Alph to the full subcategory of CTS whose objects are the one-state,

join-complete CTS's C with the following properties:

1. t " u = t whenever t and u are distinct, consistent, �-minimal nonidentity

transitions.

2. Every nonidentity transition t of C can be expressed as a join t

1

_ . . . _ t

n

of a

nonempty set of �-minimal nonidentity transitions.

Proof { Omitted.

We do not have space here to develop in detail the features of the category Alph.

We merely note that it can be shown that Alph has binary products and coprod-

ucts, which correspond to intuitively appealing notions of \concurrent product" and

\nondeterministic sum," respectively.

3.6 Characterization of Trace CTS's

Notably absent from the CTS de�nition are any sort of \concreteness" axioms that

would have as a consequence, for example, a theorem stating that every transition

factors into a �nite sequence of �-minimal transitions. Part of the reason we have not

included such axioms is that we can often do without them, using instead a principle

of \computational induction" that arises out of the fact that C

�

is freely generated by

C. However, another reason we have not given any concreteness axioms is that we are

still looking for attractive axioms that are satis�ed by the CTS's in some subcategory

of CTS with su�cient completeness properties. The axioms we have been able to

discover are either too weak in the sense that the CTS's satisfying them are not very

concrete, or else they are too strong in the sense that the resulting subcategory does

not admit countable products.

As an example of what we are able to do, we obtain properties that characterize

the CTS's obtained from trace automata. The result is patterned after Winskel's

characterization of the domains of con�gurations of event structures de�ned by an

enabling relation and a binary con
ict relation [6, 18].

De�ne a CTS C to be atomic if the following holds:

� t " v = u " v implies either t = u, t = v, or u = v, whenever t, u, and v are

transitions of C, with t, v consistent and u, v consistent.

This is a very strong concreteness axiom which ensures that no nontrivial �-relationships

hold between transitions.

Lemma 3.12 Suppose C is an atomic CTS. If t and u are coinitial transitions of C

such that t � u, then either t = u or else t = id.

Proof { If t � u, then t " u = id, so t " u = id " u. By the atomicity property, either

t = id, u = id, or t = u. But u = id implies t = u = id, so either t = id or t = u.

If C is an atomic CTS, then we may de�ne � to be the least equivalence relation

on transitions of C such that t � t " u holds whenever t is an arbitrary transition

and transition u 6= t is a nonidentity transition consistent with t.

Theorem 10 A CTS C is isomorphic to the CTS C

A

associated with a trace au-

tomaton A i� the following conditions hold:

1. C is atomic.

2. For all transitions t, t

0

of C, if t � t

0

and dom(t) = dom(t

0

), then t = t

0

.

3. For all transitions t � t

0

and u � u

0

, if the transitions t, u are consistent, and

the transitions t

0

, u

0

are coinitial, then t

0

, u

0

are consistent as well.

Proof { If C

A

is the CTS associated with a trace automaton A, then it is a straight-

forward application of the de�nition of the residual operation on A to see that C

A

has properties (1)-(3).

Conversely, suppose C is a CTS with the stated properties. De�ne the events of C

to be the �-equivalence classes [t] of nonidentity transitions t of C. Let E be the set

of all events of C, with concurrency relation k

E

de�ned as follows: [t]k

E

[u] i� there

exist t

0

� t and u

0

� u such that t

0

; u

0

are consistent and t

0

6= u

0

. Clearly, the relation

k

E

is symmetric, and hypothesis (2) implies that it is irre
exive.

De�ne A = (E;Q; T), where T contains all transitions q

�

�!q and all transitions

q

[t]

�!r such that t : q ! r is a nonidentity transition of C. One may now verify that

A is an automaton, with A ' C

A

.

The equivalence, discussed in Section 3.5, from the category Alph of concurrent

alphabets and weak morphisms to a full subcategory of CTS, suggests an interesting

way to make the class of trace automata into a category TrAuto.

Formally, suppose A = (E;Q; T) and A

0

= (E

0

; Q

0

; T

0

) are trace automata. De�ne

a morphism from A to A

0

to be a pair (�

e

; �

s

), where �

e

: E ! E

0

is a weak morphism

of concurrent alphabets, and �

s

: Q! Q

0

is a function, such that the following holds:

� Suppose q

e

�!r 2 T , with e 6= �. Then for every enumeration fe

0

1

; . . . ; e

0

n

g of

�

e

(feg), there exists a (necessarily unique) �nite computation sequence

�

s

(q) = r

0

0

e

0

1

�!r

0

1

e

0

2

�! . . .

e

0

n

�!r

0

n

= �

s

(r)

of A

0

.

Let TrAuto denote the category of trace automata and their morphisms.

The map that takes a trace automaton A to the CTS

b

C

A

extends to a functor

AuCts : TrAuto ! CTS. This functor does not yield an equivalence with a full

subcategory of CTS, because AuCts(A) does not contain su�cient information to

recover the concurrent alphabet of A up to isomorphism. Nevertheless, the category

TrAuto seems quite interesting, and further study of it and its relationship to CTS

seems worthwhile.

4 Conclusion

We have seen that by using the notion of a concurrent alphabet to introduce con-

currency information into ordinary nondeterministic transition systems, we obtain

a model of concurrent computation having a great deal of algebraic structure. The

essential features of this structure can be expressed nicely with the help of the notion

of the residual of one transition after another. The resulting algebra of residuals can

be used to obtain useful insights into the capabilities and limitations of concurrency.

In particular, the characterization of the domain of concurrent computations given by

Theorem 4 leads at once to interesting characterizations (see [17]) of the input/output

relations that are computable by various classes of concurrent automata.

References

[1] I. J. Aalbersberg and G. Rozenberg. Theory of traces. Theoretical Computer

Science, 60(1):1{82, 1988.

[2] M. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, University of

Sussex, October 1987.

[3] G. Berry and J.-J. L�evy. Minimal and optimal computations of recursive pro-

grams. Journal of the ACM, 26(1):148{175, January 1979.

[4] G. Boudol. Computational semantics of term rewriting systems. In M. Nivat and

J. Reynolds, editors, Algebraic Methods in Semantics, pages 169{236, Cambridge

University Press. 1985.

[5] G. Boudol and I. Castellani. A non-interleaving semantics for CCS based on

proved transitions. Fundamenta Informaticae, XI:433{452, 1988.

[6] P.-L. Curien. Categorical Combinators, Sequential Algorithms, and Functional

Programming. Research Notes in Theoretical Computer Science, Pitman, Lon-

don, 1986.

[7] G. Huet. Formal structures for computation and deduction (�rst edition). May

1986. Unpublished manuscript. INRIA, France.

[8] M. Kwiatkowska. Categories of Asynchronous Systems. PhD thesis, University

of Leicester, May 1989.

[9] J.-J. L�evy. R�eductions Correctes et Optimales dans le Lambda Calcul. PhD

thesis, Universit�e Paris VII, 1978.

[10] N. A. Lynch and E. W. Stark. A proof of the Kahn principle for input/output

automata. Information and Computation, 82(1):81{92, July 1989.

[11] A. Mazurkiewicz. Trace theory. In Advanced Course on Petri Nets, GMD, Bad

Honnef, September 1986.

[12] P. Panangaden and E. W. Stark. Computations, residuals, and the power of inde-

terminacy. In Automata, Languages, and Programming, pages 439{454, Springer-

Verlag. Volume 317 of Lecture Notes in Computer Science, 1988.

[13] M. W. Shields. Deterministic asynchronous automata. In Formal Methods in

Programming, North-Holland. 1985.

[14] E. W. Stark. Compositional relational semantics for indeterminate data
ow

networks. In Category Theory and Computer Science, pages 52{74, Springer-

Verlag. Volume 389 of Lecture Notes in Computer Science, Manchester, U. K.,

1989.

[15] E. W. Stark. Concurrent transition system semantics of process networks.

In Fourteenth ACM Symposium on Principles of Programming Languages,

pages 199{210, January 1987.

[16] E. W. Stark. Concurrent transition systems. Theoretical Computer Science,

64:221{269, 1989.

[17] E. W. Stark. On the relations computed by a class of concurrent automata. In

Seventeenth Annual ACM Symposium on Principles of Programming Languages,

January 1990.

[18] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1980.

